1
|
Cole AR, Ankley GT, Cavallin JE, Collins JR, Jensen KM, Kahl MD, Kasparek AJ, Kwon BR, Shmaitelly YM, Langan LM, Villeneuve DL, Brooks BW. Inhibition of Fin Regeneration in Fathead Minnow ( Pimephales promelas) by a Potent Synthetic Glucocorticoid and Development of Adverse Outcome Pathway 334. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40326831 DOI: 10.1021/acs.est.5c02446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Despite structural and functional conservation across vertebrate species, the glucocorticoid receptor has been minimally studied in comparison to other biological targets for endocrine-disrupting compounds in aquatic systems. Because prolonged use of pharmaceutical glucocorticoids in humans has been linked to osteoporosis and impaired bone growth, we hypothesized that the ability of teleost fish to regenerate fins following damage may be inhibited by exposure to synthetic glucocorticoids in the environment. In the present study, we examined fin regeneration following a 7 days waterborne exposure of juvenile fathead minnows (Pimephales promelas) to the synthetic glucocorticoids, fluticasone propionate and dexamethasone. Expression of several biologically relevant gene products (sgk1, tdgf1, runx2a, lef1, shha, and tsc22d3) was measured in paired caudal fin and whole-body tissues. Fluticasone propionate and dexamethasone significantly impaired fin regeneration at measured water concentrations of 2.62 μg/L and 4.62 mg/L, respectively. Changes in gene expression indicated disruption of intercellular communication in the Wnt/β-catenin and bone morphogenetic protein (BMP) signaling pathways after exposure to 4.86 μg/L fluticasone propionate. Upregulation of tsc22d3, a transcription factor responsible for suppression of anti-inflammatory response, may be the plausible cause of repressed cellular signaling. These findings advance the development of adverse outcome pathway 334─Glucocorticoid Receptor Activation Leads to Impaired Fin Regeneration─and elucidate both the mechanistic relationship between activation of the glucocorticoid receptor by fluticasone propionate and inhibition of fin regeneration, which could plausibly reduce individual fitness in aquatic systems.
Collapse
Affiliation(s)
- Alexander R Cole
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76706, United States
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Gerald T Ankley
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Jenna E Cavallin
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Jacob R Collins
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, US EPA, Duluth, Minnesota 55804, United States
| | - Kathleen M Jensen
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Michael D Kahl
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Alex J Kasparek
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, US EPA, Duluth, Minnesota 55804, United States
| | - Ba Reum Kwon
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76706, United States
| | - Yesmeena M Shmaitelly
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76706, United States
| | - Laura M Langan
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76706, United States
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76706, United States
| |
Collapse
|
2
|
Puchalla J, Serianni A, Deng B. Zebrafish identification with deep CNN and ViT architectures using a rolling training window. Sci Rep 2025; 15:8580. [PMID: 40074729 PMCID: PMC11903894 DOI: 10.1038/s41598-025-86351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/10/2025] [Indexed: 03/14/2025] Open
Abstract
Zebrafish are widely used in vertebrate studies, yet minimally invasive individual tracking and identification in the lab setting remain challenging due to complex and time-variable conditions. Advancements in machine learning, particularly neural networks, offer new possibilities for developing simple and robust identification protocols that adapt to changing conditions. We demonstrate a rolling window training technique suitable for use with open-source convolutional neural networks (CNN) and vision transformers (ViT) that shows promise in robustly identifying individual maturing zebrafish in groups over several weeks. The technique provides a high-fidelity method for monitoring the temporally evolving zebrafish classes, potentially significantly reducing the need for new training images in both CNN and ViT architectures. To understand the success of the CNN classifier and inform future real-time identification of zebrafish, we analyzed the impact of shape, pattern, and color by modifying the images of the training set and compared the test results with other prevalent machine learning models.
Collapse
Affiliation(s)
- Jason Puchalla
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA.
| | - Aaron Serianni
- Department of Mathematics, Princeton University, Princeton, NJ, 08544, USA
| | - Bo Deng
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
3
|
Mehreen A, Faisal M, Zulfiqar B, Hays D, Dhananjaya K, Yaseen F, Liang Y. Connecting Bone Remodeling and Regeneration: Unraveling Hormones and Signaling Pathways. BIOLOGY 2025; 14:274. [PMID: 40136530 PMCID: PMC11939909 DOI: 10.3390/biology14030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
Recent advancements in tissue engineering and stem cell science have positioned bone disease treatment as a promising frontier in regenerative medicine. This review explores the hormonal and signaling pathways critical to bone regeneration, with a focus on their clinical relevance. Key endocrine factors, including thyroid hormones (T3 and T4), insulin-like growth factor 1 (IGF-1), bone morphogenetic proteins (BMPs), parathyroid hormone (PTH), calcitonin, and fibroblast growth factor 23 (FGF23), play pivotal roles in bone remodeling by regulating osteoblast activity, bone resorption, and mineralization. These factors primarily act through the Wnt/β-catenin, BMP, and FGF signaling pathways, which govern bone repair and regeneration. While animal models, such as axolotls, zebrafish, and Xenopus laevis, provide valuable findings about these mechanisms, translating these findings into human applications presents challenges. This review underscores the therapeutic potential of modulating these hormonal networks to enhance bone regeneration while cautioning against possible adverse effects, such as uncontrolled tissue proliferation or metabolic imbalances. By integrating knowledge from regenerative models, this work provides a foundation for optimizing hormone-based therapies for clinical applications in bone repair and disease treatment.
Collapse
Affiliation(s)
- Afshan Mehreen
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (A.M.); (M.F.); (D.H.); (K.D.); (F.Y.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Muhammad Faisal
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (A.M.); (M.F.); (D.H.); (K.D.); (F.Y.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bilal Zulfiqar
- Discovery Biology, Griffith University, Nathan, QLD 4111, Australia;
| | - Deli Hays
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (A.M.); (M.F.); (D.H.); (K.D.); (F.Y.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Kavishka Dhananjaya
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (A.M.); (M.F.); (D.H.); (K.D.); (F.Y.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Faiza Yaseen
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (A.M.); (M.F.); (D.H.); (K.D.); (F.Y.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yujun Liang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (A.M.); (M.F.); (D.H.); (K.D.); (F.Y.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
Farhadi A, Xue L, Zhao Q, Tan K. An overview of recent progress in the molecular mechanisms and key biological macromolecules involved in limb regeneration of decapods. Int J Biol Macromol 2025; 292:139354. [PMID: 39743118 DOI: 10.1016/j.ijbiomac.2024.139354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Understanding the molecular mechanisms of limb regeneration in decapods can significantly enhance aquaculture production by improving survival and growth, as well as facilitating the development of lab-grown crustacean meat as a sustainable protein source. This review explores the molecular mechanisms of decapod limb regeneration, focusing on the key signaling pathways, genes, and proteins involved in this process. The initial stages of regeneration involve immune response and hemolymph coagulation, which are regulated via signaling pathways such as Toll, MAPK, IMD, and JAK/STAT. Subsequent stages, including blastema formation and limb growth, are regulated by signaling pathways such as Wnt, Hippo, Hedgehog, Ecdysteroid, TGF-β, Notch, Insulin-like, Fibroblast Growth Factor, Epidermal Growth Factor, and BMP. This review also discusses the interplay among environmental factors, nutrition, and hormonal signaling in regeneration and how these elements influence regenerative capability. Furthermore, this review highlights existing research gaps in decapod regeneration and suggests future research directions. This review aims to bridge existing gaps in decapod regeneration research and guide future studies toward potential breakthroughs in aquaculture practices.
Collapse
Affiliation(s)
- Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China.
| | - Laizhong Xue
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China.
| | - Karsoon Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China.
| |
Collapse
|
5
|
Klimek K, Terpilowska S, Michalak A, Bernacki R, Nurzynska A, Cucchiarini M, Tarczynska M, Gaweda K, Głuszek S, Ginalska G. Modern Approach to Testing the Biocompatibility of Osteochondral Scaffolds in Accordance with the 3Rs Principle─Preclinical In Vitro, Ex Vivo, and In Vivo Studies Using the Biphasic Curdlan-Based Biomaterial. ACS Biomater Sci Eng 2025; 11:845-865. [PMID: 39832791 PMCID: PMC11815629 DOI: 10.1021/acsbiomaterials.4c01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The aim of this work is to provide a comprehensive set of biological tests to assess the biomedical potential of novel osteochondral scaffolds with methods proposed to comply with the 3Rs principle, focusing here on a biphasic Curdlan-based osteochondral scaffold as a promising model biomaterial. In vitro experiments include the evaluation of cytotoxicity, mutagenicity, and genotoxicity referring to ISO standards, the assessment of the viability and proliferation of human chondrocytes and osteoblasts, and the estimation of inflammation after direct contact of biomaterials with human macrophages. Ex vivo experiments include assessments of the response of the surrounding osteochondral tissue after incubation with the implanted biomaterial. In vivo experiments involve an evaluation of the toxicity and regenerative potential of the biomaterial in zebrafish (larvae and adults) and in osteochondral defects in dogs (veterinary patients). The applied set of tests allows us to show that the Curdlan-based scaffold does not induce cytotoxicity (cell viability close to 100%), mutagenicity (the level of reversion is not 2× higher compared to the control), and genotoxicity (it does not exhibit any change in chromosomal aberration; the frequency of micronuclei, micronucleated binucleated cells, and cytokinesis-block proliferation index is comparable to the control; moreover, it does not cause the formation of comets in cells). This biomaterial also promotes the viability and proliferation of chondrocytes and osteoblasts (the OD values between the fourth and seventh day of incubation increase by approximately 1.6×). The Curdlan-based scaffold stimulates only a transient inflammatory response in vitro and ex vivo. This biomaterial does not cause Danio rerio larvae malformation and also enables proper regeneration of the caudal fin in adults. Finally, it supports the regeneration of an osteochondral defect in veterinary patients. Thus, this is a proposal to use alternative methods for biological assessment of osteochondral scaffolds as opposed to commonly used tests using large numbers of laboratory animals.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Chair
and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Sylwia Terpilowska
- Department
of Surgical Medicine with the Laboratory of Medical Genetics, Jan Kochanowski University, Collegium Medicum, IX Wiekow Kielc 19A Av., 25-317 Kielce, Poland
| | - Agnieszka Michalak
- Independent
Laboratory of Behavioral Studies, Medical
University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Rafal Bernacki
- Veterinary
Clinic Aura, Debowa 31
Street, 86-065 Lochowo, Poland
| | - Aleksandra Nurzynska
- Chair
and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Magali Cucchiarini
- Center
of Experimental Orthopaedics, Saarland University Medical Center, Saarland University, Kirrbergerstr. Bldg 37, 66421 Homburg/Saar, Germany
| | - Marta Tarczynska
- Department
and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-954 Lublin, Poland
| | - Krzysztof Gaweda
- Department
and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-954 Lublin, Poland
| | - Stanisław Głuszek
- Department
of Surgical Medicine with the Laboratory of Medical Genetics, Jan Kochanowski University, Collegium Medicum, IX Wiekow Kielc 19A Av., 25-317 Kielce, Poland
| | - Grazyna Ginalska
- Chair
and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
- Faculty
of Health Sciences, Vincent Pol University, Choiny 2 Street, 20-816 Lublin, Poland
| |
Collapse
|
6
|
Banu S, Anusha PV, Mandal K, Idris MM. Exploration of phosphoproteomic association during epimorphic regeneration. Sci Rep 2025; 15:4854. [PMID: 39924536 PMCID: PMC11808059 DOI: 10.1038/s41598-024-84735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/26/2024] [Indexed: 02/11/2025] Open
Abstract
Unravelling the intricate patterns of site-specific protein phosphorylation during Epimorphic regeneration holds the key to unlocking the secrets of tissue complexity. Understanding these precise modifications and their impact on protein function could shed light on the remarkable regenerative capacity of tissues, with potential implications for therapeutic interventions. In this study we have systematically mapped the global phosphorylation modifications within regenerating tissue of zebrafish caudal fins, elucidating the intricate landscape of signalling pathway associate with the regeneration process. Based on mass spectrometry analysis, we identified 440 phosphorylated proteins using the immunoprecipitation method with phosphoserine, phosphothreonine, and phosphotyrosine antibodies, and 74 phosphorylated proteins using the TiO₂ column enrichment method were found differentially phosphorylated during the regeneration process from 12 hpa to 7 dpa compared to the control. Interestingly 95% of the proteins identified from TiO2 enrichment method were also found to be identified through the phosphoprotein antibody pull down method impacting the high accuracy and significance of the methods and greater association of the 70 proteins undergoing differential phosphorylation during the process of regeneration. Whole mount immunohistochemistry analysis reveals high association of phosphorylation at 1dpa, 2dpa and 3dpa regeneration time points. Network pathway analysis revealed that cancer-related diseases, organismal injuries and abnormalities as the most strongly associated canonical network pathways with the differentially expressed phosphoproteome in the mechanism of regeneration. This research enhances our comprehension on protein post-translational modification in the context of zebrafish caudal fin tissue regeneration, shedding light on its prospective application in the field of regenerative medicine.
Collapse
|
7
|
Chen Y, Hou Y, Zeng Q, Wang I, Shang M, Shin K, Hemauer C, Xing X, Kang J, Zhao G, Wang T. Common and specific gene regulatory programs in zebrafish caudal fin regeneration at single-cell resolution. Genome Res 2025; 35:202-218. [PMID: 39809530 PMCID: PMC11789645 DOI: 10.1101/gr.279372.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/04/2024] [Indexed: 01/16/2025]
Abstract
Following amputation, zebrafish regenerate their injured caudal fin through lineage-restricted reprogramming. Although previous studies have charted various genetic and epigenetic dimensions of this process, the intricate gene regulatory programs shared by, or unique to, different regenerating cell types remain underinvestigated. Here, we mapped the regulatory landscape of fin regeneration by applying paired snRNA-seq and snATAC-seq on uninjured and regenerating fins. This map delineates the regulatory dynamics of predominant cell populations at multiple stages of regeneration. We observe a marked increase in the accessibility of chromatin regions associated with regenerative and developmental processes at 1 dpa, followed by a gradual closure across major cell types at later stages. This pattern is distinct from that of transcriptomic dynamics, which is characterized by several waves of gene upregulation and downregulation. We identified and in vivo validated cell-type-specific and position-specific regeneration-responsive enhancers and constructed regulatory networks by cell type and stage. Our single-cell resolution transcriptomic and chromatin accessibility map across regenerative stages provides new insights into regeneration regulatory mechanisms and serves as a valuable resource for the community.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiran Hou
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qinglin Zeng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Irene Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Meiru Shang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53705, USA
| | - Christopher Hemauer
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53705, USA
| | - Guoyan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Dalle Carbonare L, Braggio M, Minoia A, Cominacini M, Romanelli MG, Pessoa J, Tiso N, Valenti MT. Modeling Musculoskeletal Disorders in Zebrafish: Advancements in Muscle and Bone Research. Cells 2024; 14:28. [PMID: 39791729 PMCID: PMC11719663 DOI: 10.3390/cells14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Zebrafish (Danio rerio) have emerged as a valuable model organism for investigating musculoskeletal development and the pathophysiology of associated diseases. Key genes and biological processes in zebrafish that closely mirror those in humans, rapid development, and transparent embryos make zebrafish ideal for the in vivo studies of bone and muscle formation, as well as the molecular mechanisms underlying musculoskeletal disorders. This review focuses on the utility of zebrafish in modeling various musculoskeletal conditions, with an emphasis on bone diseases such as osteoporosis and osteogenesis imperfecta, as well as muscle disorders like Duchenne muscular dystrophy. These models have provided significant insights into the molecular pathways involved in these diseases, helping to identify the key genetic and biochemical factors that contribute to their progression. These findings have also advanced our understanding of disease mechanisms and facilitated the development of potential therapeutic strategies for musculoskeletal disorders.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Michele Braggio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| | - Arianna Minoia
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Mattia Cominacini
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| | - João Pessoa
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Natascia Tiso
- Department of Biology, University of Padua, 35131 Padua, Italy;
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| |
Collapse
|
9
|
VanWinkle PE, Lee E, Wynn B, Nawara TJ, Thomas H, Parant J, Alvarez C, Serra R, Sztul E. Disruption of the creb3l1 gene causes defects in caudal fin regeneration and patterning in zebrafish Danio rerio. Dev Dyn 2024; 253:1106-1129. [PMID: 39003620 PMCID: PMC11609917 DOI: 10.1002/dvdy.726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND The gene cAMP-Responsive Element Binding protein 3-like-1 (CREB3L1) has been implicated in bone development in mice, with CREB3L1 knock-out mice exhibiting fragile bones, and in humans, with CREB3L1 mutations linked to osteogenesis imperfecta. However, the mechanism through which Creb3l1 regulates bone development is not fully understood. RESULTS To probe the role of Creb3l1 in organismal physiology, we used CRISPR-Cas9 genome editing to generate a Danio rerio (zebrafish) model of Creb3l1 deficiency. In contrast to mammalian phenotypes, the Creb3l1 deficient fish do not display abnormalities in osteogenesis, except for a decrease in the bifurcation pattern of caudal fin. Both, skeletal morphology and overall bone density appear normal in the mutant fish. However, the regeneration of caudal fin postamputation is significantly affected, with decreased overall regenerate and mineralized bone area. Moreover, the mutant fish exhibit a severe patterning defect during regeneration, with a significant decrease in bifurcation complexity of the fin rays and distalization of the bifurcation sites. Analysis of genes implicated in bone development showed aberrant patterning of shha and ptch2 in Creb3l1 deficient fish, linking Creb3l1 with Sonic Hedgehog signaling during fin regeneration. CONCLUSIONS Our results uncover a novel role for Creb3l1 in regulating tissue growth and patterning during regeneration.
Collapse
Affiliation(s)
- Peyton E. VanWinkle
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Eunjoo Lee
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Bridge Wynn
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Tomasz J. Nawara
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Holly Thomas
- Department of Pharmacology and ToxicologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - John Parant
- Department of Pharmacology and ToxicologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Cecilia Alvarez
- CIBICI‐CONICET, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
| | - Rosa Serra
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
10
|
Burkhalter MD, Philipp M. Fin clipping does not increase opercular beat rate in tricaine-treated zebrafish. Lab Anim 2024; 58:616-620. [PMID: 39157987 DOI: 10.1177/00236772241252551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
To carry out research with genetically modified animals, their genotype has to be assessed. A standard protocol to obtain required tissue samples from zebrafish is finclipping. However, some studies reported considerable stress induced by this protocol. We therefore assessed ventilation as a read-out for stress in zebrafish that underwent finclipping during routine genotyping in our fish facility. Our analysis could not confirm a strong increase of ventilation as had been previously reported. Instead, handled zebrafish showed ventilation rates in the range of controls that remained in their holding tanks. Additionally, we detected a slight reduction of ventilation rates up to an hour after anaesthesia in zebrafish treated with tricaine only, suggesting a prolonged protecting effect by this anaesthetic.
Collapse
Affiliation(s)
- Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Germany
| |
Collapse
|
11
|
Lewis VM, Fernandez RA, Horst SG, Stankunas K. Early exercise disrupts a pro-repair extracellular matrix program during zebrafish fin regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623835. [PMID: 39605604 PMCID: PMC11601382 DOI: 10.1101/2024.11.15.623835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Understanding how mechanical stimulation from exercise influences cellular responses during tissue repair could enhance therapeutic strategies. We explored zebrafish caudal fin regeneration to study exercise impacts on a robust model of tissue regeneration. We used a swim tunnel to determine that exercise initiated during but not after blastema establishment impaired fin regeneration, including of the bony ray skeleton. Long-term tracking of fluorescently labeled cell lineages showed exercise disrupted blastemal mesenchyme formation. Transcriptomic profiling and section staining indicated exercise reduced an extracellular matrix (ECM) gene expression program, including for hyaluronic acid (HA) synthesis. Like exercise, HA synthesis inhibition or blastemal HA depletion disrupted blastema formation. We considered if injury-upregulated HA establishes a pro-regenerative environment facilitating mechanotransduction. HA density across the blastema correlated with nuclear localization of the mechanotransducer Yes-associated protein (Yap). Further, exercise loading or reducing HA decreased nuclear Yap and cell proliferation. We conclude early exercise during fin regeneration disrupts expression of an HA-rich ECM supporting blastema expansion. These results highlight the interface between mechanotransduction and ECM as consideration for timing exercise interventions and developing regenerative therapies. Significance Statement Controlled exercise promotes healing and recovery from severe skeletal injuries. However, properly timed interventions are essential to promote recovery and prevent further damage. We use zebrafish caudal fin regeneration to mechanistically study exercise impacts on a naturally robust and experimentally accessible model of tissue repair. We link detrimental early exercise effects during fin regeneration to impaired ECM synthesis, mechanotransduction, and cell proliferation. These insights could explain the value of delaying the onset of physical therapy and suggest pursuing therapies that maintain ECM integrity for regenerative rehabilitation.
Collapse
|
12
|
Autumn M, Hu Y, Zeng J, McMenamin SK. Growth patterns of caudal fin rays are informed by both external signals from the regenerating organ and remembered identity autonomous to the local tissue. Dev Biol 2024; 515:121-128. [PMID: 39029570 PMCID: PMC11361315 DOI: 10.1016/j.ydbio.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Regenerating tissues must remember or interpret their spatial position, using this information to restore original size and patterning. The external skeleton of the zebrafish caudal fin is composed of 18 rays; after any portion of the fin is amputated, position-dependent regenerative growth restores each ray to its original length. We tested for transcriptional differences during regeneration of proximal versus distal tissues and identified 489 genes that differed in proximodistal expression. Thyroid hormone directs multiple aspects of ray patterning along the proximodistal axis, and we identified 364 transcripts showing a proximodistal expression pattern that was dependent on thyroid hormone context. To test what aspects of ray positional identity are directed by extrinsic environental cues versus remembered identity autonomous to the tissue, we transplanted distal portions of rays to proximal environments and evaluated regeneration within the new location. Native regenerating proximal tissue showed robust expression of scpp7, a transcript with thyroid-regulated proximal enrichment; in contrast, regenerating rays originating from transplanted distal tissue showed reduced (distal-like) expression during outgrowth. These distal-to-proximal transplants regenerated far beyond the length of the graft itself, indicating that cues from the proximal environment promoted additional growth. Nonetheless, these transplants initiated regeneration at a much slower rate compared to controls, suggesting memory of distal identity was retained by the transplanted tissue. This early growth retardation caused rays that originated from transplants to grow noticeably shorter than neighboring native rays. While several aspects of fin ray morphology (bifurcation, segment length) were found to be determined by the environment, we found that both regeneration speed and ray length are remembered autonomously by tissues, and that persist through multiple rounds of amputation and regeneration.
Collapse
Affiliation(s)
- Melody Autumn
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Yinan Hu
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Jenny Zeng
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | | |
Collapse
|
13
|
Chen J, Sanchez-Iranzo H, Diotel N, Rastegar S. Comparative insight into the regenerative mechanisms of the adult brain in zebrafish and mouse: highlighting the importance of the immune system and inflammation in successful regeneration. FEBS J 2024; 291:4193-4205. [PMID: 39108082 DOI: 10.1111/febs.17231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024]
Abstract
Regeneration, the complex process of restoring damaged or absent cells, tissues, and organs, varies considerably between species. The zebrafish is a remarkable model organism for its impressive regenerative abilities, particularly in organs such as the heart, fin, retina, spinal cord, and brain. Unlike mammals, zebrafish can regenerate with limited or absent scarring, a phenomenon closely linked to the activation of stem cells and immune cells. This review examines the unique roles played by the immune response and inflammation in zebrafish and mouse during regeneration, highlighting the cellular and molecular mechanisms behind their divergent regenerative capacities. By focusing on zebrafish telencephalic regeneration and comparing it to that of the rodents, this review highlights the importance of a well-controlled, acute, and non-persistent immune response in zebrafish, which promotes an environment conducive to regeneration. The knowledge gained from understanding the mechanisms of zebrafish regeneration holds great promises for the treatment of human neurodegenerative diseases and brain damage (stroke and traumatic brain injuries), as well as for the advancement of regenerative medicine approaches.
Collapse
Affiliation(s)
- Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Hector Sanchez-Iranzo
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| |
Collapse
|
14
|
Liu Z, Zeng H, Xiang H, Deng S, He X. Achieving single-cell-resolution lineage tracing in zebrafish by continuous barcoding mutations during embryogenesis. J Genet Genomics 2024; 51:947-956. [PMID: 38621643 DOI: 10.1016/j.jgg.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024]
Abstract
Unraveling the lineage relationships of all descendants from a zygote is fundamental to advancing our understanding of developmental and stem cell biology. However, existing cell barcoding technologies in zebrafish lack the resolution to capture the majority of cell divisions during embryogenesis. A recently developed method, a substitution mutation-aided lineage-tracing system (SMALT), successfully reconstructed high-resolution cell phylogenetic trees for Drosophila melanogaster. Here, we implement the SMALT system in zebrafish, recording a median of 14 substitution mutations on a one-kilobase-pair barcoding sequence for one-day post-fertilization embryos. Leveraging this system, we reconstruct four cell lineage trees for zebrafish fin cells, encompassing both original and regenerated fin. Each tree consists of hundreds of internal nodes with a median bootstrap support of 99%. Analysis of the obtained cell lineage trees reveals that regenerated fin cells mainly originate from cells in the same part of the fins. Through multiple times sampling germ cells from the same individual, we show the stability of the germ cell pool and the early separation of germ cell and somatic cell progenitors. Our system offers the potential for reconstructing high-quality cell phylogenies across diverse tissues, providing valuable insights into development and disease in zebrafish.
Collapse
Affiliation(s)
- Zhan Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Hui Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Huimin Xiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Shanjun Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Xionglei He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
15
|
Salisbury SJ, Daniels RR, Monaghan SJ, Bron JE, Villamayor PR, Gervais O, Fast MD, Sveen L, Houston RD, Robinson N, Robledo D. Keratinocytes drive the epithelial hyperplasia key to sea lice resistance in coho salmon. BMC Biol 2024; 22:160. [PMID: 39075472 PMCID: PMC11287951 DOI: 10.1186/s12915-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Salmonid species have followed markedly divergent evolutionary trajectories in their interactions with sea lice. While sea lice parasitism poses significant economic, environmental, and animal welfare challenges for Atlantic salmon (Salmo salar) aquaculture, coho salmon (Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms underlying these divergent responses to sea lice are unknown. RESULTS We characterized the cellular and molecular responses of Atlantic salmon and coho salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples were collected 12 h, 24 h, 36 h, 48 h, and 60 h after exposure, along with control samples. Comparative analysis of control and treatment samples revealed an immune and wound-healing response that was common to both species, but attenuated in Atlantic salmon, potentially reflecting greater sea louse immunomodulation. Our results revealed unique but complementary roles of three layers of keratinocytes in the epithelial hyperplasia response leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes direct the expansion and mobility of intermediate and, especially, superficial keratinocytes, which eventually encapsulate the parasite. CONCLUSIONS Our results highlight the key role of keratinocytes in coho salmon's sea lice resistance and the diverged biological response of the two salmonid host species when interacting with this parasite. This study has identified key pathways and candidate genes that could be manipulated using various biotechnological solutions to improve Atlantic salmon sea lice resistance.
Collapse
Affiliation(s)
- S J Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - R Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - S J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - J E Bron
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - P R Villamayor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - O Gervais
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - M D Fast
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | | | - R D Houston
- Benchmark Genetics, 1 Pioneer BuildingMilton Bridge, Edinburgh TechnopolePenicuik, UK
| | - N Robinson
- Nofima AS, Tromsø, Norway.
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), Deakin University, Melbourne, VIC, 3225, Australia.
| | - D Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
16
|
Surette E, Donahue J, Robinson S, McKenna D, Martinez CS, Fitzgerald B, Karlstrom RO, Cumplido N, McMenamin SK. Adult caudal fin shape is imprinted in the embryonic fin fold. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603744. [PMID: 39071346 PMCID: PMC11275767 DOI: 10.1101/2024.07.16.603744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Appendage shape is formed during development (and re-formed during regeneration) according to spatial and temporal cues that orchestrate local cellular morphogenesis. The caudal fin is the primary appendage used for propulsion in most fish species, and exhibits a range of distinct morphologies adapted for different swimming strategies, however the molecular mechanisms responsible for generating these diverse shapes remain mostly unknown. In zebrafish, caudal fins display a forked shape, with longer supportive bony rays at the periphery and shortest rays at the center. Here, we show that a premature, transient pulse of sonic hedgehog a (shha) overexpression during late embryonic development results in excess proliferation and growth of the central rays, causing the adult caudal fin to grow into a triangular, truncate shape. Both global and regional ectopic shha overexpression are sufficient to alter fin shape, and forked shape may be rescued by subsequent treatment with an antagonist of the canonical Shh pathway. The induced truncate fins show a decreased fin ray number and fail to form the hypural diastema that normally separates the dorsal and ventral fin lobes. While forked fins regenerate their original forked morphology, truncate fins regenerate truncate, suggesting that positional memory of the fin rays can be permanently altered by a transient treatment during embryogenesis. Ray finned fish have evolved a wide spectrum of caudal fin morphologies, ranging from truncate to forked, and the current work offers insights into the developmental mechanisms that may underlie this shape diversity.
Collapse
|
17
|
VanWinkle PE, Wynn B, Lee E, Nawara TJ, Thomas H, Parant JM, Alvarez C, Serra R, Sztul E. Lack of Nuclear Localization of the Creb3l1 Transcription Factor Causes Defects in Caudal Fin Bifurcation in Zebrafish Danio rerio. Cells Tissues Organs 2024; 214:77-95. [PMID: 38964305 PMCID: PMC11739433 DOI: 10.1159/000540103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION The formation of normal bone and bone healing requires the cAMP-responsive element binding protein 3-like-1 (Creb3l1) transmembrane transcription factor, as deletion of the murine CREB3L1 results in osteopenic animals with limited capacity to repair bone after a fracture. Creb3l1 undergoes regulated intramembrane proteolysis (RIP) to release the N-terminal transcription activating (TA) fragment that enters the nucleus and regulates the expression of target genes. METHODS To expand our understanding of Creb3l1's role in skeletal development and skeletal patterning, we aimed to generate animals expressing only the TA fragment of Creb3l1 lacking the transmembrane domain and thereby not regulated through RIP. However, the CRISPR/Cas9-mediated genome editing in zebrafish Danio rerio caused a frameshift mutation that added 56 random amino acids at the C-terminus of the TA fragment (TA+), making it unable to enter the nucleus. Thus, TA+ does not regulate transcription, and the creb3l1TA+/TA+ fish do not mediate creb3l1-dependent transcription. RESULTS We document that the creb3l1TA+/TA+ fish exhibit defects in the patterning of caudal fin lepidotrichia, with significantly distalized points of proximal bifurcation and decreased secondary bifurcations. Moreover, using the caudal fin amputation model, we show that creb3l1TA+/TA+ fish have decreased regeneration and that their regenerates replicate the distalization and bifurcation defects observed in intact fins of creb3l1TA+/TA+ animals. These defects correlate with altered expression of the shha and ptch2 components of the Sonic Hedgehog signaling pathway in creb3l1TA+/TA+ regenerates. CONCLUSION Together, our results uncover a previously unknown intersection between Creb3l1 and the Sonic Hedgehog pathway and document a novel role of Creb3l1 in tissue patterning. INTRODUCTION The formation of normal bone and bone healing requires the cAMP-responsive element binding protein 3-like-1 (Creb3l1) transmembrane transcription factor, as deletion of the murine CREB3L1 results in osteopenic animals with limited capacity to repair bone after a fracture. Creb3l1 undergoes regulated intramembrane proteolysis (RIP) to release the N-terminal transcription activating (TA) fragment that enters the nucleus and regulates the expression of target genes. METHODS To expand our understanding of Creb3l1's role in skeletal development and skeletal patterning, we aimed to generate animals expressing only the TA fragment of Creb3l1 lacking the transmembrane domain and thereby not regulated through RIP. However, the CRISPR/Cas9-mediated genome editing in zebrafish Danio rerio caused a frameshift mutation that added 56 random amino acids at the C-terminus of the TA fragment (TA+), making it unable to enter the nucleus. Thus, TA+ does not regulate transcription, and the creb3l1TA+/TA+ fish do not mediate creb3l1-dependent transcription. RESULTS We document that the creb3l1TA+/TA+ fish exhibit defects in the patterning of caudal fin lepidotrichia, with significantly distalized points of proximal bifurcation and decreased secondary bifurcations. Moreover, using the caudal fin amputation model, we show that creb3l1TA+/TA+ fish have decreased regeneration and that their regenerates replicate the distalization and bifurcation defects observed in intact fins of creb3l1TA+/TA+ animals. These defects correlate with altered expression of the shha and ptch2 components of the Sonic Hedgehog signaling pathway in creb3l1TA+/TA+ regenerates. CONCLUSION Together, our results uncover a previously unknown intersection between Creb3l1 and the Sonic Hedgehog pathway and document a novel role of Creb3l1 in tissue patterning.
Collapse
Affiliation(s)
- Peyton E. VanWinkle
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bridge Wynn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eunjoo Lee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tomasz J. Nawara
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Holly Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cecilia Alvarez
- CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rosa Serra
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
18
|
Autumn M, Hu Y, Zeng J, McMenamin SK. Growth patterns of caudal fin rays are informed by both external signals from the regenerating organ and remembered identity autonomous to the local tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.586899. [PMID: 38585773 PMCID: PMC10996721 DOI: 10.1101/2024.03.29.586899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Regenerating tissues must remember or interpret their spatial position, using this information to restore original size and patterning. The external skeleton of the zebrafish caudal fin is composed of 18 rays; after any portion of the fin is amputated, position-dependent regenerative growth restores each ray to its original length. We tested for transcriptional differences during regeneration of proximal versus distal tissues and identified 489 genes that differed in proximodistal expression. Thyroid hormone directs multiple aspects of ray patterning along the proximodistal axis, and we identified 364 transcripts showing a proximodistal expression pattern that was dependent on thyroid hormone context. To test what aspects of ray positional identity are directed by extrinsic cues versus remembered identity autonomous to the tissue itself, we transplanted distal portions of rays to proximal environments and evaluated regeneration within the new location. While neighboring proximal tissue showed robust expression of scpp7, a transcript with thyroid-regulated proximal enrichment, regenerating rays originating from transplanted distal tissue showed reduced (distal-like) expression during outgrowth. These distal-to-proximal transplants regenerated far beyond the length of the graft itself, indicating that cues from the proximal environment promoted additional growth. Nonetheless, these transplants initially regenerated at a much slower rate compared to controls, suggesting memory of distal identity was retained by the transplanted tissue. This early growth retardation caused rays that originated from transplants to become noticeably shorter than their native neighboring rays. While several aspects of fin ray morphology (bifurcation, segment length) were found to be determined by the environment, regeneration speed and ray length are remembered autonomously by tissues, persisting across multiple rounds of amputation and regeneration.
Collapse
Affiliation(s)
- Melody Autumn
- Biology Department, Boston College, Chestnut Hill, MA 02467
| | - Yinan Hu
- Biology Department, Boston College, Chestnut Hill, MA 02467
| | - Jenny Zeng
- Biology Department, Boston College, Chestnut Hill, MA 02467
| | | |
Collapse
|
19
|
Oudhoff H, Hisler V, Baumgartner F, Rees L, Grepper D, Jaźwińska A. Skeletal muscle regeneration after extensive cryoinjury of caudal myomeres in adult zebrafish. NPJ Regen Med 2024; 9:8. [PMID: 38378693 PMCID: PMC10879182 DOI: 10.1038/s41536-024-00351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
Skeletal muscles can regenerate after minor injuries, but severe structural damage often leads to fibrosis in mammals. Whether adult zebrafish possess the capacity to reproduce profoundly destroyed musculature remains unknown. Here, a new cryoinjury model revealed that several myomeres efficiently regenerated within one month after wounding the zebrafish caudal peduncle. Wound clearance involved accumulation of the selective autophagy receptor p62, an immune response and Collagen XII deposition. New muscle formation was associated with proliferation of Pax7 expressing muscle stem cells, which gave rise to MyoD1 positive myogenic precursors, followed by myofiber differentiation. Monitoring of slow and fast muscles revealed their coordinated replacement in the superficial and profound compartments of the myomere. However, the final boundary between the muscular components was imperfectly recapitulated, allowing myofibers of different identities to intermingle. The replacement of connective with sarcomeric tissues required TOR signaling, as rapamycin treatment impaired new muscle formation, leading to persistent fibrosis. The model of zebrafish myomere restoration may provide new medical perspectives for treatment of traumatic injuries.
Collapse
Affiliation(s)
- Hendrik Oudhoff
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Vincent Hisler
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Florian Baumgartner
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Lana Rees
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Dogan Grepper
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.
| |
Collapse
|
20
|
Cudak N, López-Delgado AC, Rost F, Kurth T, Lesche M, Reinhardt S, Dahl A, Rulands S, Knopf F. Compartmentalization and synergy of osteoblasts drive bone formation in the regenerating fin. iScience 2024; 27:108841. [PMID: 38318374 PMCID: PMC10838958 DOI: 10.1016/j.isci.2024.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Zebrafish regenerate their fins which involves a component of cell plasticity. It is currently unclear how regenerate cells divide labor to allow for appropriate growth and patterning. Here, we studied lineage relationships of fluorescence-activated cell sorting-enriched epidermal, bone-forming (osteoblast), and (non-osteoblast) blastemal fin regenerate cells by single-cell RNA sequencing, lineage tracing, targeted osteoblast ablation, and electron microscopy. Most osteoblasts in the outgrowing regenerate derive from osterix+ osteoblasts, while mmp9+ cells reside at segment joints. Distal blastema cells contribute to distal osteoblast progenitors, suggesting compartmentalization of the regenerating appendage. Ablation of osterix+ osteoblasts impairs segment joint and bone matrix formation and decreases regenerate length which is partially compensated for by distal regenerate cells. Our study characterizes expression patterns and lineage relationships of rare fin regenerate cell populations, indicates inherent detection and compensation of impaired regeneration, suggests variable dependence on growth factor signaling, and demonstrates zonation of the elongating fin regenerate.
Collapse
Affiliation(s)
- Nicole Cudak
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Alejandra Cristina López-Delgado
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Fabian Rost
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| | - Thomas Kurth
- Core Facility Electron Microscopy and Histology, Technology Platform, Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| | - Steffen Rulands
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Ludwig-Maximilians-Universität München, Arnold-Sommerfeld-Center for Theoretical Physics, München, Germany
| | - Franziska Knopf
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
21
|
Abstract
Metabolic switches are a crucial hallmark of cellular development and regeneration. In response to changes in their environment or physiological state, cells undergo coordinated metabolic switching that is necessary to execute biosynthetic demands of growth and repair. In this Review, we discuss how metabolic switches represent an evolutionarily conserved mechanism that orchestrates tissue development and regeneration, allowing cells to adapt rapidly to changing conditions during development and postnatally. We further explore the dynamic interplay between metabolism and how it is not only an output, but also a driver of cellular functions, such as cell proliferation and maturation. Finally, we underscore the epigenetic and cellular mechanisms by which metabolic switches mediate biosynthetic needs during development and regeneration, and how understanding these mechanisms is important for advancing our knowledge of tissue development and devising new strategies to promote tissue regeneration.
Collapse
Affiliation(s)
- Ahmed I. Mahmoud
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
22
|
Reina C, Cardella C, Lo Pinto M, Pucci G, Acuto S, Maggio A, Cavalieri V. Antioxidant, Pro-Survival and Pro-Regenerative Effects of Conditioned Medium from Wharton's Jelly Mesenchymal Stem Cells on Developing Zebrafish Embryos. Int J Mol Sci 2023; 24:13191. [PMID: 37685998 PMCID: PMC10488285 DOI: 10.3390/ijms241713191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Conditioned media harvested from stem cell culturing have the potential to be innovative therapeutic tools against various diseases, due to their high content of growth, trophic and protective factors. The evaluation in vivo of the effects and biosafety of these products is essential, and zebrafish provides an ideal platform for high-throughput toxicological analysis, concurrently allowing the minimization of the use of mammalian models without losing reliability. In this study, we assessed the biological effects elicited by the exposure of zebrafish embryos to a conditioned medium derived from Wharton's jelly mesenchymal stem cells. By a multiparametric investigation combining molecular, embryological, behavioural and in vivo imaging techniques, we found that exposure to a conditioned medium at a non-toxic/non-lethal dosage triggers antioxidant, anti-apoptotic and pro-regenerative effects, by upregulation of a set of genes involved in antioxidant defence (nrf2, brg1, sirt1, sirt6, foxO3a, sod2 and cat), glycolysis (ldha) and cell survival (bcl2l1, mcl1a and bim), coupled to downregulation of pro-apoptotic markers (baxa, caspase-3a and caspase-8). To our knowledge, this is the first study comprehensively addressing the effects of a conditioned medium on a whole organism from a developmental, molecular and behavioural perspective, and we are fairly confident that it will pave the way for future therapeutic application.
Collapse
Affiliation(s)
- Chiara Reina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale Delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Clara Cardella
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale Delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Margot Lo Pinto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale Delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Gaia Pucci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale Delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Santina Acuto
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, 90146 Palermo, Italy
| | - Aurelio Maggio
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, 90146 Palermo, Italy
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale Delle Scienze Ed. 16, 90128 Palermo, Italy
- Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
23
|
Dalle Carbonare L, Minoia A, Braggio M, Bertacco J, Piritore FC, Zouari S, Vareschi A, Elia R, Vedovi E, Scumà C, Carlucci M, Bhandary L, Mottes M, Romanelli MG, Valenti MT. Modulation of miR-146b Expression during Aging and the Impact of Physical Activity on Its Expression and Chondrogenic Progenitors. Int J Mol Sci 2023; 24:13163. [PMID: 37685971 PMCID: PMC10488278 DOI: 10.3390/ijms241713163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The finding of molecules associated with aging is important for the prevention of chronic degenerative diseases and for longevity strategies. MicroRNAs (miRNAs) are post-transcriptional regulators involved in many biological processes and miR-146b-5p has been shown to be involved in different degenerative diseases. However, miR-146b-5p modulation has not been evaluated in mesenchymal stem cells (MSCs) commitment or during aging. Therefore, the modulation of miR-146b-5p in the commitment and differentiation of mesenchymal cells as well as during maturation and aging in zebrafish model were analyzed. In addition, circulating miR-146b-5p was evaluated in human subjects at different age ranges. Thus, the role of physical activity in the modulation of miR-146b-5p was also investigated. To achieve these aims, RT (real-time)-PCR, Western blot, cell transfections, and three-dimensional (3D) culture techniques were applied. Our findings show that miR-146b-5p expression drives MSCs to adipogenic differentiation and increases during zebrafish maturation and aging. In addition, miR-146b-5p expression is higher in females compared to males and it is associated with the aging in humans. Interestingly, we also observed that the physical activity of walking downregulates circulating miR-146b-5p levels in human females and increases the number of chondroprogenitors. In conclusion, miR-146b-5p can be considered an age-related marker and can represent a useful marker for identifying strategies, such as physical activity, aimed at counteracting the degenerative processes of aging.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Arianna Minoia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Michele Braggio
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Jessica Bertacco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Francesca Cristiana Piritore
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Sharazed Zouari
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Anna Vareschi
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Rossella Elia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Ermes Vedovi
- Recovery and Functional Rehabilitation, Integrated University Hospital of Verona, 37100 Verona, Italy; (E.V.); (C.S.)
| | - Cristina Scumà
- Recovery and Functional Rehabilitation, Integrated University Hospital of Verona, 37100 Verona, Italy; (E.V.); (C.S.)
| | - Matilde Carlucci
- Health Directorate, Integrated University Hospital of Verona, 37100 Verona, Italy;
| | | | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| |
Collapse
|
24
|
Tajer B, Savage AM, Whited JL. The salamander blastema within the broader context of metazoan regeneration. Front Cell Dev Biol 2023; 11:1206157. [PMID: 37635872 PMCID: PMC10450636 DOI: 10.3389/fcell.2023.1206157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Throughout the animal kingdom regenerative ability varies greatly from species to species, and even tissue to tissue within the same organism. The sheer diversity of structures and mechanisms renders a thorough comparison of molecular processes truly daunting. Are "blastemas" found in organisms as distantly related as planarians and axolotls derived from the same ancestral process, or did they arise convergently and independently? Is a mouse digit tip blastema orthologous to a salamander limb blastema? In other fields, the thorough characterization of a reference model has greatly facilitated these comparisons. For example, the amphibian Spemann-Mangold organizer has served as an amazingly useful comparative template within the field of developmental biology, allowing researchers to draw analogies between distantly related species, and developmental processes which are superficially quite different. The salamander limb blastema may serve as the best starting point for a comparative analysis of regeneration, as it has been characterized by over 200 years of research and is supported by a growing arsenal of molecular tools. The anatomical and evolutionary closeness of the salamander and human limb also add value from a translational and therapeutic standpoint. Tracing the evolutionary origins of the salamander blastema, and its relatedness to other regenerative processes throughout the animal kingdom, will both enhance our basic biological understanding of regeneration and inform our selection of regenerative model systems.
Collapse
Affiliation(s)
| | | | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
25
|
Daponte V, Tonelli F, Masiero C, Syx D, Exbrayat-Héritier C, Biggiogera M, Willaert A, Rossi A, Coucke PJ, Ruggiero F, Forlino A. Cell differentiation and matrix organization are differentially affected during bone formation in osteogenesis imperfecta zebrafish models with different genetic defects impacting collagen type I structure. Matrix Biol 2023; 121:105-126. [PMID: 37336269 DOI: 10.1016/j.matbio.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Osteogenesis imperfecta (OI) is a family of rare heritable skeletal disorders associated with dominant mutations in the collagen type I encoding genes and recessive defects in proteins involved in collagen type I synthesis and processing and in osteoblast differentiation and activity. Historically, it was believed that the OI bone phenotype was only caused by abnormal collagen type I fibrils in the extracellular matrix, but more recently it became clear that the altered bone cell homeostasis, due to mutant collagen retention, plays a relevant role in modulating disease severity in most of the OI forms and it is correlated to impaired bone cell differentiation. Despite in vitro evidence, in vivo data are missing. To better understand the physiopathology of OI, we used two zebrafish models: Chihuahua (Chi/+), carrying a dominant p.G736D substitution in the α1 chain of collagen type I, and the recessive p3h1-/-, lacking prolyl 3-hydroxylase (P3h1) enzyme. Both models share the delay of collagen type I folding, resulting in its overmodification and partial intracellular retention. The regeneration of the bony caudal fin of Chi/+ and p3h1-/- was employed to investigate the impact of abnormal collagen synthesis on bone cell differentiation. Reduced regenerative ability was evident in both models, but it was associated to impaired osteoblast differentiation and osteoblastogenesis/adipogenesis switch only in Chi/+. On the contrary, reduced osteoclast number and activity were found in both models during regeneration. The dominant OI model showed a more detrimental effect in the extracellular matrix organization. Interestingly, the chemical chaperone 4-phenylbutyrate (4-PBA), known to reduce cellular stress and increase collagen secretion, improved bone formation only in p3h1-/- by favoring caudal fin growth without affecting bone cell markers expression. Taken together, our in vivo data proved the negative impact of structurally abnormal collagen type I on bone formation but revealed a gene mutation-specific effect on bone cell differentiation and matrix organization in OI. These, together with the distinct ability to respond to the chaperone treatment, underline the need for precision medicine approaches to properly treat the disease.
Collapse
Affiliation(s)
- Valentina Daponte
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Cecilia Masiero
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Delfien Syx
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Chloé Exbrayat-Héritier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Paul J Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| |
Collapse
|
26
|
Rees L, König D, Jaźwińska A. Regeneration of the dermal skeleton and wound epidermis formation depend on BMP signaling in the caudal fin of platyfish. Front Cell Dev Biol 2023; 11:1134451. [PMID: 36846592 PMCID: PMC9946992 DOI: 10.3389/fcell.2023.1134451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Fin regeneration has been extensively studied in zebrafish, a genetic model organism. Little is known about regulators of this process in distant fish taxa, such as the Poeciliidae family, represented by the platyfish. Here, we used this species to investigate the plasticity of ray branching morphogenesis following either straight amputation or excision of ray triplets. This approach revealed that ray branching can be conditionally shifted to a more distal position, suggesting non-autonomous regulation of bone patterning. To gain molecular insights into regeneration of fin-specific dermal skeleton elements, actinotrichia and lepidotrichia, we localized expression of the actinodin genes and bmp2 in the regenerative outgrowth. Blocking of the BMP type-I receptor suppressed phospho-Smad1/5 immunoreactivity, and impaired fin regeneration after blastema formation. The resulting phenotype was characterized by the absence of bone and actinotrichia restoration. In addition, the wound epidermis displayed extensive thickening. This malformation was associated with expanded Tp63 expression from the basal epithelium towards more superficial layers, suggesting abnormal tissue differentiation. Our data add to the increasing evidence for the integrative role of BMP signaling in epidermal and skeletal tissue formation during fin regeneration. This expands our understanding of common mechanisms guiding appendage restoration in diverse clades of teleosts.
Collapse
Affiliation(s)
- Lana Rees
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Désirée König
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
27
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
28
|
Ahi EP, Richter F, Sefc KM. Gene expression patterns associated with caudal fin shape in the cichlid Lamprologus tigripictilis. HYDROBIOLOGIA 2022; 850:2257-2273. [PMID: 37325486 PMCID: PMC10261199 DOI: 10.1007/s10750-022-05068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Variation in fin shape is one of the most prominent features of morphological diversity among fish. Regulation of fin growth has mainly been studied in zebrafish, and it is not clear whether the molecular mechanisms underlying shape variation are equally diverse or rather conserved across species. In the present study, expression levels of 37 candidate genes were tested for association with fin shape in the cichlid fish Lamprologus tigripictilis. The tested genes included members of a fin shape-associated gene regulatory network identified in a previous study and novel candidates selected within this study. Using both intact and regenerating fin tissue, we tested for expression differences between the elongated and the short regions of the spade-shaped caudal fin and identified 20 genes and transcription factors (including angptl5, cd63, csrp1a, cx43, esco2, gbf1, and rbpj), whose expression patterns were consistent with a role in fin growth. Collated with available gene expression data of two other cichlid species, our study not only highlights several genes that were correlated with fin growth in all three species (e.g., angptl5, cd63, cx43, and mmp9), but also reveals species-specific gene expression and correlation patterns, which indicate considerable divergence in the regulatory mechanisms of fin growth across cichlids. Supplementary Information The online version contains supplementary material available at 10.1007/s10750-022-05068-4.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Florian Richter
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Kristina M. Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
29
|
Rees L, König D, Jaźwińska A. Platyfish bypass the constraint of the caudal fin ventral identity in teleosts. Dev Dyn 2022; 251:1862-1879. [PMID: 35803741 PMCID: PMC9796532 DOI: 10.1002/dvdy.518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The caudal fin of teleosts is characterized by dorsoventral symmetry. Despite this external morphology, the principal rays of this appendage connect to bones below the notochord, indicating the ventral (hypochordal) identity of this organ. RESULTS Here, we report that this typical architecture of the caudal fin is not fully conserved in the platyfish (Xiphophorus maculatus) and the guppy (Poecilia reticulata), representatives of the Poeciliidae family. We show that in these species, 3-4 principal rays connect to bones above the notochord, suggesting an epichordal contribution. Consistently, as examined in platyfish, dorsal identity genes zic1/4 were highly expressed in these rays, providing molecular evidence of their epichordal origin. Developmental analysis revealed that the earliest rays above the notochord emerge at the 10-ray stage of fin morphogenesis. In contrast to zebrafish and medaka, platyfish and guppies display a mirrored shape of dorsal and ventral processes of the caudal endoskeleton. Our study suggests that an ancestral bauplan expanded in poeciliids by advancing its symmetrical pattern. CONCLUSION The platyfish evolved a fin architecture with the epichordal origin of its upper principal rays and a high level of symmetry in the caudal endoskeleton. This innovative architecture highlights the adaptation of the teleost skeleton.
Collapse
Affiliation(s)
- Lana Rees
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Désirée König
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Anna Jaźwińska
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
30
|
Cao Z, Guo C, Chen G, Liu J, Ni H, Liu F, Xiong G, Liao X, Lu H. Shikonin Inhibits Fin Regeneration in Zebrafish Larvae. Cells 2022; 11:cells11203187. [PMID: 36291055 PMCID: PMC9601185 DOI: 10.3390/cells11203187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Shikonin is a naphthoquinone compound extracted from Chinese comfrey for treating cancer. However, there are few reports on its research on vertebrate tissue regeneration. Zebrafish is an ideal model for studying organ regeneration. In this study, we found that 3-dpf of zebrafish larvae exposed to shikonin at concentrations of 0.2, 0.3, and 0.4 mg/L showed increasingly inhibited regeneration of the tail fin. Immunohistochemical staining showed that shikonin exposure from 6 to 12 hpa increased the number of apoptotic cells in the caudal fin wound of larvae and decreased the number of proliferating cells. Shikonin exposure was found to up-regulate oxidative stress, increase ROS levels, and reduce neutrophil recruitment in the early stage of wound repair. Moreover, shikonin exposure caused disordered expression of fin regeneration blastemal-related genes. The use of astaxanthin to down-regulate oxidative stress was found to significantly reduce the inhibition of caudal fin regeneration. Mixed exposure of AMPK inhibitors or fullerenes (C60) with shikonin also showed the similar rescue effect. Collectively, our study showed that shikonin inhibited fin regeneration in zebrafish larvae by the upregulation of oxidative stress level and AMPK signaling pathway. This research provides valuable information on the mechanism of action of shikonin for its safe application.
Collapse
Affiliation(s)
- Zigang Cao
- Correspondence: (Z.C.); (H.L.); Tel./Fax: +86-796-8116182 (Z.C.)
| | | | | | | | | | | | | | | | - Huiqiang Lu
- Correspondence: (Z.C.); (H.L.); Tel./Fax: +86-796-8116182 (Z.C.)
| |
Collapse
|
31
|
Brandão AS, Borbinha J, Pereira T, Brito PH, Lourenço R, Bensimon-Brito A, Jacinto A. A regeneration-triggered metabolic adaptation is necessary for cell identity transitions and cell cycle re-entry to support blastema formation and bone regeneration. eLife 2022; 11:e76987. [PMID: 35993337 PMCID: PMC9395193 DOI: 10.7554/elife.76987] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Regeneration depends on the ability of mature cells at the injury site to respond to injury, generating tissue-specific progenitors that incorporate the blastema and proliferate to reconstitute the original organ architecture. The metabolic microenvironment has been tightly connected to cell function and identity during development and tumorigenesis. Yet, the link between metabolism and cell identity at the mechanistic level in a regenerative context remains unclear. The adult zebrafish caudal fin, and bone cells specifically, have been crucial for the understanding of mature cell contribution to tissue regeneration. Here, we use this model to explore the relevance of glucose metabolism for the cell fate transitions preceding new osteoblast formation and blastema assembly. We show that injury triggers a modulation in the metabolic profile at early stages of regeneration to enhance glycolysis at the expense of mitochondrial oxidation. This metabolic adaptation mediates transcriptional changes that make mature osteoblast amenable to be reprogramed into pre-osteoblasts and induces cell cycle re-entry and progression. Manipulation of the metabolic profile led to severe reduction of the pre-osteoblast pool, diminishing their capacity to generate new osteoblasts, and to a complete abrogation of blastema formation. Overall, our data indicate that metabolic alterations have a powerful instructive role in regulating genetic programs that dictate fate decisions and stimulate proliferation, thereby providing a deeper understanding on the mechanisms regulating blastema formation and bone regeneration.
Collapse
Affiliation(s)
- Ana S Brandão
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| | - Jorge Borbinha
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| | - Telmo Pereira
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| | - Patrícia H Brito
- UCIBIO, Dept. Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de LisboaLisbonPortugal
| | - Raquel Lourenço
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| | | | - Antonio Jacinto
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| |
Collapse
|
32
|
Rosa JT, Tarasco M, Gavaia PJ, Cancela ML, Laizé V. Screening of Mineralogenic and Osteogenic Compounds in Zebrafish—Tools to Improve Assay Throughput and Data Accuracy. Pharmaceuticals (Basel) 2022; 15:ph15080983. [PMID: 36015130 PMCID: PMC9412667 DOI: 10.3390/ph15080983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
Bone disorders affect millions of people worldwide and treatments currently available often produce undesirable secondary effects or have limited efficacy. It is therefore of the utmost interest for patients to develop more efficient drugs with reduced off-target activities. In the long process of drug development, screening and preclinical validation have recently gained momentum with the increased use of zebrafish as a model organism to study pathological processes related to human bone disorders, and the development of zebrafish high-throughput screening assays to identify bone anabolic compounds. In this review, we provided a comprehensive overview of the literature on zebrafish bone-related assays and evaluated their performance towards an integration into screening pipelines for the discovery of mineralogenic/osteogenic compounds. Tools available to standardize fish housing and feeding procedures, synchronize embryo production, and automatize specimen sorting and image acquisition/analysis toward faster and more accurate screening outputs were also presented.
Collapse
Affiliation(s)
- Joana T. Rosa
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, 8700-194 Olhão, Portugal
| | - Marco Tarasco
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- GreenColab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - M. Leonor Cancela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, 8700-194 Olhão, Portugal
- Correspondence:
| |
Collapse
|
33
|
Osorio-Méndez D, Miller A, Begeman IJ, Kurth A, Hagle R, Rolph D, Dickson AL, Chen CH, Halloran M, Poss KD, Kang J. Voltage-gated sodium channel scn8a is required for innervation and regeneration of amputated adult zebrafish fins. Proc Natl Acad Sci U S A 2022; 119:e2200342119. [PMID: 35867745 PMCID: PMC9282381 DOI: 10.1073/pnas.2200342119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Teleost fishes and urodele amphibians can regenerate amputated appendages, whereas this ability is restricted to digit tips in adult mammals. One key component of appendage regeneration is reinnervation of the wound area. However, how innervation is regulated in injured appendages of adult vertebrates has seen limited research attention. From a forward genetics screen for temperature-sensitive defects in zebrafish fin regeneration, we identified a mutation that disrupted regeneration while also inducing paralysis at the restrictive temperature. Genetic mapping and complementation tests identify a mutation in the major neuronal voltage-gated sodium channel (VGSC) gene scn8ab. Conditional disruption of scn8ab impairs early regenerative events, including blastema formation, but does not affect morphogenesis of established regenerates. Whereas scn8ab mutations reduced neural activity as expected, they also disrupted axon regrowth and patterning in fin regenerates, resulting in hypoinnervation. Our findings indicate that the activity of VGSCs plays a proregenerative role by promoting innervation of appendage stumps.
Collapse
Affiliation(s)
- Daniel Osorio-Méndez
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Andrew Miller
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Ian J. Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Andrew Kurth
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Ryan Hagle
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Daniela Rolph
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Amy L. Dickson
- Duke Regeneration Center, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Mary Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Kenneth D. Poss
- Duke Regeneration Center, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| |
Collapse
|
34
|
Sehring I, Weidinger G. Zebrafish Fin: Complex Molecular Interactions and Cellular Mechanisms Guiding Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a040758. [PMID: 34649924 PMCID: PMC9248819 DOI: 10.1101/cshperspect.a040758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The zebrafish caudal fin has become a popular model to study cellular and molecular mechanisms of regeneration due to its high regenerative capacity, accessibility for experimental manipulations, and relatively simple anatomy. The formation of a regenerative epidermis and blastema are crucial initial events and tightly regulated. Both the regenerative epidermis and the blastema are highly organized structures containing distinct domains, and several signaling pathways regulate the formation and interaction of these domains. Bone is the major tissue regenerated from the progenitor cells of the blastema. Several cellular mechanisms can provide source cells for blastemal (pre-)osteoblasts, including dedifferentiation of differentiated osteoblasts and de novo formation from other cell types, providing intriguing examples of cellular plasticity. In recent years, omics analyses and single-cell approaches have elucidated genetic and epigenetic regulation, increasing our knowledge of the surprisingly complex coordination of various mechanisms to achieve successful restoration of a seemingly simple structure.
Collapse
Affiliation(s)
- Ivonne Sehring
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
35
|
Xia C, Tian L, Yu J, Lu X, Wang H, He Z, Qian B, Gu L, Wang L, Chen J, Lu T, Xu C, Qian H, Sun L. Inhibitory effects of estrogenic endocrine disrupting chemicals on fin regeneration in zebrafish are dependent on estrogen receptors. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106156. [PMID: 35405443 DOI: 10.1016/j.aquatox.2022.106156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/16/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
For fish and other aquatic organisms, disrupting their capacity for repair and regeneration will reduce their quality of life and survivorship in the wild. Studies have shown that 17α-ethinylestradiol (EE2), a synthetic estrogenic endocrine disrupting chemical (EEDC), can inhibit caudal fin regeneration in larval zebrafish following fin amputation. However, whether the inhibitory effects of EE2 are dependent on estrogen receptor (ER) remains unknown. Therefore, in this study, amputated zebrafish larvae were exposed to the ER agonist EE2 alone and in combination with the ER antagonist ICI 182,780 (ICI), and the change in regenerative capacity was determined. The inhibition of fin regeneration caused by EE2 alone (100 ng/L) was ameliorated after combination with ICI (30-300 μg/L), and these changes in regeneration-related signaling and the immune system corresponded with morphological observations, implying that the effects of EE2 on regeneration were possibly initiated by the activation of ER. Furthermore, the role of ER was confirmed with a natural ligand of ER, namely, 17β-estradiol (E2), and as expected, the effects of E2 (10, 100 and 1000 ng/L) paralleled those of EE2. In conclusion, EEDCs can disrupt the regenerative capacity in zebrafish, possibly due to the binding and activation of ERs and the consequent alteration of signaling pathways that regulate fin regeneration and immune competence. Given that EEDCs appear to be ubiquitous in the aquatic environment, the risk of these chemicals might be readdressed regarding their potential effects on tissue repair and regeneration.
Collapse
Affiliation(s)
- Caihong Xia
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Li Tian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jie Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Xingfan Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haixia Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zepeng He
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou 310002, PR China
| | - Baoliu Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Linqi Gu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Lina Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jun Chen
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou 310002, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
36
|
Zhu WQ, Li K, Su S, Chen W, Liu Y, Qiu J. Effects of Zinc Ions Released From Ti-NW-Zn Surface on Osteogenesis and Angiogenesis In Vitro and in an In Vivo Zebrafish Model. Front Bioeng Biotechnol 2022; 10:848769. [PMID: 35528211 PMCID: PMC9068938 DOI: 10.3389/fbioe.2022.848769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Zinc-modified titanium materials have been widely applied in oral implants. Among them, our previous studies have also successfully prepared a novel acid-etched microstructured titanium surface modified with zinc-containing nanowires (Ti-NW-Zn) and proved its excellent biocompatibility. It is well known that the functional regulation between angiogenesis and osteogenesis is of great importance for bone remodeling around implants. However, there are few reports concerning the biological safety of zinc ions released from materials and the appropriate concentration of released zinc ions which was more conducive to angiogenesis and bone regeneration. In this study, we investigated the effects of zinc ions released from Ti-NW-Zn surfaces on angiogenesis and osteogenesis using the zebrafish model and revealed the relationship between angiogenesis and osteogenesis via HUVECs and MC3T3-E1s in vitro. We found that the zinc ions released from Ti-NW-Zn surfaces, with a concentration lower than median lethal concentrations (LCs) of zebrafish, were biologically safe and promote osteogenesis and angiogenesis in vivo. Moreover, the proper concentration of zinc ions could induce the proliferation of HUVECs and osteogenic differentiation. The positive effects of the appropriate concentration of zinc ions on osteoblast behaviors might be regulated by activating the MAPK/ERK signaling pathway. These aspects may provide new sights into the mechanisms underlying zinc-modified titanium surfaces between osteogenesis and angiogenesis, to lay the foundation for further improving the materials, meanwhile, promoting the applications in dentistry.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Kang Li
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Shan Su
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Wei Chen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Yao Liu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- *Correspondence: Jing Qiu,
| |
Collapse
|
37
|
Leonard EV, Figueroa RJ, Bussmann J, Lawson ND, Amigo JD, Siekmann AF. Regenerating vascular mural cells in zebrafish fin blood vessels are not derived from pre-existing mural cells and differentially require Pdgfrb signalling for their development. Development 2022; 149:274745. [PMID: 35297968 PMCID: PMC9058498 DOI: 10.1242/dev.199640] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022]
Abstract
ABSTRACT
Vascular networks comprise endothelial cells and mural cells, which include pericytes and smooth muscle cells. To elucidate the mechanisms controlling mural cell recruitment during development and tissue regeneration, we studied zebrafish caudal fin arteries. Mural cells colonizing arteries proximal to the body wrapped around them, whereas those in more distal regions extended protrusions along the proximo-distal vascular axis. Both cell populations expressed platelet-derived growth factor receptor β (pdgfrb) and the smooth muscle cell marker myosin heavy chain 11a (myh11a). Most wrapping cells in proximal locations additionally expressed actin alpha2, smooth muscle (acta2). Loss of Pdgfrb signalling specifically decreased mural cell numbers at the vascular front. Using lineage tracing, we demonstrate that precursor cells located in periarterial regions and expressing Pgdfrb can give rise to mural cells. Studying tissue regeneration, we did not find evidence that newly formed mural cells were derived from pre-existing cells. Together, our findings reveal conserved roles for Pdgfrb signalling in development and regeneration, and suggest a limited capacity of mural cells to self-renew or contribute to other cell types during tissue regeneration.
Collapse
Affiliation(s)
- Elvin V. Leonard
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Ricardo J. Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jeroen Bussmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Münster, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Nathan D. Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Julio D. Amigo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Arndt F. Siekmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Liu R, Imangali N, Ethiraj LP, Carney TJ, Winkler C. Transcriptome Profiling of Osteoblasts in a Medaka ( Oryzias latipes) Osteoporosis Model Identifies Mmp13b as Crucial for Osteoclast Activation. Front Cell Dev Biol 2022; 10:775512. [PMID: 35281094 PMCID: PMC8911226 DOI: 10.3389/fcell.2022.775512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteases (MMPs) play crucial roles in extracellular matrix (ECM) modulation during osteoclast-driven bone remodeling. In the present study, we used transcriptome profiling of bone cells in a medaka model for osteoporosis and bone regeneration to identify factors critical for bone remodeling and homeostasis. This identified mmp13b, which was strongly expressed in osteoblast progenitors and upregulated under osteoporotic conditions and during regeneration of bony fin rays. To characterize the role of mmp13b in bone remodeling, we generated medaka mmp13b mutants by CRISPR/Cas9. We found that mmp13b mutants form normal numbers of osteoblasts and osteoclasts. However, osteoclast activity was severely impaired under osteoporotic conditions. In mmp13b mutants and embryos treated with the MMP13 inhibitor CL-82198, unmineralized collagens and mineralized bone matrix failed to be degraded. In addition, the dynamic migratory behavior of activated osteoclasts was severely affected in mmp13b mutants. Expression analysis showed that maturation genes were downregulated in mmp13b deficient osteoclasts suggesting that they remain in an immature and non-activated state. We also found that fin regeneration was delayed in mmp13b mutants with a concomitant alteration of the ECM and reduced numbers of osteoblast progenitors in regenerating joint regions. Together, our findings suggest that osteoblast-derived Mmp13b alters the bone ECM to allow the maturation and activation of osteoclasts during bone remodeling in a paracrine manner. Mmp13b-induced ECM alterations are also required to facilitate osteoblast progenitor recruitment and full regeneration of bony fin rays.
Collapse
Affiliation(s)
- Ranran Liu
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Nurgul Imangali
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Lalith Prabha Ethiraj
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Tom James Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
mdka Expression Is Associated with Quiescent Neural Stem Cells during Constitutive and Reactive Neurogenesis in the Adult Zebrafish Telencephalon. Brain Sci 2022; 12:brainsci12020284. [PMID: 35204047 PMCID: PMC8870249 DOI: 10.3390/brainsci12020284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
In contrast to mammals, adult zebrafish display an extraordinary capacity to heal injuries and repair damage in the central nervous system. Pivotal for the regenerative capacity of the zebrafish brain at adult stages is the precise control of neural stem cell (NSC) behavior and the maintenance of the stem cell pool. The gene mdka, a member of a small family of heparin binding growth factors, was previously shown to be involved in regeneration in the zebrafish retina, heart, and fin. Here, we investigated the expression pattern of the gene mdka and its paralogue mdkb in the zebrafish adult telencephalon under constitutive and regenerative conditions. Our findings show that only mdka expression is specifically restricted to the telencephalic ventricle, a stem cell niche of the zebrafish telencephalon. In this brain region, mdka is particularly expressed in the quiescent stem cells. Interestingly, after brain injury, mdka expression remains restricted to the resting stem cell, which might suggest a role of mdka in regulating stem cell quiescence.
Collapse
|
40
|
Leigh ND, Currie JD. Re-building limbs, one cell at a time. Dev Dyn 2022; 251:1389-1403. [PMID: 35170828 PMCID: PMC9545806 DOI: 10.1002/dvdy.463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
New techniques for visualizing and interrogating single cells hold the key to unlocking the underlying mechanisms of salamander limb regeneration.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, Sweden
| | - Joshua D Currie
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, USA
| |
Collapse
|
41
|
Epimorphic regeneration of the mouse digit tip is finite. Stem Cell Res Ther 2022; 13:62. [PMID: 35130972 PMCID: PMC8822779 DOI: 10.1186/s13287-022-02741-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Structural regeneration of amputated appendages by blastema-mediated, epimorphic regeneration is a process whose mechanisms are beginning to be employed for inducing regeneration. While epimorphic regeneration is classically studied in non-amniote vertebrates such as salamanders, mammals also possess a limited ability for epimorphic regeneration, best exemplified by the regeneration of the distal mouse digit tip. A fundamental, but still unresolved question is whether epimorphic regeneration and blastema formation is exhaustible, similar to the finite limits of stem-cell mediated tissue regeneration. Methods In this study, distal mouse digits were amputated, allowed to regenerate and then repeatedly amputated. To quantify the extent and patterning of the regenerated digit, the digit bone as the most prominent regenerating element in the mouse digit was followed by in vivo µCT. Results Analyses revealed that digit regeneration is indeed progressively attenuated, beginning after the second regeneration cycle, but that the pattern is faithfully restored until the end of the fourth regeneration cycle. Surprisingly, when unamputated digits in the vicinity of repeatedly amputated digits were themselves amputated, these new amputations also exhibited a similarly attenuated regeneration response, suggesting a systemic component to the amputation injury response. Conclusions In sum, these data suggest that epimorphic regeneration in mammals is finite and due to the exhaustion of the proliferation and differentiation capacity of the blastema cell source. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02741-2.
Collapse
|
42
|
Tsuruwaka Y, Shimada E. Reprocessing seafood waste: challenge to develop aquatic clean meat from fish cells. NPJ Sci Food 2022; 6:7. [PMID: 35087061 PMCID: PMC8795430 DOI: 10.1038/s41538-021-00121-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023] Open
Abstract
Fish consumption has been increasing worldwide as per capita consumption of fish rises along with population growth. At the same time, overfishing is increasing all over the world, causing enormous damage to the ecosystem. There is an urgent need to secure sustainable fishery resources to meet the expanding demand for fish. The present study focused on the cells obtained from fish fins, which were often discarded as food waste, and which had the potential to change their morphology with simple treatments, creating the possibility of processing fish fin cells into clean meat (i.e., meat produced in vitro; artificial, lab-cultured meat using tissue engineering techniques). The fin-derived fibroblast-like cells demonstrated an interesting characteristic; changing the sera or culture media supported differentiation of the fibroblast-like cells to various cell morphologies, such as neurofilaments and adipocytes, etc., without genetic manipulation. Furthermore, it was possible to culture the cells in multi-layered and three-dimensional forms that were suitable for processing and shaping. Taking advantage of the cells' characteristics, 'aquatic clean meat' was produced successfully at the prototype stage. Our results suggest that fish fins, which are often treated as waste material, thus, are easy to procure, simple to process, and could be used to create a sustainable food resource.
Collapse
Affiliation(s)
- Yusuke Tsuruwaka
- Cellevolt, Niigata, Japan. .,Institute for Advanced Biosciences, Keio University, Yamagata, Japan. .,Marine Bioresource Exploration Research Team, Marine Biodiversity Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan.
| | - Eriko Shimada
- Cellevolt, Niigata, Japan. .,Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan. .,Department of Pharmacology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
43
|
Riley SE, Feng Y, Hansen CG. Hippo-Yap/Taz signalling in zebrafish regeneration. NPJ Regen Med 2022; 7:9. [PMID: 35087046 PMCID: PMC8795407 DOI: 10.1038/s41536-022-00209-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
The extent of tissue regeneration varies widely between species. Mammals have a limited regenerative capacity whilst lower vertebrates such as the zebrafish (Danio rerio), a freshwater teleost, can robustly regenerate a range of tissues, including the spinal cord, heart, and fin. The molecular and cellular basis of this altered response is one of intense investigation. In this review, we summarise the current understanding of the association between zebrafish regeneration and Hippo pathway function, a phosphorylation cascade that regulates cell proliferation, mechanotransduction, stem cell fate, and tumorigenesis, amongst others. We also compare this function to Hippo pathway activity in the regenerative response of other species. We find that the Hippo pathway effectors Yap/Taz facilitate zebrafish regeneration and that this appears to be latent in mammals, suggesting that therapeutically promoting precise and temporal YAP/TAZ signalling in humans may enhance regeneration and hence reduce morbidity.
Collapse
Affiliation(s)
- Susanna E Riley
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Yi Feng
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Carsten Gram Hansen
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
44
|
Bergen DJM, Tong Q, Shukla A, Newham E, Zethof J, Lundberg M, Ryan R, Youlten SE, Frysz M, Croucher PI, Flik G, Richardson RJ, Kemp JP, Hammond CL, Metz JR. Regenerating zebrafish scales express a subset of evolutionary conserved genes involved in human skeletal disease. BMC Biol 2022; 20:21. [PMID: 35057801 PMCID: PMC8780716 DOI: 10.1186/s12915-021-01209-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022] Open
Abstract
Background Scales are mineralised exoskeletal structures that are part of the dermal skeleton. Scales have been mostly lost during evolution of terrestrial vertebrates whilst bony fish have retained a mineralised dermal skeleton in the form of fin rays and scales. Each scale is a mineralised collagen plate that is decorated with both matrix-building and resorbing cells. When removed, an ontogenetic scale is quickly replaced following differentiation of the scale pocket-lining cells that regenerate a scale. Processes promoting de novo matrix formation and mineralisation initiated during scale regeneration are poorly understood. Therefore, we performed transcriptomic analysis to determine gene networks and their pathways involved in dermal scale regeneration. Results We defined the transcriptomic profiles of ontogenetic and regenerating scales of zebrafish and identified 604 differentially expressed genes (DEGs). These were enriched for extracellular matrix, ossification, and cell adhesion pathways, but not in enamel or dentin formation processes indicating that scales are reminiscent to bone. Hypergeometric tests involving monogenetic skeletal disorders showed that DEGs were strongly enriched for human orthologues that are mutated in low bone mass and abnormal bone mineralisation diseases (P< 2× 10−3). The DEGs were also enriched for human orthologues associated with polygenetic skeletal traits, including height (P< 6× 10−4), and estimated bone mineral density (eBMD, P< 2× 10−5). Zebrafish mutants of two human orthologues that were robustly associated with height (COL11A2, P=6× 10−24) or eBMD (SPP1, P=6× 10−20) showed both exo- and endo- skeletal abnormalities as predicted by our genetic association analyses; col11a2Y228X/Y228X mutants showed exoskeletal and endoskeletal features consistent with abnormal growth, whereas spp1P160X/P160X mutants predominantly showed mineralisation defects. Conclusion We show that scales have a strong osteogenic expression profile comparable to other elements of the dermal skeleton, enriched in genes that favour collagen matrix growth. Despite the many differences between scale and endoskeletal developmental processes, we also show that zebrafish scales express an evolutionarily conserved sub-population of genes that are relevant to human skeletal disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01209-8.
Collapse
|
45
|
Yue Z, Lei M, Paus R, Chuong CM. The global regulatory logic of organ regeneration: circuitry lessons from skin and its appendages. Biol Rev Camb Philos Soc 2021; 96:2573-2583. [PMID: 34145718 PMCID: PMC10874616 DOI: 10.1111/brv.12767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
In organ regeneration, the regulatory logic at a systems level remains largely unclear. For example, what defines the quantitative threshold to initiate regeneration, and when does the regeneration process come to an end? What leads to the qualitatively different responses of regeneration, which restore the original structure, or to repair which only heals a wound? Here we discuss three examples in skin regeneration: epidermal recovery after radiation damage, hair follicle fate choice after chemotherapy damage, and wound-induced feather regeneration. We propose that the molecular regulatory circuitry is of paramount significance in organ regeneration. It is conceivable that defects in these controlling pathways may lead to failed regeneration and/or organ renewal, and understanding the underlying logic could help to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- ZhiCao Yue
- Department of Cell Biology and Medical Genetics, Carson International Cancer Center, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400038, China
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, U.S.A
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA, 90033, U.S.A
| |
Collapse
|
46
|
Collagen fibers provide guidance cues for capillary regrowth during regenerative angiogenesis in zebrafish. Sci Rep 2021; 11:19520. [PMID: 34593884 PMCID: PMC8484481 DOI: 10.1038/s41598-021-98852-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Although well investigated, the importance of collagen fibers in supporting angiogenesis is not well understood. In this study, we demonstrate that extracellular collagen fibers provide guidance cues for endothelial cell migration during regenerative angiogenesis in the caudal zebrafish fin. Inhibition of collagen cross-linking by β-Aminopropionitrile results in a 70% shorter regeneration area with 50% reduced vessel growth and disintegrated collagen fibers. The disrupted collagen scaffold impedes endothelial cell migration and induces formation of abnormal angioma-like blood vessels. Treatment of the Fli//colRN zebrafish line with the prodrug Nifurpirinol, which selectively damages the active collagen-producing 1α2 cells, reduced the regeneration area and vascular growth by 50% with wider, but less inter-connected, capillary segments. The regenerated area contained larger vessels partially covered by endothelial cells embedded in atypical extracellular matrix containing cell debris and apoptotic bodies, macrophages and granulocytes. Similar experiments performed in early embryonic zebrafish suggested that collagens are important also during embryonic angiogenesis. In vitro assays revealed that collagen I allows for the most efficient endothelial cell migration, followed by collagen IV relative to the complete absence of exogenous matrix support. Our data demonstrates severe vascular defects and restricted fin regeneration when collagens are impaired. Collagen I therefore, provides support and guidance for endothelial cell migration while collagen IV is responsible for proper lumen formation and vascular integrity.
Collapse
|
47
|
Ribeiro AO, de Oliveira AC, Costa JM, Nachtigall PG, Herkenhoff ME, Campos VF, Delella FK, Pinhal D. MicroRNA roles in regeneration: Multiple lessons from zebrafish. Dev Dyn 2021; 251:556-576. [PMID: 34547148 DOI: 10.1002/dvdy.421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs with pivotal roles in the control of gene expression. By comparing the miRNA profiles of uninjured vs. regenerating tissues and structures, several studies have found that miRNAs are potentially involved in the regenerative process. By inducing miRNA overexpression or inhibition, elegant experiments have directed regenerative responses validating relevant miRNA-to-target interactions. The zebrafish (Danio rerio) has been the epicenter of regenerative research because of its exceptional capability to self-repair damaged tissues and body structures. In this review, we discuss recent discoveries that have improved our understanding of the impact of gene regulation mediated by miRNAs in the context of the regeneration of fins, heart, retina, and nervous tissue in zebrafish. We compiled what is known about the miRNA control of regeneration in these tissues and investigated the links among up-regulated and down-regulated miRNAs, their putative or validated targets, and the regenerative process. Finally, we briefly discuss the forthcoming prospects, highlighting directions and the potential for further development of this field.
Collapse
Affiliation(s)
- Amanda Oliveira Ribeiro
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Arthur Casulli de Oliveira
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Juliana Mara Costa
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Pedro Gabriel Nachtigall
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Laboratório Especial de Toxicologia Aplicada (LETA), CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Marcos Edgar Herkenhoff
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Flávia Karina Delella
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
48
|
Sinclair JW, Hoying DR, Bresciani E, Nogare DD, Needle CD, Berger A, Wu W, Bishop K, Elkahloun AG, Chitnis A, Liu P, Burgess SM. The Warburg effect is necessary to promote glycosylation in the blastema during zebrafish tail regeneration. NPJ Regen Med 2021; 6:55. [PMID: 34518542 PMCID: PMC8437957 DOI: 10.1038/s41536-021-00163-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022] Open
Abstract
Throughout their lifetime, fish maintain a high capacity for regenerating complex tissues after injury. We utilized a larval tail regeneration assay in the zebrafish Danio rerio, which serves as an ideal model of appendage regeneration due to its easy manipulation, relatively simple mixture of cell types, and superior imaging properties. Regeneration of the embryonic zebrafish tail requires development of a blastema, a mass of dedifferentiated cells capable of replacing lost tissue, a crucial step in all known examples of appendage regeneration. Using this model, we show that tail amputation triggers an obligate metabolic shift to promote glucose metabolism during early regeneration similar to the Warburg effect observed in tumor forming cells. Inhibition of glucose metabolism did not affect the overall health of the embryo but completely blocked the tail from regenerating after amputation due to the failure to form a functional blastema. We performed a time series of single-cell RNA sequencing on regenerating tails with and without inhibition of glucose metabolism. We demonstrated that metabolic reprogramming is required for sustained TGF-β signaling and blocking glucose metabolism largely mimicked inhibition of TGF-β receptors, both resulting in an aberrant blastema. Finally, we showed using genetic ablation of three possible metabolic pathways for glucose, that metabolic reprogramming is required to provide glucose specifically to the hexosamine biosynthetic pathway while neither glycolysis nor the pentose phosphate pathway were necessary for regeneration.
Collapse
Affiliation(s)
- Jason W Sinclair
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - David R Hoying
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Erica Bresciani
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Damian Dalle Nogare
- Aquatic Models of Human Development Affinity Group, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Carli D Needle
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Alexandra Berger
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Weiwei Wu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Kevin Bishop
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Abdel G Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Ajay Chitnis
- Aquatic Models of Human Development Affinity Group, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Paul Liu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
49
|
Yamamoto S, Kashimoto R, Furukawa S, Sakamoto H, Satoh A. Nerve-mediated FGF-signaling in the early phase of various organ regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:529-539. [PMID: 34387925 DOI: 10.1002/jez.b.23093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 07/25/2021] [Indexed: 01/17/2023]
Abstract
Amphibians have a very high capacity for regeneration among tetrapods. This superior regeneration capability in amphibians can be observed in limbs, the tail, teeth, external gills, the heart, and some internal organs. The mechanisms underlying the superior organ regeneration capability have been studied for a long time. Limb regeneration has been investigated as the representative phenomenon for organ-level regeneration. In limb regeneration, a prominent difference between regenerative and nonregenerative animals after limb amputation is blastema formation. A regeneration blastema requires the presence of nerves in the stump region. Thus, nerve regulation is responsible for blastema induction, and it has received much attention. Nerve regulation in regeneration has been investigated using the limb regeneration model and newly established alternative experimental model called the accessory limb model. Previous studies have identified some candidate genes that act as neural factors in limb regeneration, and these studies also clarified related events in early limb regeneration. Consistent with the nervous regulation and related events in limb regeneration, similar regeneration mechanisms in other organs have been discovered. This review especially focuses on the role of nerve-mediated fibroblast growth factor in the initiation phase of organ regeneration. Comparison of the initiation mechanisms for regeneration in various amphibian organs allows speculation about a fundamental regenerative process.
Collapse
Affiliation(s)
- Sakiya Yamamoto
- Department of Biological Science, Faculty of Science, Okayama University, Okayama, Japan
| | - Rena Kashimoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Saya Furukawa
- Department of Biological Science, Faculty of Science, Okayama University, Okayama, Japan
| | - Hirotaka Sakamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.,Ushimado Marine Institute (UMI), Okayama University, Okayama, Japan
| | - Akira Satoh
- Department of Biological Science, Faculty of Science, Okayama University, Okayama, Japan.,Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama, Japan
| |
Collapse
|
50
|
Dagenais P, Blanchoud S, Pury D, Pfefferli C, Aegerter-Wilmsen T, Aegerter CM, Jaźwińska A. Hydrodynamic stress and phenotypic plasticity of the zebrafish regenerating fin. J Exp Biol 2021; 224:271142. [PMID: 34338301 DOI: 10.1242/jeb.242309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/14/2021] [Indexed: 01/23/2023]
Abstract
Understanding how extrinsic factors modulate genetically encoded information to produce a specific phenotype is of prime scientific interest. In particular, the feedback mechanism between abiotic forces and locomotory organs during morphogenesis to achieve efficient movement is a highly relevant example of such modulation. The study of this developmental process can provide unique insights on the transduction of cues at the interface between physics and biology. Here, we take advantage of the natural ability of adult zebrafish to regenerate their amputated fins to assess its morphogenic plasticity upon external modulations. Using a variety of surgical and chemical treatments, we could induce phenotypic responses to the structure of the fin. Through the ablation of specific rays in regenerating caudal fins, we generated artificially narrowed appendages in which the fin cleft depth and the positioning of rays bifurcations were perturbed compared with normal regenerates. To dissect the role of mechanotransduction in this process, we investigated the patterns of hydrodynamic forces acting on the surface of a zebrafish fin during regeneration by using particle tracking velocimetry on a range of biomimetic hydrofoils. This experimental approach enabled us to quantitatively compare hydrodynamic stress distributions over flapping fins of varying sizes and shapes. As a result, viscous shear stress acting on the distal margin of regenerating fins and the resulting internal tension are proposed as suitable signals for guiding the regulation of ray growth dynamics and branching pattern. Our findings suggest that mechanical forces are involved in the fine-tuning of the locomotory organ during fin morphogenesis.
Collapse
Affiliation(s)
- Paule Dagenais
- Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Simon Blanchoud
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - David Pury
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Catherine Pfefferli
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Tinri Aegerter-Wilmsen
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Christof M Aegerter
- Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|