1
|
Menard R, Morin E, Morse D, Halluin C, Pende M, Baanannou A, Grendler J, Fuqua H, Li J, Lancelot L, Drent J, Bonnet F, Graber JH, Murawala P, Dray C, Pradère JP, Coffman JA, Madelaine R. Zebrafish genetic model of neuromuscular degeneration associated with Atrogin-1 expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642048. [PMID: 40196478 PMCID: PMC11975044 DOI: 10.1101/2025.03.07.642048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The degenerative loss of muscle associated with aging leading to muscular atrophy is called sarcopenia. Currently, practicing regular physical exercise is the only efficient way to delay sarcopenia onset. Identification of therapeutic targets to alleviate the symptoms of aging requires in vivo model organisms of accelerated muscle degeneration and atrophy. The zebrafish undergoes aging, with hallmarks including mitochondrial dysfunction, telomere shortening, and accumulation of senescent cells. However, zebrafish age slowly, and no specific zebrafish models of accelerated muscle atrophy associated with molecular events of aging are currently available. We have developed a new genetic tool to efficiently accelerate muscle-fiber degeneration and muscle-tissue atrophy in zebrafish larvae and adults. We used a gain-of-function strategy with a molecule that has been shown to be necessary and sufficient to induce muscle atrophy and a sarcopenia phenotype in mammals: Atrogin-1 (also named Fbxo32). We report the generation, validation, and characterization of a zebrafish genetic model of accelerated neuromuscular atrophy, the atrofish. We demonstrated that Atrogin-1 expression specifically in skeletal muscle tissue induces a muscle atrophic phenotype associated with locomotion dysfunction in both larvae and adult fish. We identified degradation of the myosin light chain as an event occurring prior to muscle-fiber degeneration. Biological processes associated with muscle aging such as proteolysis, inflammation, stress response, extracellular matrix (ECM) remodeling, and apoptosis are upregulated in the atrofish. Surprisingly, we observed a strong correlation between muscle-fiber degeneration and reduced numbers of neuromuscular junctions in the peripheral nervous system, as well as neuronal cell bodies in the spinal cord, suggesting that muscle atrophy could underly a neurodegenerative phenotype in the central nervous system. Finally, while atrofish larvae can recover locomotive functions, adult atrofish have impaired regenerative capacities, as is observed in mammals during muscle aging. In the future, the atrofish could serve as a platform for testing molecules aimed at treating or alleviating the symptoms of muscle aging, thereby opening new therapeutic avenues in the fight against sarcopenia.
Collapse
Affiliation(s)
- Romain Menard
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| | - Elena Morin
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
- RESTORE Research Center, INSERM 1301, CNRS 5070, EFS, ENVT, Université Paul Sabatier, Toulouse, France
- IHU HealthAge, Toulouse, France
| | - Dexter Morse
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| | - Caroline Halluin
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| | - Marko Pende
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| | - Aissette Baanannou
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| | - Janelle Grendler
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| | - Heath Fuqua
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| | - Jijia Li
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
- CARe Graduate School, Université Paul Sabatier, Toulouse, France
| | - Laetitia Lancelot
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
- CARe Graduate School, Université Paul Sabatier, Toulouse, France
| | - Jessica Drent
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| | - Frédéric Bonnet
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| | - Joel H. Graber
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| | - Prayag Murawala
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
- Department of nephrology and hypertension, Hannover Medical School, Hannover, Germany
| | - Cédric Dray
- RESTORE Research Center, INSERM 1301, CNRS 5070, EFS, ENVT, Université Paul Sabatier, Toulouse, France
- IHU HealthAge, Toulouse, France
| | - Jean-Philippe Pradère
- RESTORE Research Center, INSERM 1301, CNRS 5070, EFS, ENVT, Université Paul Sabatier, Toulouse, France
- IHU HealthAge, Toulouse, France
| | - James A. Coffman
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| | - Romain Madelaine
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| |
Collapse
|
2
|
Song W, Liu X, Huang K, Qi J, He Y. Regulatory Role of Meox1 in Muscle Growth of Sebastes schlegelii. Int J Mol Sci 2024; 25:4871. [PMID: 38732090 PMCID: PMC11084361 DOI: 10.3390/ijms25094871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Meox1 is a critical transcription factor that plays a pivotal role in embryogenesis and muscle development. It has been established as a marker gene for growth-specific muscle stem cells in zebrafish. In this study, we identified the SsMeox1 gene in a large teleost fish, Sebastes schlegelii. Through in situ hybridization and histological analysis, we discovered that SsMeox1 can be employed as a specific marker of growth-specific muscle stem cells, which originate from the somite stage and are primarily situated in the external cell layer (ECL) and myosepta, with a minor population distributed among muscle fibers. The knockdown of SsMeox1 resulted in a significant increase in Ccnb1 expression, subsequently promoting cell cycle progression and potentially accelerating the depletion of the stem cell pool, which ultimately led to significant growth retardation. These findings suggest that SsMeox1 arrests the cell cycle of growth-specific muscle stem cells in the G2 phase by suppressing Ccnb1 expression, which is essential for maintaining the stability of the growth-specific muscle stem cell pool. Our study provides significant insights into the molecular mechanisms underlying the indeterminate growth of large teleosts.
Collapse
Affiliation(s)
| | | | | | | | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (W.S.); (X.L.); (K.H.); (J.Q.)
| |
Collapse
|
3
|
Ruparelia AA, Salavaty A, Barlow CK, Lu Y, Sonntag C, Hersey L, Eramo MJ, Krug J, Reuter H, Schittenhelm RB, Ramialison M, Cox A, Ryan MT, Creek DJ, Englert C, Currie PD. The African killifish: A short-lived vertebrate model to study the biology of sarcopenia and longevity. Aging Cell 2024; 23:e13862. [PMID: 37183563 PMCID: PMC10776123 DOI: 10.1111/acel.13862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023] Open
Abstract
Sarcopenia, the age-related decline in muscle function, places a considerable burden on health-care systems. While the stereotypic hallmarks of sarcopenia are well characterized, their contribution to muscle wasting remains elusive, which is partly due to the limited availability of animal models. Here, we have performed cellular and molecular characterization of skeletal muscle from the African killifish-an extremely short-lived vertebrate-revealing that while many characteristics deteriorate with increasing age, supporting the use of killifish as a model for sarcopenia research, some features surprisingly reverse to an "early-life" state in the extremely old stages. This suggests that in extremely old animals, there may be mechanisms that prevent further deterioration of skeletal muscle, contributing to an extension of life span. In line with this, we report a reduction in mortality rates in extremely old killifish. To identify mechanisms for this phenomenon, we used a systems metabolomics approach, which revealed that during aging there is a striking depletion of triglycerides, mimicking a state of calorie restriction. This results in the activation of mitohormesis, increasing Sirt1 levels, which improves lipid metabolism and maintains nutrient homeostasis in extremely old animals. Pharmacological induction of Sirt1 in aged animals was sufficient to induce a late life-like metabolic profile, supporting its role in life span extension in vertebrate populations that are naturally long-lived. Collectively, our results demonstrate that killifish are not only a novel model to study the biological processes that govern sarcopenia, but they also provide a unique vertebrate system to dissect the regulation of longevity.
Collapse
Affiliation(s)
- Avnika A. Ruparelia
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health SciencesUniversity of MelbourneMelbourneAustralia
- Centre for Muscle Research, Department of Anatomy and PhysiologyUniversity of MelbourneMelbourneAustralia
| | - Adrian Salavaty
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
- Systems Biology Institute Australia, Monash UniversityClaytonAustralia
| | - Christopher K. Barlow
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
- Monash Proteomics and Metabolomics FacilityMonash Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Yansong Lu
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
| | - Carmen Sonntag
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
| | - Lucy Hersey
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
| | - Matthew J. Eramo
- Department of Biochemistry and Molecular BiologyMonash Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Johannes Krug
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI)JenaGermany
| | - Hanna Reuter
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI)JenaGermany
| | - Ralf B. Schittenhelm
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
- Monash Proteomics and Metabolomics FacilityMonash Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
- Systems Biology Institute Australia, Monash UniversityClaytonAustralia
| | - Andrew Cox
- Peter MacCallum Cancer CentreMelbourneAustralia
- Department of Biochemistry and PharmacologyThe University of MelbourneMelbourneAustralia
| | - Michael T. Ryan
- Department of Biochemistry and Molecular BiologyMonash Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Darren J. Creek
- Monash Proteomics and Metabolomics FacilityMonash Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Christoph Englert
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI)JenaGermany
- Institute of Biochemistry and Biophysics, Friedrich‐Schiller‐University JenaJenaGermany
| | - Peter D. Currie
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
- EMBL Australia, Victorian NodeMonash UniversityClaytonAustralia
| |
Collapse
|
4
|
Wang MM, Guo HX, Huang YY, Liu WB, Wang X, Xiao K, Xiong W, Hua HK, Li XF, Jiang GZ. Dietary Leucine Supplementation Improves Muscle Fiber Growth and Development by Activating AMPK/Sirt1 Pathway in Blunt Snout Bream ( Megalobrama amblycephala). AQUACULTURE NUTRITION 2022; 2022:7285851. [PMID: 36860449 PMCID: PMC9973133 DOI: 10.1155/2022/7285851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
This research is aimed at evaluating the effects of leucine supplementation on muscle fibers growth and development of blunt snout bream through a feeding trial and a primary muscle cells treatment. An 8-week trial with diets containing 1.61% leucine (LL) or 2.15% leucine (HL) was conducted in blunt snout bream (mean initial weight = 56.56 ± 0.83 g). Results demonstrated that the specific gain rate and the condition factor of fish in the HL group were the highest. The essential amino acids content of fish fed HL diets was significantly higher than that fed LL diets. The texture (hardness, springiness, resilience, and chewiness), the small-sized fiber ratio, fibers density, and sarcomere lengths in fish all obtained the highest in the HL group. Additionally, the proteins expression related with the activation of the AMPK pathway (p-Ampk, Ampk, p-Ampk/Ampk, and Sirt1) and the expression of genes (myogenin (myog), myogenic regulatory factor 4 (mrf4) and myoblast determination protein (myod), and protein (Pax7) related to muscle fiber formation were significantly upregulated with increasing level of dietary leucine. In vitro, the muscle cells were treated with 0, 40 and 160 mg/L leucine for 24 h. The results showed that treated with 40 mg/L leucine significantly raised the protein expressions of BCKDHA, Ampk, p-Ampk, p-Ampk/Ampk, Sirt1, and Pax7 and the gene expressions of myog, mrf4, and myogenic factor 5 (myf5) in muscle cells. In summary, leucine supplementation promoted muscle fibers growth and development, which may be related to the activation of BCKDH and AMPK.
Collapse
Affiliation(s)
- Mang-mang Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Hui-xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Yang-yang Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Wen-bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Kang Xiao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Wei Xiong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Hao-kun Hua
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Xiang-fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Guang-zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| |
Collapse
|
5
|
Chong GLW, Böhmert B, Lee LEJ, Bols NC, Dowd GC. A continuous myofibroblast precursor cell line from the tail muscle of Australasian snapper (Chrysophrys auratus) that responds to transforming growth factor beta and fibroblast growth factor. In Vitro Cell Dev Biol Anim 2022; 58:922-935. [PMID: 36378268 PMCID: PMC9780137 DOI: 10.1007/s11626-022-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Chrysophrys auratus (Australasian snapper) is one of the largest and most valuable finfish from capture fisheries in New Zealand, yet no cell lines from this species are reported in the scientific literature. Here, we describe a muscle-derived cell line initiated from the tail of a juvenile snapper which has been designated CAtmus1PFR (Chrysophrys auratus, tail muscle, Plant & Food Research). The cell line has been passaged over 100 times in 3 years and is considered immortal. Cells are reliant on serum supplementation for proliferation and exhibit a broad thermal profile comparable to the eurythermic nature of C. auratus in vivo. The impact of exogenous growth factors, including insulin-like growth factors I and II (IGF-I and IGF-II), basic fibroblast growth factor (bFGF), and transforming growth factor beta (TGFβ), on cell morphology and proliferation was investigated. Insulin-like growth factors acted as mitogens and had minimal effect on cell morphology. TGFβ exposure resulted in CAtmus1PFR exhibiting a myofibroblast morphology becoming enlarged with actin bundling. This differentiation was confirmed through the expression of smooth muscle actin (sma), an increase in type 1 collagen (col1a) expression, and a loss of motility. Expression of col1a and sma was decreased when cells were exposed to bFGF, and no actin bundling was observed. These data indicate that CAtmus1PFR may be myofibroblastic precursor cells descending from mesenchymal progenitor cells present in the tail muscle myosepta.
Collapse
Affiliation(s)
- Gavril L. W. Chong
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten Street, Nelson, 7010 New Zealand
| | - Björn Böhmert
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten Street, Nelson, 7010 New Zealand
| | - Lucy E. J. Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC V2S 7M8 Canada
| | - Niels C. Bols
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Georgina C. Dowd
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten Street, Nelson, 7010 New Zealand
| |
Collapse
|
6
|
Wang M, Song W, Jin C, Huang K, Yu Q, Qi J, Zhang Q, He Y. Pax3 and Pax7 Exhibit Distinct and Overlapping Functions in Marking Muscle Satellite Cells and Muscle Repair in a Marine Teleost, Sebastes schlegelii. Int J Mol Sci 2021; 22:ijms22073769. [PMID: 33916485 PMCID: PMC8038590 DOI: 10.3390/ijms22073769] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
Pax3 and Pax7 are members of the Pax gene family which are essential for embryo and organ development. Both genes have been proved to be markers of muscle satellite cells and play key roles in the process of muscle growth and repair. Here, we identified two Pax3 genes (SsPax3a and SsPax3b) and two Pax7 genes (SsPax7a and SsPax7b) in a marine teleost, black rockfish (Sebastes schlegelii). Our results showed SsPax3 and SsPax7 marked distinct populations of muscle satellite cells, which originated from the multi-cell stage and somite stage, respectively. In addition, we constructed a muscle injury model to explore the function of these four genes during muscle repair. Hematoxylin–eosin (H–E) of injured muscle sections showed new-formed myofibers occurred at 16 days post-injury (dpi). ISH (in situ hybridization) analysis demonstrated that the expression level of SsPax3a and two SsPax7 genes increased gradually during 0–16 dpi and peaked at 16 dpi. Interestingly, SsPax3b showed no significant differences during the injury repair process, indicating that the satellite cells labeled by SsPax3b were not involved in muscle repair. These results imply that the muscle stem cell populations in teleosts are more complicated than in mammals. This lays the foundation for future studies on the molecular mechanism of indeterminant growth and muscle repair of large fish species.
Collapse
Affiliation(s)
- Mengya Wang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Weihao Song
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
| | - Chaofan Jin
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
| | - Kejia Huang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
| | - Qianwen Yu
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
| | - Jie Qi
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Quanqi Zhang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Yan He
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
- Correspondence:
| |
Collapse
|
7
|
Abstract
Significance: Senescence is a cellular state induced by internal or external stimuli, which result in cell cycle arrest, morphological changes, and dysfunctions in mitochondrial and lysosomal functionality as well as the senescence-associated secretory phenotype. Senescent cells accumulate in tissues in physiological and pathological conditions such as development, tissue repair, aging, and cancer. Recent Advances: Growing evidences indicate that senescent cells in vivo are a heterogeneous cell population due to different cell-autonomous activated pathways and distinct microenvironmental contexts. Critical Issues: In this review, we discuss the different contexts where senescence assumes a key role with beneficial or harmful outcomes. The heterogeneous nature of senescence pushes toward resolution of the specific molecular profile and secretome to typify senescent cells in physiological and pathological contexts. Future Directions: Future research will enable exploring the heterogeneity of the senescent population to precisely map the progression of cells through senescent trajectories and study the impact of the therapeutic advantage of senolytic drugs for translational strategies toward supporting the health span. Antioxid. Redox Signal. 34, 294-307.
Collapse
Affiliation(s)
- Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Laura Belloni
- Department of Internal, Anesthesiological and Cardiovascular Clinical Sciences, Sapienza University of Rome, Rome, Italy
| | - Lucia Latella
- Epigenetics and Regenerative Medicine, IRCCS Fondazione Santa Lucia, Rome, Italy.,Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| |
Collapse
|
8
|
Li Y, Chen M, Zhao Y, Li M, Qin Y, Cheng S, Yang Y, Yin P, Zhang L, Tang P. Advance in Drug Delivery for Ageing Skeletal Muscle. Front Pharmacol 2020; 11:1016. [PMID: 32733249 PMCID: PMC7360840 DOI: 10.3389/fphar.2020.01016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
The age-related loss of skeletal muscle, sarcopenia, is characterized by progressive loss of muscle mass, reduction in muscle strength, and dysfunction of physical performance. It has become a global health problem leading to several adverse outcomes in the ageing population. Research on skeletal muscle loss prevention and treatment is developing quickly. However, the current clinical approaches to sarcopenia are limited. Recently, novel drug delivery systems offer new possibilities for treating aged muscle loss. Herein, we briefly recapitulate the potential therapeutic targets of aged skeletal muscle and provide a concise advance in the drug delivery systems, mainly focus on the use of nano-carriers. Furthermore, we elaborately discuss the prospect of aged skeletal muscle treatment by nanotechnology approaches.
Collapse
Affiliation(s)
- Yi Li
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ming Chen
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yanpeng Zhao
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ming Li
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yong Qin
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi Cheng
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanyu Yang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Pengbin Yin
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| |
Collapse
|