1
|
Song C, Lu J, Wang Y, Zou Y. Identification of the dysregulated let-7c-Sox2 network in the facial prominences of mouse embryos with early retinoid acid exposure. Dev Biol 2025; 523:9-19. [PMID: 40180297 DOI: 10.1016/j.ydbio.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
RA signaling is crucial for the anteroposterior pattern formation during neural crest induction and acts as a key environmental cue for cranial neural crest cell migration as well as the subsequent mesenchymal proliferation and differentiation. Congenital malformations including cleft lip and palate have been shown associated with altered embryonic RA signaling both in human and in animal models. In this study, a dysregulated let-7c-Sox2 network was identified in the altered transcriptomic profiles of the facial prominences of E12.5 mouse embryos induced by early RA exposure. Ubiquitously increased expression of let-7c was observed in the epithelium and the mesenchyme of facial prominences of the RA treated mouse and chick embryos. Direct binding and regulation between let-7c and Sox2 was verified using luciferase assay and significant negative correlation between let-7c and Sox2 expression was observed in vitro. Reduced Sox2 expression was predominantly identified in the epithelium of maxillary and palate shelves from E10.5 to E12.5 in RA-induced mouse embryos, resulted in oral adhesion and hypoplasia of palatal shelves that could partly be explained by the reduced mesenchymal proliferation due to upregulation of let-7c, as shown by the results of cell proliferation assay in vitro.
Collapse
Affiliation(s)
- Chao Song
- School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Junjie Lu
- School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ya Wang
- School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yi Zou
- School of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Parker LE, Papanicolaou KN, Zalesak-Kravec S, Weinberger EM, Kane MA, Foster DB. Retinoic acid signaling and metabolism in heart failure. Am J Physiol Heart Circ Physiol 2025; 328:H792-H813. [PMID: 39933792 DOI: 10.1152/ajpheart.00871.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/24/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Nearly 70 years after studies first showed that the offspring of vitamin A (retinol, ROL)-deficient rats exhibit structural cardiac defects and over 20 years since the role of vitamin A's potent bioactive metabolite hormone, all-trans retinoic acid (ATRA), was elucidated in embryonic cardiac development, the role of the vitamin A metabolites, or retinoids, in adult heart physiology and heart and vascular disease, remains poorly understood. Studies have shown that low serum levels of retinoic acid correlate with higher all-cause and cardiovascular mortality, though the relationship between circulating retinol and ATRA levels, cardiac tissue ATRA levels, and intracellular cardiac ATRA signaling in the context of heart and vascular disease has only begun to be addressed. We have recently shown that patients with idiopathic dilated cardiomyopathy show a nearly 40% decline of in situ cardiac ATRA levels, despite adequate local stores of retinol. Moreover, we and others have shown that the administration of ATRA forestalls the development of heart failure (HF) in rodent models. In this review, we summarize key facets of retinoid metabolism and signaling and discuss mechanisms by which impaired ATRA signaling contributes to several HF hallmarks including hypertrophy, contractile dysfunction, poor calcium handling, redox imbalance, and fibrosis. We highlight unresolved issues in cardiac ATRA metabolism whose pursuit will help refine therapeutic strategies aimed at restoring ATRA homeostasis.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Kyriakos N Papanicolaou
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | | | - Eva M Weinberger
- School of Medicine, Imperial College London, London, United Kingdom
| | - Maureen A Kane
- School of Pharmacy, University of Maryland, Baltimore, Maryland, United States
| | - D Brian Foster
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Varshosaz P, O'Connor C, Moise AR. Feedback regulation of retinaldehyde reductase DHRS3, a critical determinant of retinoic acid homeostasis. FEBS Lett 2025; 599:340-351. [PMID: 39420244 PMCID: PMC11808460 DOI: 10.1002/1873-3468.15038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Retinoic acid is crucial for vertebrate embryogenesis, influencing anterior-posterior patterning and organogenesis through its interaction with nuclear hormone receptors comprising heterodimers of retinoic acid receptors (RARα, β, or γ) and retinoid X receptors (RXRα, β, or γ). Tissue retinoic acid levels are tightly regulated since both its excess and deficiency are deleterious. Dehydrogenase/reductase 3 (DHRS3) plays a critical role in this regulation by converting retinaldehyde to retinol, preventing excessive retinoic acid formation. Mutations in DHRS3 can result in embryonic lethality and congenital defects. This study shows that mouse Dhrs3 expression is responsive to vitamin A status and is directly regulated by the RAR/RXR complex through cis-regulatory elements. This highlights a negative feedback mechanism that ensures retinoic acid homeostasis.
Collapse
Affiliation(s)
- Parisa Varshosaz
- Biology and Biomolecular Sciences Ph.D. Program, Northern Ontario School of MedicineLaurentian UniversitySudburyCanada
| | - Catherine O'Connor
- Medical Sciences DivisionNorthern Ontario School of MedicineSudburyCanada
| | - Alexander R. Moise
- Medical Sciences DivisionNorthern Ontario School of MedicineSudburyCanada
- Department of Biology and Biomolecular Sciences ProgramLaurentian UniversitySudburyCanada
| |
Collapse
|
4
|
Butler Tjaden NE, Shannon SR, Seidel CW, Childers M, Aoto K, Sandell LL, Trainor PA. Rdh10-mediated Retinoic Acid Signaling Regulates the Neural Crest Cell Microenvironment During ENS Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634504. [PMID: 39896510 PMCID: PMC11785139 DOI: 10.1101/2025.01.23.634504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The enteric nervous system (ENS) is formed from vagal neural crest cells (NCC), which generate most of the neurons and glia that regulate gastrointestinal function. Defects in the migration or differentiation of NCC in the gut can result in gastrointestinal disorders such as Hirschsprung disease (HSCR). Although mutations in many genes have been associated with the etiology of HSCR, a significant proportion of affected individuals have an undetermined genetic diagnosis. Therefore, it's important to identify new genes, modifiers and environmental factors that regulate ENS development and disease. Rdh10 catalyzes the first oxidative step in the metabolism of vitamin A to its active metabolite, RA, and is therefore a central regulator of vitamin A metabolism and retinoic acid (RA) synthesis during embryogenesis. We discovered that retinol dehydrogenase 10 (Rdh10) loss-of-function mouse embryos exhibit intestinal aganglionosis, characteristic of HSCR. Vagal NCC form and migrate in Rdh10 mutant embryos but fail to invade the foregut. Rdh10 is highly expressed in the mesenchyme surrounding the entrance to the foregut and is essential between E7.5-E9.5 for NCC invasion into the gut. Comparative RNA-sequencing revealed downregulation of the Ret-Gdnf-Gfrα1 gene signaling network in Rdh10 mutants, which is critical for vagal NCC chemotaxis. Furthermore, the composition of the extracellular matrix through which NCC migrate is also altered, in part by increased collagen deposition. Collectively this restricts NCC entry into the gut, demonstrating that Rdh10-mediated vitamin A metabolism and RA signaling pleiotropically regulates the NCC microenvironment during ENS formation and in the pathogenesis of intestinal aganglionosis.
Collapse
Affiliation(s)
- Naomi E. Butler Tjaden
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Gastroenterology, Hepatology & Nutrition, Children’s Hospital of Philadelphia, Philadelphia PA 19104
| | - Stephen R. Shannon
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Melissa Childers
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Kazushi Aoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu City, Shizuoka, Japan 431-3192
| | - Lisa L. Sandell
- University of Louisville, Department of Oral Immunology and Infectious Diseases, Louisville, KY, 40201, USA
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
5
|
Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch‐Ernst K, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Lietz G, Passeri G, Craciun I, Fabiani L, Horvath Z, Valtueña Martínez S, Naska A. Scientific opinion on the tolerable upper intake level for preformed vitamin A and β-carotene. EFSA J 2024; 22:e8814. [PMID: 38846679 PMCID: PMC11154838 DOI: 10.2903/j.efsa.2024.8814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Following two requests from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the revision of the tolerable upper intake level (UL) for preformed vitamin A and β-carotene. Systematic reviews of the literature were conducted for priority adverse health effects of excess vitamin A intake, namely teratogenicity, hepatotoxicity and endpoints related to bone health. Available data did not allow to address whether β-carotene could potentiate preformed vitamin A toxicity. Teratogenicity was selected as the critical effect on which to base the UL for preformed vitamin A. The Panel proposes to retain the UL for preformed vitamin A of 3000 μg RE/day for adults. This UL applies to men and women, including women of child-bearing age, pregnant and lactating women and post-menopausal women. This value was scaled down to other population groups using allometric scaling (body weight0.75), leading to ULs between 600 μg RE/day (infants 4-11 months) and 2600 μg RE/day (adolescents 15-17 years). Based on available intake data, European populations are unlikely to exceed the UL for preformed vitamin A if consumption of liver, offal and products thereof is limited to once per month or less. Women who are planning to become pregnant or who are pregnant are advised not to consume liver products. Lung cancer risk was selected as the critical effect of excess supplemental β-carotene. The available data were not sufficient and suitable to characterise a dose-response relationship and identify a reference point; therefore, no UL could be established. There is no indication that β-carotene intake from the background diet is associated with adverse health effects. Smokers should avoid consuming food supplements containing β-carotene. The use of supplemental β-carotene by the general population should be limited to the purpose of meeting vitamin A requirements.
Collapse
|
6
|
Olsen T, Lerner UH. Vitamin A - a scoping review for Nordic nutrition Recommendations 2023. Food Nutr Res 2023; 67:10229. [PMID: 38686175 PMCID: PMC11057411 DOI: 10.29219/fnr.v67.10229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/12/2022] [Accepted: 09/18/2023] [Indexed: 05/02/2024] Open
Abstract
Vitamin A refers to a group of fat-soluble compounds with retinol activity, including all-trans retinol and pro-vitamin A carotenoids. Bioactive compounds include retinal and all-trans retinoic acid with important functions in vision, immune function, growth, and development. The literature search that was performed for the current scoping review yielded a total of seven publications relevant to setting the recommended daily intake for vitamin A. In total, six publications assessed the relationship of serum retinol and/or dietary vitamin A intake with fracture risk (n = 2), cancer (n = 3), and deficiency after bariatric surgery (n = 1). One additional report by the European Food Safety Administration (EFSA) with updated average requirements was included. The outcomes-based systematic reviews and meta-analyses showed positive associations for vitamin A intake and serum retinol with risk of hip fracture. Weak or inconclusive associations were observed for cancer or obesity. One publication by EFSA with updated estimated average requirements and population reference intakes for dietary vitamin A intakes was published in 2015. The EFSA recommendations and estimated average requirements are based on a European reference population, with body weights derived from an assumed body mass index of 22, which might be too low and not representative of the Nordic and Baltic populations, and consequently resulting in lower estimated average requirements and recommendations. In conclusion, there were limited new outcomes-based data for vitamin A and health outcomes.
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ulf H. Lerner
- Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Miao Q, Tang C, Yang Y, Zhao Q, Li F, Qin Y, Zhang J. Deposition and bioconversion law of β-carotene in laying hens after long-term supplementation under adequate vitamin A status in the diet. Poult Sci 2023; 102:103046. [PMID: 37708765 PMCID: PMC10502406 DOI: 10.1016/j.psj.2023.103046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
β-Carotene, because it is the precursor of vitamin A and has versatile biological roles, has been applied as a feed additive in the poultry industry for a long time. In this study, we investigated the deposition and bioconversion of β-carotene in laying hens. A total of 600 Hy-line brown laying hens at 40 wk of age were randomly divided into 5 dietary treatments, each group's dietary supplemental levels of β-carotene were 0, 15, 30, 60, 120 mg/kg feed, and the vitamin A levels were all 8,000 IU/kg. After 14-wk trial, samples were collected, then carotenoids and different forms of vitamin A were detected using the novel method developed by our laboratory. We found that dietary β-carotene treatment had no significant effects on laying hens' production performance and egg quality (P > 0.05), except the yolk color. The deposition of β-carotene in the body gradually increased (P < 0.01) with the supplemental dose, whereas the contents of lutein and zeaxanthin decreased (P < 0.05). When the β-carotene supplemental level was above 30 mg/kg in the diet, the different forms of vitamin A in in serum, liver, ovary, and yolks were increased compared to the control group (P < 0.05). However, these indicators decreased when the additional dose was 120 mg/kg. Moreover, the mRNA levels of the genes involved in β-carotene absorption, bioconversion, and negative feedback regulation in duodenal mucosa and liver were upregulated after long-term feeding (P < 0.05). Histological staining of the ovaries indicated that the deposition of β-carotene led to a lower rate of follicle atresia (P < 0.05), and this positive effects may be related to the antioxidant function of β-carotene, which caused a reduction of oxidation products in the ovary (P < 0.05). Altogether, β-carotene could accumulate in laying hens intactly and exert its biological functions in tissue. Meanwhile, a part of β-carotene could also be converted into vitamin A but this bioconversion has an upper limit and negative feedback regulation.
Collapse
Affiliation(s)
- Qixiang Miao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Youyou Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Viragova S, Aparicio L, Palmerini P, Zhao J, Valencia Salazar LE, Schurer A, Dhuri A, Sahoo D, Moskaluk CA, Rabadan R, Dalerba P. Inverse agonists of retinoic acid receptor/retinoid X receptor signaling as lineage-specific antitumor agents against human adenoid cystic carcinoma. J Natl Cancer Inst 2023; 115:838-852. [PMID: 37040084 PMCID: PMC10323906 DOI: 10.1093/jnci/djad062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/13/2023] [Accepted: 04/02/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Adenoid cystic carcinoma (ACC) is a lethal malignancy of exocrine glands, characterized by the coexistence within tumor tissues of 2 distinct populations of cancer cells, phenotypically similar to the myoepithelial and ductal lineages of normal salivary epithelia. The developmental relationship linking these 2 cell types, and their differential vulnerability to antitumor treatments, remains unknown. METHODS Using single-cell RNA sequencing, we identified cell-surface markers (CD49f, KIT) that enabled the differential purification of myoepithelial-like (CD49fhigh/KITneg) and ductal-like (CD49flow/KIT+) cells from patient-derived xenografts (PDXs) of human ACCs. Using prospective xenotransplantation experiments, we compared the tumor-initiating capacity of the 2 cell types and tested whether one could differentiate into the other. Finally, we searched for signaling pathways with differential activation between the 2 cell types and tested their role as lineage-specific therapeutic targets. RESULTS Myoepithelial-like cells displayed higher tumorigenicity than ductal-like cells and acted as their progenitors. Myoepithelial-like and ductal-like cells displayed differential expression of genes encoding for suppressors and activators of retinoic acid signaling, respectively. Agonists of retinoic acid receptor (RAR) or retinoid X receptor (RXR) signaling (all-trans retinoic acid, bexarotene) promoted myoepithelial-to-ductal differentiation, whereas suppression of RAR/RXR signaling with a dominant-negative RAR construct abrogated it. Inverse agonists of RAR/RXR signaling (BMS493, AGN193109) displayed selective toxicity against ductal-like cells and in vivo antitumor activity against PDX models of human ACC. CONCLUSIONS In human ACCs, myoepithelial-like cells act as progenitors of ductal-like cells, and myoepithelial-to-ductal differentiation is promoted by RAR/RXR signaling. Suppression of RAR/RXR signaling is lethal to ductal-like cells and represents a new therapeutic approach against human ACCs.
Collapse
Affiliation(s)
- Sara Viragova
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Luis Aparicio
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Pierangela Palmerini
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA
| | - Junfei Zhao
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Luis E Valencia Salazar
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA
| | - Alexandra Schurer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Anika Dhuri
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
- Rebecca and John Moores Comprehensive Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Christopher A Moskaluk
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Piero Dalerba
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Digestive and Liver Disease Research Center, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Zheng N, Zhang W, Zhang X, Li B, Wu Z, Weng Y, Wang W, Miao J, Yang J, Zhang M, Xia W. RA-RAR signaling promotes mouse vaginal opening through increasing β-catenin expression and vaginal epithelial cell apoptosis. Reprod Biol Endocrinol 2023; 21:36. [PMID: 37041518 PMCID: PMC10088237 DOI: 10.1186/s12958-023-01084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/23/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Retinoic acid (RA) plays important role in the maintenance and differentiation of the Müllerian ducts during the embryonic stage via RA receptors (RARs). However, the function and mechanism of RA-RAR signaling in the vaginal opening are unknown. METHOD We used the Rarα knockout mouse model and the wild-type ovariectomized mouse models with subcutaneous injection of RA (2.5 mg/kg) or E2 (0.1 µg/kg) to study the role and mechanism of RA-RAR signaling on the vaginal opening. The effects of Rarα deletion on Ctnnb1 mRNA levels and cell apoptosis in the vaginas were analyzed by real-time PCR and immunofluorescence, respectively. The effects of RA on the expression of β-catenin and apoptosis in the vaginas were analyzed by real-time PCR and western blotting. The effects of E2 on RA signaling molecules were analyzed by real-time PCR and western blotting. RESULTS RA signaling molecules were expressed in vaginal epithelial cells, and the mRNA and/or protein levels of RALDH2, RALDH3, RARα and RARγ reached a peak at the time of vaginal opening. The deletion of Rarα resulted in 25.0% of females infertility due to vaginal closure, in which the mRNA (Ctnnb1, Bak and Bax) and protein (Cleaved Caspase-3) levels were significantly decreased, and Bcl2 mRNA levels were significantly increased in the vaginas. The percentage of vaginal epithelium with TUNEL- and Cleaved Caspase-3-positive signals were also significantly decreased in Rarα-/- females with vaginal closure. Furthermore, RA supplementation of ovariectomized wild-type (WT) females significantly increased the expression of β-catenin, active β-catenin, BAK and BAX, and significantly decreased BCL2 expression in the vaginas. Thus, the deletion of Rarα prevents vaginal opening by reducing the vaginal β-catenin expression and epithelial cell apoptosis. The deletion of Rarα also resulted in significant decreases in serum estradiol (E2) and vagina Raldh2/3 mRNA levels. E2 supplementation of ovariectomized WT females significantly increased the expression of RA signaling molecules in the vaginas, suggesting that the up-regulation of RA signaling molecules in the vaginas is dependent on E2 stimulation. CONCLUSION Taken together, we propose that RA-RAR signaling in the vaginas promotes vaginal opening through increasing β-catenin expression and vaginal epithelial cell apoptosis.
Collapse
Affiliation(s)
- Nana Zheng
- Department of Reproductive Medicine Centre, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510180, China
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wenbo Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xiaodan Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Biao Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhanying Wu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yashuang Weng
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Weiyong Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jingjing Miao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jing Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Meijia Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Wei Xia
- Department of Reproductive Medicine Centre, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510180, China.
| |
Collapse
|
10
|
Leon E, Nde C, Ray RS, Preciado D, Zohn IE. ALDH1A2-related disorder: A new genetic syndrome due to alteration of the retinoic acid pathway. Am J Med Genet A 2023; 191:90-99. [PMID: 36263470 PMCID: PMC9805811 DOI: 10.1002/ajmg.a.62991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 01/03/2023]
Abstract
Aldehyde Dehydrogenase 1, Family Member A2 (ALDH1A2) is essential for the synthesis of retinoic acid from vitamin A. Studies in model organisms demonstrate a critical role for ALDH1A2 in embryonic development, yet few pathogenic variants are linked to congenital anomalies in humans. We present three siblings with multiple congenital anomaly syndrome linked to biallelic sequence variants in ALDH1A2. The major congenital malformations affecting these children include tetralogy of Fallot, absent thymus, diaphragmatic eventration, and talipes equinovarus. Upper airway anomalies, hypocalcemia, and dysmorphic features are newly reported in this manuscript. In vitro functional validation of variants indicated that substitutions reduced the expression of the enzyme. Our clinical and functional data adds to a recent report of biallelic ALDH1A2 pathogenic variants in two families with a similar constellation of congenital malformations. These findings provide further evidence for an autosomal recessive ALDH1A2-deficient recognizable malformation syndrome involving the diaphragm, cardiac and musculoskeletal systems.
Collapse
Affiliation(s)
- Eyby Leon
- Rare Disease Institute, Children's National Hospital, Washington, DC, USA
| | - Claris Nde
- Center for Genetic Medicine, Children's National Hospital, Washington, DC, USA
| | - Randall S. Ray
- Rare Disease Institute, Children's National Hospital, Washington, DC, USA
| | - Diego Preciado
- Division of Pediatric Otolaryngology, Children's National Hospital, Washington, DC, USA
| | - Irene E. Zohn
- Center for Genetic Medicine, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
11
|
Immune Impairment Associated with Vitamin A Deficiency: Insights from Clinical Studies and Animal Model Research. Nutrients 2022; 14:nu14235038. [PMID: 36501067 PMCID: PMC9738822 DOI: 10.3390/nu14235038] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Vitamin A (VA) is critical for many biological processes, including embryonic development, hormone production and function, the maintenance and modulation of immunity, and the homeostasis of epithelium and mucosa. Specifically, VA affects cell integrity, cytokine production, innate immune cell activation, antigen presentation, and lymphocyte trafficking to mucosal surfaces. VA also has been reported to influence the gut microbiota composition and diversity. Consequently, VA deficiency (VAD) results in the imbalanced production of inflammatory and immunomodulatory cytokines, intestinal inflammation, weakened mucosal barrier functions, reduced reactive oxygen species (ROS) and disruption of the gut microbiome. Although VAD is primarily known to cause xerophthalmia, its role in the impairment of anti-infectious defense mechanisms is less defined. Infectious diseases lead to temporary anorexia and lower dietary intake; furthermore, they adversely affect VA status by interfering with VA absorption, utilization and excretion. Thus, there is a tri-directional relationship between VAD, immune response and infections, as VAD affects immune response and predisposes the host to infection, and infection decreases the intestinal absorption of the VA, thereby contributing to secondary VAD development. This has been demonstrated using nutritional and clinical studies, radiotracer studies and knockout animal models. An in-depth understanding of the relationship between VAD, immune response, gut microbiota and infections is critical for optimizing vaccine efficacy and the development of effective immunization programs for countries with high prevalence of VAD. Therefore, in this review, we have comprehensively summarized the existing knowledge regarding VAD impacts on immune responses to infections and post vaccination. We have detailed pathological conditions associated with clinical and subclinical VAD, gut microbiome adaptation to VAD and VAD effects on the immune responses to infection and vaccines.
Collapse
|
12
|
Pierro JD, Ahir BK, Baker NC, Kleinstreuer NC, Xia M, Knudsen TB. Computational model for fetal skeletal defects potentially linked to disruption of retinoic acid signaling. Front Pharmacol 2022; 13:971296. [PMID: 36172177 PMCID: PMC9511990 DOI: 10.3389/fphar.2022.971296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
All-trans retinoic acid (ATRA) gradients determine skeletal patterning morphogenesis and can be disrupted by diverse genetic or environmental factors during pregnancy, leading to fetal skeleton defects. Adverse Outcome Pathway (AOP) frameworks for ATRA metabolism, signaling, and homeostasis allow for the development of new approach methods (NAMs) for predictive toxicology with less reliance on animal testing. Here, a data-driven model was constructed to identify chemicals associated with both ATRA pathway bioactivity and prenatal skeletal defects. The phenotype data was culled from ToxRefDB prenatal developmental toxicity studies and produced a list of 363 ToxRefDB chemicals with altered skeletal observations. Defects were classified regionally as cranial, post-cranial axial, appendicular, and other (unspecified) features based on ToxRefDB descriptors. To build a multivariate statistical model, high-throughput screening bioactivity data from >8,070 chemicals in ToxCast/Tox21 across 10 in vitro assays relevant to the retinoid signaling system were evaluated and compared to literature-based candidate reference chemicals in the dataset. There were 48 chemicals identified for effects on both in vivo skeletal defects and in vitro ATRA pathway targets for computational modeling. The list included 28 chemicals with prior evidence of skeletal defects linked to retinoid toxicity and 20 chemicals without prior evidence. The combination of thoracic cage defects and DR5 (direct repeats of 5 nucleotides for RAR/RXR transactivation) disruption was the most frequently occurring phenotypic and target disturbance, respectively. This data model provides valuable AOP elucidation and validates current mechanistic understanding. These findings also shed light on potential avenues for new mechanistic discoveries related to ATRA pathway disruption and associated skeletal dysmorphogenesis due to environmental exposures.
Collapse
Affiliation(s)
- Jocylin D. Pierro
- Center for Computational Toxicology and Exposure (CCTE), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, United States
| | - Bhavesh K. Ahir
- Eurofins Medical Device Testing, Lancaster, PA, United States
| | - Nancy C. Baker
- Scientific Computing and Data Curation Division (SCDCD), Leidos Contractor, Center for Computational Toxicology and Exposure (CCTE), USEPA/ORD, Research Triangle Park, NC, United States
| | - Nicole C. Kleinstreuer
- Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), National Toxicology Program, National Institutes of Health, Research Triangle Park, NC, United States
| | - Menghang Xia
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Thomas B. Knudsen
- Center for Computational Toxicology and Exposure (CCTE), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, United States
| |
Collapse
|
13
|
Behl T, Kaur D, Sehgal A, Singla RK, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Therapeutic insights elaborating the potential of retinoids in Alzheimer’s disease. Front Pharmacol 2022; 13:976799. [PMID: 36091826 PMCID: PMC9453874 DOI: 10.3389/fphar.2022.976799] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is perceived with various pathophysiological characteristics such oxidative stress, senile plaques, neuroinflammation, altered neurotransmission immunological changes, neurodegenerative pathways, and age-linked alterations. A great deal of studies even now are carried out for comprehensive understanding of pathological processes of AD, though many agents are in clinical trials for the treatment of AD. Retinoids and retinoic acid receptors (RARs) are pertinent to such attributes of the disease. Retinoids support the proper functioning of the immunological pathways, and are very potent immunomodulators. The nervous system relies heavily on retinoic acid signaling. The disruption of retinoid signaling relates to several pathogenic mechanisms in the normal brain. Retinoids play critical functions in the neuronal organization, differentiation, and axonal growth in the normal functioning of the brain. Disturbed retinoic acid signaling causes inflammatory responses, mitochondrial impairment, oxidative stress, and neurodegeneration, leading to Alzheimer’s disease (AD) progression. Retinoids interfere with the production and release of neuroinflammatory chemokines and cytokines which are located to be activated in the pathogenesis of AD. Also, stimulating nuclear retinoid receptors reduces amyloid aggregation, lowers neurodegeneration, and thus restricts Alzheimer’s disease progression in preclinical studies. We outlined the physiology of retinoids in this review, focusing on their possible neuroprotective actions, which will aid in elucidating the critical function of such receptors in AD pathogenesis.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- *Correspondence: Tapan Behl, ; Simona Bungau,
| | - Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rajeev K. Singla
- Institutes for Sytems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
- *Correspondence: Tapan Behl, ; Simona Bungau,
| |
Collapse
|
14
|
Murakami A, Amano T, Yoshino F, Kita H, Moritani S, Murakami T, Chano T. Retinol dehydrogenase 10 contributes to cancer stemness and intracellular carbohydrate storage in ovarian clear cell carcinomas. Cancer Biomark 2022; 34:673-679. [PMID: 35634847 DOI: 10.3233/cbm-210435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Ovarian clear cell carcinomas (OCCCs) have been recurrent and refractory among the present treatments, so novel therapeutics are urgently needed. OBJECTIVE The present study accumulates the proof of concept to examine the feasibility of RDH10 as a therapeutic target for treating OCCCs. METHODS Immunohistochemically, RDH10 expression was evaluated in 111 primary epithelial ovarian cancers, including 55 OCCCs, 31 ovarian endometrioid carcinomas and 25 ovarian serous carcinomas. The spherogenecity provoked by RDH10 was evaluated in OCCC cells. To analyze whether RDH10 promotes carbohydrate storage via the vitamin A-gluconeogenesis pathway, phosphoenolpyruvate carboxykinase 1 (PCK1) protein levels and intracellular carbohydrate content were measured in response to modified RDH10 expression. RESULTS Abundant RDH10 was expressed specifically in OCCCs. RDH10 promoted spherogenecity and intracellular carbohydrate storage via modulation of PCK1 expression in OCCC cells. CONCLUSIONS In the present study, abundant RDH10 contributed to cancer cell stemness and intracellular carbohydrate storage in OCCCs. RDH10 is a potentially, new therapeutic candidate for treating OCCC cases.
Collapse
Affiliation(s)
- Atsushi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tsukuru Amano
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Fumi Yoshino
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroko Kita
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Suzuko Moritani
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan.,Department of Medical Genetics, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
15
|
O’Connor C, Varshosaz P, Moise AR. Mechanisms of Feedback Regulation of Vitamin A Metabolism. Nutrients 2022; 14:1312. [PMID: 35334970 PMCID: PMC8950952 DOI: 10.3390/nu14061312] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A is an essential nutrient required throughout life. Through its various metabolites, vitamin A sustains fetal development, immunity, vision, and the maintenance, regulation, and repair of adult tissues. Abnormal tissue levels of the vitamin A metabolite, retinoic acid, can result in detrimental effects which can include congenital defects, immune deficiencies, proliferative defects, and toxicity. For this reason, intricate feedback mechanisms have evolved to allow tissues to generate appropriate levels of active retinoid metabolites despite variations in the level and format, or in the absorption and conversion efficiency of dietary vitamin A precursors. Here, we review basic mechanisms that govern vitamin A signaling and metabolism, and we focus on retinoic acid-controlled feedback mechanisms that contribute to vitamin A homeostasis. Several approaches to investigate mechanistic details of the vitamin A homeostatic regulation using genomic, gene editing, and chromatin capture technologies are also discussed.
Collapse
Affiliation(s)
- Catherine O’Connor
- MD Program, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada;
| | - Parisa Varshosaz
- Biology and Biomolecular Sciences Ph.D. Program, Northern Ontario School of Medicine, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
16
|
Jin Y, Teh SS, Lau HLN, Xiao J, Mah SH. Retinoids as anti-cancer agents and their mechanisms of action. Am J Cancer Res 2022; 12:938-960. [PMID: 35411232 PMCID: PMC8984900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023] Open
Abstract
Retinoids (vitamin A) have been reported extensively for anti-cancer properties due to their high receptor-binding affinities and gene regulation abilities. However, the anti-cancer potential of retinoids has not been reviewed in recent years. Thus, this review focused on the anti-cancer effects of retinoids and their synergistic effects with other drugs, together with their mechanisms of action in different types of cancers reported in the past five years. The retinoids were well studied in breast cancer, melanoma, and colorectal cancer. Synthetic retinoids have shown higher selectivity, stronger effectiveness, and lower toxicity than endogenous retinoids. Interestingly, the combination treatment of endogenous retinoids with chemotherapy drugs showed enhanced anti-cancer effects. The mechanisms of action reported for retinoids mainly involved the RAR/RXR signaling pathway. However, limited clinical studies were conducted in recent years. Thus, retinoids which are highly potential anti-cancer agents are worth further study in clinical, especially as a combination therapy with chemotherapy drugs.
Collapse
Affiliation(s)
- Ying Jin
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
| | - Soek Sin Teh
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil BoardKajang, Selangor, Malaysia
| | - Harrison Lik Nang Lau
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil BoardKajang, Selangor, Malaysia
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense CampusOurense, Spain
| | - Siau Hui Mah
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
| |
Collapse
|
17
|
Enhanced Loss of Retinoic Acid Network Genes in Xenopus laevis Achieves a Tighter Signal Regulation. Cells 2022; 11:cells11030327. [PMID: 35159137 PMCID: PMC8834563 DOI: 10.3390/cells11030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
Retinoic acid (RA) is a major regulatory signal during embryogenesis produced from vitamin A (retinol) by an extensive, autoregulating metabolic and signaling network to prevent fluctuations that result in developmental malformations. Xenopus laevis is an allotetraploid hybrid frog species whose genome includes L (long) and S (short) chromosomes from the originating species. Evolutionarily, the X. laevis subgenomes have been losing either L or S homoeologs in about 43% of genes to generate singletons. In the RA network, out of the 47 genes, about 47% have lost one of the homoeologs, like the genome average. Interestingly, RA metabolism genes from storage (retinyl esters) to retinaldehyde production exhibit enhanced gene loss with 75% singletons out of 28 genes. The effect of this gene loss on RA signaling autoregulation was studied. Employing transient RA manipulations, homoeolog gene pairs were identified in which one homoeolog exhibits enhanced responses or looser regulation than the other, while in other pairs both homoeologs exhibit similar RA responses. CRISPR/Cas9 targeting of individual homoeologs to reduce their activity supports the hypothesis where the RA metabolic network gene loss results in tighter network regulation and more efficient RA robustness responses to overcome complex regulation conditions.
Collapse
|
18
|
Wu Y, Kurosaka H, Wang Q, Inubushi T, Nakatsugawa K, Kikuchi M, Ohara H, Tsujimoto T, Natsuyama S, Shida Y, Sandell LL, Trainor PA, Yamashiro T. Retinoic Acid Deficiency Underlies the Etiology of Midfacial Defects. J Dent Res 2022; 101:686-694. [PMID: 35001679 DOI: 10.1177/00220345211062049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Embryonic craniofacial development depends on the coordinated outgrowth and fusion of multiple facial primordia, which are populated with cranial neural crest cells and covered by the facial ectoderm. Any disturbance in these developmental events, their progenitor tissues, or signaling pathways can result in craniofacial deformities such as orofacial clefts, which are among the most common birth defects in humans. In the present study, we show that Rdh10 loss of function leads to a substantial reduction in retinoic acid (RA) signaling in the developing frontonasal process during early embryogenesis, which results in a variety of craniofacial anomalies, including midfacial cleft and ectopic chondrogenic nodules. Elevated apoptosis and perturbed cell proliferation in postmigratory cranial neural crest cells and a substantial reduction in Alx1 and Alx3 transcription in the developing frontonasal process were associated with midfacial cleft in Rdh10-deficient mice. More important, expanded Shh signaling in the ventral forebrain, as well as partial abrogation of midfacial defects in Rdh10 mutants via inhibition of Hh signaling, indicates that misregulation of Shh signaling underlies the pathogenesis of reduced RA signaling-associated midfacial defects. Taken together, these data illustrate the precise spatiotemporal function of Rdh10 and RA signaling during early embryogenesis and their importance in orchestrating molecular and cellular events essential for normal midfacial development.
Collapse
Affiliation(s)
- Y Wu
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - H Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Q Wang
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - T Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - K Nakatsugawa
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - M Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - H Ohara
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - T Tsujimoto
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - S Natsuyama
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Y Shida
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - L L Sandell
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - P A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS, USA
| | - T Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| |
Collapse
|
19
|
Kurosaka H, Mushiake J, Mithun S, Wu Y, Wang Q, Kikuchi M, Nakaya A, Yamamoto S, Inubushi T, Koga S, Sandell LL, Trainor P, Yamashiro T. Synergistic role of retinoic acid signaling and Gata3 during primitive choanae formation. Hum Mol Genet 2021; 30:2383-2392. [PMID: 34272563 DOI: 10.1093/hmg/ddab205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/16/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
Developmental defects of primitive choanae, an anatomical path to connect the embryonic nasal and oral cavity, result in disorders called choanal atresia, which are associated with many congenital diseases and require immediate clinical intervention after birth. Previous studies revealed that reduced retinoid signaling underlies the etiology of choanal atresia. In the present study, by using multiple mouse models which conditionally deleted Rdh10 and Gata3 during embryogenesis, we showed that Gata3 expression is regulated by retinoid signaling during embryonic craniofacial development and plays crucial roles for development of the primitive choanae. Interestingly, Gata3 loss of function is known to cause hypoparathyroidism, sensorineural deafness and renal disease (HDR) syndrome, which exhibits choanal atresia as one of the phenotypes in humans. Our model partially phenocopies HDR syndrome with choanal atresia, and is thus a useful tool for investigating the molecular and cellular mechanisms of HDR syndrome. We further uncovered critical synergy of Gata3 and retinoid signaling during embryonic development, which will shed light on novel molecular and cellular etiology of congenital defects in primitive choanae formation.
Collapse
Affiliation(s)
- Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Jin Mushiake
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Saha Mithun
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Yanran Wu
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Qi Wang
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University
| | - Akihiro Nakaya
- Department of Genome Informatics, Graduate School of Medicine, Osaka University.,Laboratory of Genome Data Science Graduate School of Frontier Sciences, The University of Tokyo
| | - Sayuri Yamamoto
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Satoshi Koga
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry
| | - Paul Trainor
- Stowers Institute for Medical Research.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| |
Collapse
|
20
|
Brown G, Petrie K. The RARγ Oncogene: An Achilles Heel for Some Cancers. Int J Mol Sci 2021; 22:3632. [PMID: 33807298 PMCID: PMC8036636 DOI: 10.3390/ijms22073632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer "stem cells" (CSCs) sustain the hierarchies of dividing cells that characterize cancer. The main causes of cancer-related mortality are metastatic disease and relapse, both of which originate primarily from CSCs, so their eradication may provide a bona fide curative strategy, though there maybe also the need to kill the bulk cancer cells. While classic anti-cancer chemotherapy is effective against the dividing progeny of CSCs, non-dividing or quiescent CSCs are often spared. Improved anti-cancer therapies therefore require approaches that target non-dividing CSCs, which must be underpinned by a better understanding of factors that permit these cells to maintain a stem cell-like state. During hematopoiesis, retinoic acid receptor (RAR) γ is selectively expressed by stem cells and their immediate progeny. It is overexpressed in, and is an oncogene for, many cancers including colorectal, renal and hepatocellular carcinoma, cholangiocarcinomas and some cases of acute myeloid leukemia that harbor RARγ fusion proteins. In vitro studies suggest that RARγ-selective and pan-RAR antagonists provoke the death of CSCs by necroptosis and point to antagonism of RARγ as a potential strategy to treat metastatic disease and relapse, and perhaps provide a cure for some cancers.
Collapse
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences, School of Biomedical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Kevin Petrie
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR13SD, UK;
| |
Collapse
|
21
|
Antioxidants and Therapeutic Targets in Ovarian Clear Cell Carcinoma. Antioxidants (Basel) 2021; 10:antiox10020187. [PMID: 33525614 PMCID: PMC7911626 DOI: 10.3390/antiox10020187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/04/2023] Open
Abstract
Ovarian clear cell carcinomas (OCCCs) are resistant to conventional anti-cancer drugs; moreover, the prognoses of advanced or recurrent patients are extremely poor. OCCCs often arise from endometriosis associated with strong oxidative stress. Of note, the stress involved in OCCCs can be divided into the following two categories: (a) carcinogenesis from endometriosis to OCCC and (b) factors related to treatment after carcinogenesis. Antioxidants can reduce the risk of OCCC formation by quenching reactive oxygen species (ROS); however, the oxidant stress-tolerant properties assist in the survival of OCCC cells when the malignant transformation has already occurred. Moreover, the acquisition of oxidative stress resistance is also involved in the cancer stemness of OCCC. This review summarizes the recent advances in the process and prevention of carcinogenesis, the characteristic nature of tumors, and the treatment of post-refractory OCCCs, which are highly linked to oxidative stress. Although therapeutic approaches should still be improved against OCCCs, multi-combinatorial treatments including nucleic acid-based drugs directed to the transcriptional profile of each OCCC are expected to improve the outcomes of patients.
Collapse
|
22
|
Klyuyeva AV, Belyaeva OV, Goggans KR, Krezel W, Popov KM, Kedishvili NY. Changes in retinoid metabolism and signaling associated with metabolic remodeling during fasting and in type I diabetes. J Biol Chem 2021; 296:100323. [PMID: 33485967 PMCID: PMC7949101 DOI: 10.1016/j.jbc.2021.100323] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Liver is the central metabolic hub that coordinates carbohydrate and lipid metabolism. The bioactive derivative of vitamin A, retinoic acid (RA), was shown to regulate major metabolic genes including phosphoenolpyruvate carboxykinase, fatty acid synthase, carnitine palmitoyltransferase 1, and glucokinase among others. Expression levels of these genes undergo profound changes during adaptation to fasting or in metabolic diseases such as type 1 diabetes (T1D). However, it is unknown whether the levels of hepatic RA change during metabolic remodeling. This study investigated the dynamics of hepatic retinoid metabolism and signaling in the fed state, in fasting, and in T1D. Our results show that fed-to-fasted transition is associated with significant decrease in hepatic retinol dehydrogenase (RDH) activity, the rate-limiting step in RA biosynthesis, and downregulation of RA signaling. The decrease in RDH activity correlates with the decreased abundance and altered subcellular distribution of RDH10 while Rdh10 transcript levels remain unchanged. In contrast to fasting, untreated T1D is associated with upregulation of RA signaling and an increase in hepatic RDH activity, which correlates with the increased abundance of RDH10 in microsomal membranes. The dynamic changes in RDH10 protein levels in the absence of changes in its transcript levels imply the existence of posttranscriptional regulation of RDH10 protein. Together, these data suggest that the downregulation of hepatic RA biosynthesis, in part via the decrease in RDH10, is an integral component of adaptation to fasting. In contrast, the upregulation of hepatic RA biosynthesis and signaling in T1D might contribute to metabolic inflexibility associated with this disease.
Collapse
Affiliation(s)
- Alla V Klyuyeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wojciech Krezel
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) - INSERM, University of Strasbourg, Strasbourg, France
| | - Kirill M Popov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
23
|
Chen B, Liu S, Feng D, Xiao L, Yang T, Li T, Sun W, Chen J. Vitamin A Deficiency in the Early-Life Periods Alters a Diversity of the Colonic Mucosal Microbiota in Rats. Front Nutr 2020; 7:580780. [PMID: 33425970 PMCID: PMC7793871 DOI: 10.3389/fnut.2020.580780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Vitamin A deficiency (VAD) remains a public health issue worldwide, affecting pregnant women and children. The early-life microbiota is a potentially effective intervention target for modulating immune and metabolic development of the host. This paper investigates the effects of VAD during different life periods on the structure of the colonic mucosa microbiota in adolescent rats. The results showed that the concentrations of serum retinol were > ~1.05 μmol/L in maternal VA normal (VAN)rats and < 0.7 μmol/L in maternal VAD rats, while the serum retinol levels were higher than 0.7 μmol/L in the pups of the VAN group and below 0.5 μmol/L in the pups of the VAD group. Compared to the offspring persistent with VAN from embryonic stage (group A), all the remaining groups exhibited an increased ratio of Firmicutes/Bacteroidetes abundance. A metagenome analysis (LEfSe) and a differentially abundant features approach using Metastats for genus abundances revealed that Diaphorobacter and Psychrobacter were increased in the offspring persistent with VAD from embryonic stage (group B);Bifidobacterium was decreased and Staphylococcus was increased in the offspring with VAD after weaning (group C); Propionibacterium and Enterobacter were increased significantly in the offspring with VAD during gestation(group E); and Ochrobactrum was increased in group B and the offspring with VAD during gestation and lactation(group D). Faecalibacterium abundance was significantly and positively related to serum retinol levels, while that of Staphylococcus was significantly and negatively correlated with serum retinol levels. VAD in different life periods can alter the gut microbiome in rats, but VAD in the early-life periods (especially gestation and/or lactation) leads to a diversity of the colonic mucosal microbiota in adolescent rats as well as an imbalance of the ratio between Firmicutes and Bacteroidetes. The early-life period may become a time window of VA intervention to improve intestinal microbiota caused by VA deficiency, but the specific mechanism requires more in-depth research.
Collapse
Affiliation(s)
- Baolin Chen
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Shu Liu
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Di Feng
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Lu Xiao
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Ting Yang
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Tingyu Li
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Wuqing Sun
- Information Technological Service Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Chen
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| |
Collapse
|
24
|
Bogenschutz EL, Sefton EM, Kardon G. Cell culture system to assay candidate genes and molecular pathways implicated in congenital diaphragmatic hernias. Dev Biol 2020; 467:30-38. [PMID: 32827499 DOI: 10.1016/j.ydbio.2020.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
The mammalian muscularized diaphragm is essential for respiration and defects in the developing diaphragm cause a common and frequently lethal birth defect, congenital diaphragmatic hernia (CDH). Human genetic studies have implicated more than 150 genes and multiple molecular pathways in CDH, but few of these have been validated because of the expense and time to generate mouse mutants. The pleuroperitoneal folds (PPFs) are transient embryonic structures in diaphragm development and defects in PPFs lead to CDH. We have developed a system to culture PPF fibroblasts from E12.5 mouse embryos and show that these fibroblasts, in contrast to the commonly used NIH 3T3 fibroblasts, maintain expression of key genes in normal diaphragm development. Using pharmacological and genetic manipulations that result in CDH in vivo, we also demonstrate that differences in proliferation provide a rapid means of distinguishing healthy and impaired PPF fibroblasts. Thus, the PPF fibroblast cell culture system is an efficient tool for assaying the functional significance of CDH candidate genes and molecular pathways and will be an important resource for elucidating the complex etiology of CDH.
Collapse
Affiliation(s)
- Eric L Bogenschutz
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, United States
| | - Elizabeth M Sefton
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, United States
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, United States.
| |
Collapse
|
25
|
Yitsege G, Stokes BA, Sabatino JA, Sugrue KF, Banyai G, Paronett EM, Karpinski BA, Maynard TM, LaMantia A, Zohn IE. Variations in maternal vitamin A intake modifies phenotypes in a mouse model of 22q11.2 deletion syndrome. Birth Defects Res 2020; 112:1194-1208. [PMID: 32431076 PMCID: PMC7586978 DOI: 10.1002/bdr2.1709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Vitamin A regulates patterning of the pharyngeal arches, cranial nerves, and hindbrain that are essential for feeding and swallowing. In the LgDel mouse model of 22q11.2 deletion syndrome (22q11DS), morphogenesis of multiple structures involved in feeding and swallowing are dysmorphic. We asked whether changes in maternal dietary Vitamin A intake can modify cranial nerve, hindbrain and pharyngeal arch artery development in the embryo as well as lung pathology that can be a sign of aspiration dysphagia in LgDel pups. METHODS Three defined amounts of vitamin A (4, 10, and 16 IU/g) were provided in the maternal diet. Cranial nerve, hindbrain and pharyngeal arch artery development was evaluated in embryos and inflammation in the lungs of pups to determine the impact of altering maternal diet on these phenotypes. RESULTS Reduced maternal vitamin A intake improved whereas increased intake exacerbated lung inflammation in LgDel pups. These changes were accompanied by increased incidence and/or severity of pharyngeal arch artery and cranial nerve V (CN V) abnormalities in LgDel embryos as well as altered expression of Cyp26b1 in the hindbrain. CONCLUSIONS Our studies demonstrate that variations in maternal vitamin A intake can influence the incidence and severity of phenotypes in a mouse model 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
- Gelila Yitsege
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Center for Genetic MedicineChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Bethany A. Stokes
- Center for Neuroscience ResearchChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
- Center for Genetic MedicineChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Julia A. Sabatino
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Kelsey F. Sugrue
- Center for Neuroscience ResearchChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
- Center for Genetic MedicineChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Gabor Banyai
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Center for Neuroscience ResearchChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Elizabeth M. Paronett
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Beverly A. Karpinski
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Thomas M. Maynard
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of MedicineRoanokeVirginiaUSA
| | - Anthony‐S. LaMantia
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of MedicineRoanokeVirginiaUSA
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | - Irene E. Zohn
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Center for Neuroscience ResearchChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
- Center for Genetic MedicineChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
26
|
Lee KH, Cha M, Lee BH. Neuroprotective Effect of Antioxidants in the Brain. Int J Mol Sci 2020; 21:ijms21197152. [PMID: 32998277 PMCID: PMC7582347 DOI: 10.3390/ijms21197152] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/29/2022] Open
Abstract
The brain is vulnerable to excessive oxidative insults because of its abundant lipid content, high energy requirements, and weak antioxidant capacity. Reactive oxygen species (ROS) increase susceptibility to neuronal damage and functional deficits, via oxidative changes in the brain in neurodegenerative diseases. Overabundance and abnormal levels of ROS and/or overload of metals are regulated by cellular defense mechanisms, intracellular signaling, and physiological functions of antioxidants in the brain. Single and/or complex antioxidant compounds targeting oxidative stress, redox metals, and neuronal cell death have been evaluated in multiple preclinical and clinical trials as a complementary therapeutic strategy for combating oxidative stress associated with neurodegenerative diseases. Herein, we present a general analysis and overview of various antioxidants and suggest potential courses of antioxidant treatments for the neuroprotection of the brain from oxidative injury. This review focuses on enzymatic and non-enzymatic antioxidant mechanisms in the brain and examines the relative advantages and methodological concerns when assessing antioxidant compounds for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan 47011, Korea;
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea;
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-1711
| |
Collapse
|
27
|
Nguyen CH, Grandits AM, Purton LE, Sill H, Wieser R. All-trans retinoic acid in non-promyelocytic acute myeloid leukemia: driver lesion dependent effects on leukemic stem cells. Cell Cycle 2020; 19:2573-2588. [PMID: 32900260 PMCID: PMC7644151 DOI: 10.1080/15384101.2020.1810402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive, often fatal hematopoietic malignancy. All-trans retinoic acid (atRA), one of the first molecularly targeted drugs in oncology, has greatly improved the outcome of a subtype of AML, acute promyelocytic leukemia (APL). In contrast, atRA has so far provided little therapeutic benefit in the much larger group of patients with non-APL AML. Attempts to identify genetically or molecularly defined subgroups of patients that may respond to atRA have not yielded consistent results. Since AML is a stem cell-driven disease, understanding the effectiveness of atRA may require an appreciation of its impact on AML stem cells. Recent studies reported that atRA decreased stemness of AML with an FLT3-ITD mutation, yet increased it in AML1-ETO driven or EVI1-overexpressing AML. This review summarizes the role of atRA in normal hematopoiesis and in AML, focusing on its impact on AML stem cells.
Collapse
Affiliation(s)
- Chi H Nguyen
- Division of Oncology, Department of Medicine I, Medical University of Vienna , Vienna, Austria.,Comprehensive Cancer Center , Vienna, Austria
| | - Alexander M Grandits
- Division of Oncology, Department of Medicine I, Medical University of Vienna , Vienna, Austria.,Comprehensive Cancer Center , Vienna, Austria
| | - Louise E Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research and Department of Medicine at St. Vincent's Hospital, The University of Melbourne , Melbourne, Australia
| | - Heinz Sill
- Division of Hematology, Medical University of Graz , Graz, Austria
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna , Vienna, Austria.,Comprehensive Cancer Center , Vienna, Austria
| |
Collapse
|
28
|
Roberts C. Regulating Retinoic Acid Availability during Development and Regeneration: The Role of the CYP26 Enzymes. J Dev Biol 2020; 8:jdb8010006. [PMID: 32151018 PMCID: PMC7151129 DOI: 10.3390/jdb8010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the role of the Cytochrome p450 subfamily 26 (CYP26) retinoic acid (RA) degrading enzymes during development and regeneration. Cyp26 enzymes, along with retinoic acid synthesising enzymes, are absolutely required for RA homeostasis in these processes by regulating availability of RA for receptor binding and signalling. Cyp26 enzymes are necessary to generate RA gradients and to protect specific tissues from RA signalling. Disruption of RA homeostasis leads to a wide variety of embryonic defects affecting many tissues. Here, the function of CYP26 enzymes is discussed in the context of the RA signalling pathway, enzymatic structure and biochemistry, human genetic disease, and function in development and regeneration as elucidated from animal model studies.
Collapse
Affiliation(s)
- Catherine Roberts
- Developmental Biology of Birth Defects, UCL-GOS Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK;
- Institute of Medical and Biomedical Education St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| |
Collapse
|
29
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
30
|
Fernandes-Silva H, Araújo-Silva H, Correia-Pinto J, Moura RS. Retinoic Acid: A Key Regulator of Lung Development. Biomolecules 2020; 10:biom10010152. [PMID: 31963453 PMCID: PMC7022928 DOI: 10.3390/biom10010152] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid (RA) is a key molecular player in embryogenesis and adult tissue homeostasis. In embryo development, RA plays a crucial role in the formation of different organ systems, namely, the respiratory system. During lung development, there is a spatiotemporal regulation of RA levels that assures the formation of a fully functional organ. RA signaling influences lung specification, branching morphogenesis, and alveolarization by regulating the expression of particular target genes. Moreover, cooperation with other developmental pathways is essential to shape lung organogenesis. This review focuses on the events regulated by retinoic acid during lung developmental phases and pulmonary vascular development; also, it aims to provide a snapshot of RA interplay with other well-known regulators of lung development.
Collapse
Affiliation(s)
- Hugo Fernandes-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- PhDOC PhD Program, ICVS/3B’s, School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Henrique Araújo-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital of Braga, 4710-243 Braga, Portugal
| | - Rute S Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Correspondence: ; Tel.: +35-12-5360-4911
| |
Collapse
|
31
|
Belyaeva OV, Adams MK, Popov KM, Kedishvili NY. Generation of Retinaldehyde for Retinoic Acid Biosynthesis. Biomolecules 2019; 10:biom10010005. [PMID: 31861321 PMCID: PMC7022914 DOI: 10.3390/biom10010005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
The concentration of all-trans-retinoic acid, the bioactive derivative of vitamin A, is critically important for the optimal performance of numerous physiological processes. Either too little or too much of retinoic acid in developing or adult tissues is equally harmful. All-trans-retinoic acid is produced by the irreversible oxidation of all-trans-retinaldehyde. Thus, the concentration of retinaldehyde as the immediate precursor of retinoic acid has to be tightly controlled. However, the enzymes that produce all-trans-retinaldehyde for retinoic acid biosynthesis and the mechanisms responsible for the control of retinaldehyde levels have not yet been fully defined. The goal of this review is to summarize the current state of knowledge regarding the identities of physiologically relevant retinol dehydrogenases, their enzymatic properties, and tissue distribution, and to discuss potential mechanisms for the regulation of the flux from retinol to retinaldehyde.
Collapse
Affiliation(s)
- Olga V. Belyaeva
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.M.P.); (N.Y.K.)
- Correspondence: ; Tel.: +1-205-996-4024
| | - Mark K. Adams
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA;
| | - Kirill M. Popov
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.M.P.); (N.Y.K.)
| | - Natalia Y. Kedishvili
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.M.P.); (N.Y.K.)
| |
Collapse
|
32
|
Draut H, Liebenstein T, Begemann G. New Insights into the Control of Cell Fate Choices and Differentiation by Retinoic Acid in Cranial, Axial and Caudal Structures. Biomolecules 2019; 9:E860. [PMID: 31835881 PMCID: PMC6995509 DOI: 10.3390/biom9120860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Retinoic acid (RA) signaling is an important regulator of chordate development. RA binds to nuclear RA receptors that control the transcriptional activity of target genes. Controlled local degradation of RA by enzymes of the Cyp26a gene family contributes to the establishment of transient RA signaling gradients that control patterning, cell fate decisions and differentiation. Several steps in the lineage leading to the induction and differentiation of neuromesodermal progenitors and bone-producing osteogenic cells are controlled by RA. Changes to RA signaling activity have effects on the formation of the bones of the skull, the vertebrae and the development of teeth and regeneration of fin rays in fish. This review focuses on recent advances in these areas, with predominant emphasis on zebrafish, and highlights previously unknown roles for RA signaling in developmental processes.
Collapse
|
33
|
Wang S, Yu J, Kane MA, Moise AR. Modulation of retinoid signaling: therapeutic opportunities in organ fibrosis and repair. Pharmacol Ther 2019; 205:107415. [PMID: 31629008 DOI: 10.1016/j.pharmthera.2019.107415] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
The vitamin A metabolite, retinoic acid, is an important signaling molecule during embryonic development serving critical roles in morphogenesis, organ patterning and skeletal and neural development. Retinoic acid is also important in postnatal life in the maintenance of tissue homeostasis, while retinoid-based therapies have long been used in the treatment of a variety of cancers and skin disorders. As the number of people living with chronic disorders continues to increase, there is great interest in extending the use of retinoid therapies in promoting the maintenance and repair of adult tissues. However, there are still many conflicting results as we struggle to understand the role of retinoic acid in the multitude of processes that contribute to tissue injury and repair. This review will assess our current knowledge of the role retinoic acid signaling in the development of fibroblasts, and their transformation to myofibroblasts, and of the potential use of retinoid therapies in the treatment of organ fibrosis.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
34
|
Wu L, Belyaeva OV, Adams MK, Klyuyeva AV, Lee SA, Goggans KR, Kesterson RA, Popov KM, Kedishvili NY. Mice lacking the epidermal retinol dehydrogenases SDR16C5 and SDR16C6 display accelerated hair growth and enlarged meibomian glands. J Biol Chem 2019; 294:17060-17074. [PMID: 31562240 DOI: 10.1074/jbc.ra119.010835] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/24/2019] [Indexed: 12/18/2022] Open
Abstract
Retinol dehydrogenases catalyze the rate-limiting step in the biosynthesis of retinoic acid, a bioactive lipid molecule that regulates the expression of hundreds of genes by binding to nuclear transcription factors, the retinoic acid receptors. Several enzymes exhibit retinol dehydrogenase activities in vitro; however, their physiological relevance for retinoic acid biosynthesis in vivo remains unclear. Here, we present evidence that two murine epidermal retinol dehydrogenases, short-chain dehydrogenase/reductase family 16C member 5 (SDR16C5) and SDR16C6, contribute to retinoic acid biosynthesis in living cells and are also essential for the oxidation of retinol to retinaldehyde in vivo Mice with targeted knockout of the more catalytically active SDR16C6 enzyme have no obvious phenotype, possibly due to functional redundancy, because Sdr16c5 and Sdr16c6 exhibit an overlapping expression pattern during later developmental stages and in adulthood. Mice that lack both enzymes are viable and fertile but display accelerated hair growth after shaving and also enlarged meibomian glands, consistent with a nearly 80% reduction in the retinol dehydrogenase activities of skin membrane fractions from the Sdr16c5/Sdr16c6 double-knockout mice. The up-regulation of hair-follicle stem cell genes is consistent with reduced retinoic acid signaling in the skin of the double-knockout mice. These results indicate that the retinol dehydrogenase activities of murine SDR16C5 and SDR16C6 enzymes are not critical for survival but are responsible for most of the retinol dehydrogenase activity in skin, essential for the regulation of the hair-follicle cycle, and required for the maintenance of both sebaceous and meibomian glands.
Collapse
Affiliation(s)
- Lizhi Wu
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Mark K Adams
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Alla V Klyuyeva
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Seung-Ah Lee
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Robert A Kesterson
- Department of Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Kirill M Popov
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
35
|
Ma J, Lwigale P. Transformation of the Transcriptomic Profile of Mouse Periocular Mesenchyme During Formation of the Embryonic Cornea. Invest Ophthalmol Vis Sci 2019; 60:661-676. [PMID: 30786278 PMCID: PMC6383728 DOI: 10.1167/iovs.18-26018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Defects in neural crest development are a major contributing factor in corneal dysgenesis, but little is known about the genetic landscape during corneal development. The purpose of this study was to provide a detailed transcriptome profile and evaluate changes in gene expression during mouse corneal development. Methods RNA sequencing was used to uncover the transcriptomic profile of periocular mesenchyme (pNC) isolated at embryonic day (E) 10.5 and corneas isolated at E14.5 and E16.5. The spatiotemporal expression of several differentially expressed genes was validated by in situ hybridization. Results Analysis of the whole-transcriptome profile between pNC and embryonic corneas identified 3815 unique differentially expressed genes. Pathway analysis revealed an enrichment of differentially expressed genes involved in signal transduction (retinoic acid, transforming growth factor-β, and Wnt pathways) and transcriptional regulation. Conclusions Our analyses, for the first time, identify a large number of differentially expressed genes during progressive stages of mouse corneal development. Our data provide a comprehensive transcriptomic profile of the developing cornea. Combined, these data serve as a valuable resource for the identification of novel regulatory networks crucial for the advancement of studies in congenital defects, stem cell therapy, bioengineering, and adult corneal diseases.
Collapse
Affiliation(s)
- Justin Ma
- BioSciences Department, Rice University, Houston, Texas, United States
| | - Peter Lwigale
- BioSciences Department, Rice University, Houston, Texas, United States
| |
Collapse
|
36
|
Wang S, Moise AR. Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Genesis 2019; 57:e23303. [PMID: 31066193 PMCID: PMC6682438 DOI: 10.1002/dvg.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
The vitamin A metabolite, retinoic acid, carries out essential and conserved roles in vertebrate heart development. Retinoic acid signals via retinoic acid receptors (RAR)/retinoid X receptors (RXRs) heterodimers to induce the expression of genes that control cell fate specification, proliferation, and differentiation. Alterations in retinoic acid levels are often associated with congenital heart defects. Therefore, embryonic levels of retinoic acid need to be carefully regulated through the activity of enzymes, binding proteins and transporters involved in vitamin A metabolism. Here, we review evidence of the complex mechanisms that control the fetal uptake and synthesis of retinoic acid from vitamin A precursors. Next, we highlight recent evidence of the role of retinoic acid in orchestrating myocardial compact zone growth and coronary vascular development.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6 Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
37
|
Wang S, Huang W, Castillo HA, Kane MA, Xavier-Neto J, Trainor PA, Moise AR. Alterations in retinoic acid signaling affect the development of the mouse coronary vasculature. Dev Dyn 2018; 247:976-991. [PMID: 29806219 DOI: 10.1002/dvdy.24639] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND During the final stages of heart development the myocardium grows and becomes vascularized by means of paracrine factors and cell progenitors derived from the epicardium. There is evidence to suggest that retinoic acid (RA), a metabolite of vitamin A, plays an important role in epicardial-based developmental programming. However, the consequences of altered RA-signaling in coronary development have not been systematically investigated. RESULTS We explored the developmental consequences of altered RA-signaling in late cardiogenic events that involve the epicardium. For this, we used a model of embryonic RA excess based on mouse embryos deficient in the retinaldehyde reductase DHRS3, and a complementary model of embryonic RA deficiency based on pharmacological inhibition of RA synthesis. We found that alterations in embryonic RA signaling led to a thin myocardium and aberrant coronary vessel formation and remodeling. Both excess, and deficient RA-signaling are associated with reductions in ventricular coverage and density of coronary vessels, altered vessel morphology, and impaired recruitment of epicardial-derived mural cells. Using a combined transcriptome and proteome profiling approach, we found that RA treatment of epicardial cells influenced key signaling pathways relevant for cardiac development. CONCLUSIONS Epicardial RA-signaling plays critical roles in the development of the coronary vasculature needed to support myocardial growth. Developmental Dynamics 247:976-991, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Suya Wang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Hozana A Castillo
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - José Xavier-Neto
- Conselho Nacional do Desenvolvimnto Científico e Tecnológico (Cnpq) CEP 01414000 Cerqueira Cesar Sao Paulo, Sao Paulo, Brazil
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Alexander R Moise
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas.,Northern Ontario School of Medicine, Biomolecular Sciences Program and Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
38
|
Kurosaka H. Choanal atresia and stenosis: Development and diseases of the nasal cavity. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e336. [PMID: 30320458 DOI: 10.1002/wdev.336] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022]
Abstract
Proper craniofacial development in vertebrates depends on growth and fusion of the facial processes during embryogenesis. Failure of any step in this process could lead to craniofacial anomalies such as facial clefting, which has been well studied with regard to its molecular etiology and cellular pathogenesis. Nasal cavity invagination is also a critical event in proper craniofacial development, and is required for the formation of a functional nasal cavity and airway. The nasal cavity must connect the nasopharynx with the primitive choanae to complete an airway from the nostril to the nasopharynx. In contrast to orofacial clefts, defects in nasal cavity and airway formation, such as choanal atresia (CA), in which the connection between the nasal airway and nasopharynx is physically blocked, have largely been understudied. This is also true for a narrowed connection between the nasal cavity and the nasopharynx, which is known as choanal stenosis (CS). CA occurs in approximately 1 in 5,000 live births, and can present in isolation but typically arises as part of a syndrome. Despite the fact that CA and CS usually require immediate intervention, and substantially affect the quality of life of affected individuals, the etiology and pathogenesis of CA and CS have remained elusive. In this review I focus on the process of nasal cavity development with respect to forming a functional airway and discuss the cellular behavior and molecular networks governing this process. Additionally, the etiology of human CA is discussed using examples of disorders which involve CA or CS. This article is categorized under: Signaling Pathways > Cell Fate Signaling Comparative Development and Evolution > Model Systems Birth Defects > Craniofacial and Nervous System Anomalies.
Collapse
Affiliation(s)
- Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
39
|
Smith JN, Walker HM, Thompson H, Collinson JM, Vargesson N, Erskine L. Lens-regulated retinoic acid signalling controls expansion of the developing eye. Development 2018; 145:145/19/dev167171. [PMID: 30305274 DOI: 10.1242/dev.167171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022]
Abstract
Absence of the developing lens results in severe eye defects, including substantial reductions in eye size. How the lens controls eye expansion and the underlying signalling pathways are very poorly defined. We identified RDH10, a gene crucial for retinoic acid synthesis during embryogenesis, as a key factor downregulated in the peripheral retina (presumptive ciliary body region) of lens-removed embryonic chicken eyes prior to overt reductions in eye size. This is associated with a significant decrease in retinoic acid synthesis by lens-removed eyes. Restoring retinoic acid signalling in lens-removed eyes by implanting beads soaked in retinoic acid or retinal, but not vitamin A, rescued eye size. Conversely, blocking retinoic acid synthesis decreased eye size in lens-containing eyes. Production of collagen II and collagen IX, which are major vitreal proteins, is also regulated by the lens and retinoic acid signalling. These data mechanistically link the known roles of both the lens and retinoic acid in normal eye development, and support a model whereby retinoic acid production by the peripheral retina acts downstream of the lens to support vitreous production and eye expansion.
Collapse
Affiliation(s)
- Jonathan N Smith
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Heather M Walker
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Hannah Thompson
- Department of Craniofacial Development and Stem Cell Biology, Kings College, London WC2R 2LS, UK
| | - J Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
40
|
Wang S, Yu J, Jones JW, Pierzchalski K, Kane MA, Trainor PA, Xavier-Neto J, Moise AR. Retinoic acid signaling promotes the cytoskeletal rearrangement of embryonic epicardial cells. FASEB J 2018; 32:3765-3781. [PMID: 29447006 DOI: 10.1096/fj.201701038r] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All- trans-retinoic acid (RA), a vitamin A metabolite, is an important signaling molecule required for the proper development of the heart. The epicardium is the main source of RA in the embryonic heart, yet the cardiogenic functions of epicardial-produced RA are not fully understood. Here, we investigated the roles of RA signaling in the embryonic epicardium using in vivo and in vitro models of excess or deficiency of RA. Our results suggested that RA signaling facilitates the cytoskeletal rearrangement required for the epicardial-to-mesenchymal transition of epicardial cells. In vivo treatment with an inhibitor of RA synthesis delayed the migration of epicardial-derived precursor cells (EPDCs) into the myocardium; the opposite was seen in the case of dehydrogenase/reductase superfamily (DHRS)3-deficient embryos, a mouse model of RA excess. Analysis of the behavior of epicardial cells exposed to RA receptor agonists or inhibitors of RA synthesis in vitro revealed that appropriate levels of RA are important in orchestrating the platelet-derived growth factor-induced loss of epithelial character, cytoskeletal remodeling, and migration, necessary for the infiltration of the myocardium by EPDCs. To understand the molecular mechanisms by which RA regulates epicardial cytoskeletal rearrangement, we used a whole transcriptome profiling approach, which in combination with pull-down and inhibition assays, demonstrated that the Ras homolog gene family, member A (RhoA) pathway is required for the morphologic changes induced by RA in epicardial cells. Collectively, these data demonstrate that RA regulates the cytoskeletal rearrangement of epicardial cells via a signaling cascade that involves the RhoA pathway.-Wang, S., Yu, J., Jones, J. W., Pierzchalski, K., Kane, M. A., Trainor, P. A., Xavier-Neto, J., Moise, A. R. Retinoic acid signaling promotes the cytoskeletal rearrangement of embryonic epicardial cells.
Collapse
Affiliation(s)
- Suya Wang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Keely Pierzchalski
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - José Xavier-Neto
- Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq) Sao Paulo, Brazil; and
| | - Alexander R Moise
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas, USA.,Northern Ontario School of Medicine, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
41
|
van der Ven AT, Vivante A, Hildebrandt F. Novel Insights into the Pathogenesis of Monogenic Congenital Anomalies of the Kidney and Urinary Tract. J Am Soc Nephrol 2017; 29:36-50. [PMID: 29079659 DOI: 10.1681/asn.2017050561] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Congenital anomalies of the kidneys and urinary tract (CAKUT) comprise a large spectrum of congenital malformations ranging from severe manifestations, such as renal agenesis, to potentially milder conditions, such as vesicoureteral reflux. CAKUT causes approximately 40% of ESRD that manifests within the first three decades of life. Several lines of evidence indicate that CAKUT is often caused by recessive or dominant mutations in single (monogenic) genes. To date, approximately 40 monogenic genes are known to cause CAKUT if mutated, explaining 5%-20% of patients. However, hundreds of different monogenic CAKUT genes probably exist. The discovery of novel CAKUT-causing genes remains challenging because of this pronounced heterogeneity, variable expressivity, and incomplete penetrance. We here give an overview of known genetic causes for human CAKUT and shed light on distinct renal morphogenetic pathways that were identified as relevant for CAKUT in mice and humans.
Collapse
Affiliation(s)
- Amelie T van der Ven
- Divison of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Asaf Vivante
- Divison of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Friedhelm Hildebrandt
- Divison of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|