1
|
Nurhidayat L, Benes V, Blom S, Gomes I, Firdausi N, de Bakker MAG, Spaink HP, Richardson MK. Tokay gecko tail regeneration involves temporally collinear expression of HOXC genes and early expression of satellite cell markers. BMC Biol 2025; 23:6. [PMID: 39780185 PMCID: PMC11715542 DOI: 10.1186/s12915-024-02111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Regeneration is the replacement of lost or damaged tissue with a functional copy. In axolotls and zebrafish, regeneration involves stem cells produced by de-differentiation. These cells form a growth zone which expresses developmental patterning genes at its apex. This system resembles an embryonic developmental field where cells undergo pattern formation. Some lizards, including geckos, can regenerate their tails, but it is unclear whether they show a "development-like" regeneration pathway. RESULTS Using the tokay gecko (Gekko gecko) model species, we examined seven stages of tail regeneration, and three stages of embryonic tail bud development, using transcriptomics, single-cell sequencing, and in situ hybridization. We find no apical growth zone in the regenerating tail. The transcriptomes of the regenerating vs. embryonic tails are quite different with respect to developmental patterning genes. Posterior HOXC genes were activated in a temporally collinear sequence in the regenerating tail. The major precursor populations were stromal cells (regenerating tail) vs. pluripotent stem cells (embryonic tail). Segmented skeletal muscles were regenerated with no expression of classical segmentation genes, but with the early activation of satellite cell markers. CONCLUSIONS Our study suggests that tail regeneration in the tokay gecko-unlike tail development-might rely on the activation of resident stem cells, guided by pre-existing positional information.
Collapse
Affiliation(s)
- Luthfi Nurhidayat
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Faculty of Biology, Universitas Gadjah Mada, Jalan Teknika Selatan Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory Heidelberg, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | - Sira Blom
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Inês Gomes
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Nisrina Firdausi
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Merijn A G de Bakker
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Michael K Richardson
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
2
|
Doostdar P, Hawley J, Chopra K, Marinopoulou E, Lea R, Arashvand K, Biga V, Papalopulu N, Soto X. Cell coupling compensates for changes in single-cell Her6 dynamics and provides phenotypic robustness. Development 2024; 151:dev202640. [PMID: 38682303 PMCID: PMC11190438 DOI: 10.1242/dev.202640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
This paper investigates the effect of altering the protein expression dynamics of the bHLH transcription factor Her6 at the single-cell level in the embryonic zebrafish telencephalon. Using a homozygote endogenous Her6:Venus reporter and 4D single-cell tracking, we show that Her6 oscillates in neural telencephalic progenitors and that the fusion of protein destabilisation (PEST) domain alters its expression dynamics, causing most cells to downregulate Her6 prematurely. However, counterintuitively, oscillatory cells increase, with some expressing Her6 at high levels, resulting in increased heterogeneity of Her6 expression in the population. These tissue-level changes appear to be an emergent property of coupling between single-cells, as revealed by experimentally disrupting Notch signalling and by computationally modelling alterations in Her6 protein stability. Despite the profound differences in the single-cell Her6 dynamics, the size of the telencephalon is only transiently altered and differentiation markers do not exhibit significant differences early on; however, a small increase is observed at later developmental stages. Our study suggests that cell coupling provides a compensation strategy, whereby an almost normal phenotype is maintained even though single-cell gene expression dynamics are abnormal, granting phenotypic robustness.
Collapse
Affiliation(s)
- Parnian Doostdar
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Joshua Hawley
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Kunal Chopra
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Elli Marinopoulou
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Robert Lea
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Kiana Arashvand
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Veronica Biga
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ximena Soto
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
3
|
Pappas MP, Kawakami H, Corcoran D, Chen KQ, Scott EP, Wong J, Gearhart MD, Nishinakamura R, Nakagawa Y, Kawakami Y. Sall4 regulates posterior trunk mesoderm development by promoting mesodermal gene expression and repressing neural genes in the mesoderm. Development 2024; 151:dev202649. [PMID: 38345319 PMCID: PMC10946440 DOI: 10.1242/dev.202649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
The trunk axial skeleton develops from paraxial mesoderm cells. Our recent study demonstrated that conditional knockout of the stem cell factor Sall4 in mice by TCre caused tail truncation and a disorganized axial skeleton posterior to the lumbar level. Based on this phenotype, we hypothesized that, in addition to the previously reported role of Sall4 in neuromesodermal progenitors, Sall4 is involved in the development of the paraxial mesoderm tissue. Analysis of gene expression and SALL4 binding suggests that Sall4 directly or indirectly regulates genes involved in presomitic mesoderm differentiation, somite formation and somite differentiation. Furthermore, ATAC-seq in TCre; Sall4 mutant posterior trunk mesoderm shows that Sall4 knockout reduces chromatin accessibility. We found that Sall4-dependent open chromatin status drives activation and repression of WNT signaling activators and repressors, respectively, to promote WNT signaling. Moreover, footprinting analysis of ATAC-seq data suggests that Sall4-dependent chromatin accessibility facilitates CTCF binding, which contributes to the repression of neural genes within the mesoderm. This study unveils multiple mechanisms by which Sall4 regulates paraxial mesoderm development by directing activation of mesodermal genes and repression of neural genes.
Collapse
Affiliation(s)
- Matthew P. Pappas
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dylan Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine Q. Chen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Earl Parker Scott
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia Wong
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Micah D. Gearhart
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yasushi Nakagawa
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Roth G, Misailidis G, Pappa M, Ferralli J, Tsiairis CD. Unidirectional and phase-gated signaling synchronizes murine presomitic mesoderm cells. Dev Cell 2023:S1534-5807(23)00155-7. [PMID: 37098349 DOI: 10.1016/j.devcel.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 01/06/2023] [Accepted: 04/01/2023] [Indexed: 04/27/2023]
Abstract
Oscillator systems achieve synchronization when oscillators are coupled. The presomitic mesoderm is a system of cellular oscillators, where coordinated genetic activity is necessary for proper periodic generation of somites. While Notch signaling is required for the synchronization of these cells, it is unclear what information the cells exchange and how they react to this information to align their oscillatory pace with that of their neighbors. Combining mathematical modeling and experimental data, we found that interaction between murine presomitic mesoderm cells is controlled by a phase-gated and unidirectional coupling mechanism and results in deceleration of their oscillation pace upon Notch signaling. This mechanism predicts that isolated populations of well-mixed cells synchronize, revealing a stereotypical synchronization in the mouse PSM and contradicting expectations from previously applied theoretical approaches. Collectively, our theoretical and experimental findings reveal the underlying coupling mechanisms of the presomitic mesoderm cells and provide a framework to quantitatively characterize their synchronization.
Collapse
Affiliation(s)
- Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Georgios Misailidis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Maria Pappa
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Jacqueline Ferralli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Charisios D Tsiairis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
5
|
Uriu K, Morelli LG. Orchestration of tissue shape changes and gene expression patterns in development. Semin Cell Dev Biol 2023; 147:24-33. [PMID: 36631335 DOI: 10.1016/j.semcdb.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
In development, tissue shape changes and gene expression patterns give rise to morphogenesis. Understanding tissue shape changes requires the analysis of mechanical properties of the tissue such as tissue rigidity, cell influx from neighboring tissues, cell shape changes and cell proliferation. Local and global gene expression patterns can be influenced by neighbor exchange and tissue shape changes. Here we review recent studies on the mechanisms for tissue elongation and its influences on dynamic gene expression patterns by focusing on vertebrate somitogenesis. We first introduce mechanical and biochemical properties of the segmenting tissue that drive tissue elongation. Then, we discuss patterning in the presence of cell mixing, scaling of signaling gradients, and dynamic phase waves of rhythmic gene expression under tissue shape changes. We also highlight the importance of theoretical approaches to address the relation between tissue shape changes and patterning.
Collapse
Affiliation(s)
- Koichiro Uriu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 Japan.
| | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina; Departamento de Física, FCEyN UBA, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
| |
Collapse
|
6
|
Blatnik MC, Gallagher TL, Amacher SL. Keeping development on time: Insights into post-transcriptional mechanisms driving oscillatory gene expression during vertebrate segmentation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1751. [PMID: 35851751 PMCID: PMC9840655 DOI: 10.1002/wrna.1751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 01/31/2023]
Abstract
Biological time keeping, or the duration and tempo at which biological processes occur, is a phenomenon that drives dynamic molecular and morphological changes that manifest throughout many facets of life. In some cases, the molecular mechanisms regulating the timing of biological transitions are driven by genetic oscillations, or periodic increases and decreases in expression of genes described collectively as a "molecular clock." In vertebrate animals, molecular clocks play a crucial role in fundamental patterning and cell differentiation processes throughout development. For example, during early vertebrate embryogenesis, the segmentation clock regulates the patterning of the embryonic mesoderm into segmented blocks of tissue called somites, which later give rise to axial skeletal muscle and vertebrae. Segmentation clock oscillations are characterized by rapid cycles of mRNA and protein expression. For segmentation clock oscillations to persist, the transcript and protein molecules of clock genes must be short-lived. Faithful, rhythmic, genetic oscillations are sustained by precise regulation at many levels, including post-transcriptional regulation, and such mechanisms are essential for proper vertebrate development. This article is categorized under: RNA Export and Localization > RNA Localization RNA Turnover and Surveillance > Regulation of RNA Stability Translation > Regulation.
Collapse
Affiliation(s)
- Monica C. Blatnik
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, 43210-1132, United States
| | - Thomas L. Gallagher
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, 43210-1132, United States
| | - Sharon L. Amacher
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, 43210-1132, United States
| |
Collapse
|
7
|
Schlosser G. Rebuilding ships while at sea-Character individuality, homology, and evolutionary innovation. J Morphol 2023; 284:e21522. [PMID: 36282954 PMCID: PMC10100095 DOI: 10.1002/jmor.21522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/15/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
How novel traits originate in evolution is still one of the most perplexing questions in Evolutionary Biology. Building on a previous account of evolutionary innovation, I here propose that evolutionary novelties are those individualized characters that are not homologous to any characters in the ancestor. To clarify this definition, I here provide a detailed analysis of the concepts of "character individuality" and "homology" first, before addressing their role for our understanding of evolutionary innovation. I will argue (1) that functional as well as structural considerations are important for character individualization; and (2) that compositional (structural) and positional homology need to be clearly distinguished to properly describe the evolutionary transformations of hierarchically structured characters. My account will therefore integrate functional and structural perspectives and put forward a new multi-level view of character identity and transformation.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
8
|
Nian FS, Hou PS. Evolving Roles of Notch Signaling in Cortical Development. Front Neurosci 2022; 16:844410. [PMID: 35422684 PMCID: PMC9001970 DOI: 10.3389/fnins.2022.844410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 01/09/2023] Open
Abstract
Expansion of the neocortex is thought to pave the way toward acquisition of higher cognitive functions in mammals. The highly conserved Notch signaling pathway plays a crucial role in this process by regulating the size of the cortical progenitor pool, in part by controlling the balance between self-renewal and differentiation. In this review, we introduce the components of Notch signaling pathway as well as the different mode of molecular mechanisms, including trans- and cis-regulatory processes. We focused on the recent findings with regard to the expression pattern and levels in regulating neocortical formation in mammals and its interactions with other known signaling pathways, including Slit–Robo signaling and Shh signaling. Finally, we review the functions of Notch signaling pathway in different species as well as other developmental process, mainly somitogenesis, to discuss how modifications to the Notch signaling pathway can drive the evolution of the neocortex.
Collapse
Affiliation(s)
- Fang-Shin Nian
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Shan Hou
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Pei-Shan Hou,
| |
Collapse
|
9
|
Nóbrega A, Maia-Fernandes AC, Andrade RP. Altered Cogs of the Clock: Insights into the Embryonic Etiology of Spondylocostal Dysostosis. J Dev Biol 2021; 9:5. [PMID: 33572886 PMCID: PMC7930992 DOI: 10.3390/jdb9010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/23/2023] Open
Abstract
Spondylocostal dysostosis (SCDO) is a rare heritable congenital condition, characterized by multiple severe malformations of the vertebrae and ribs. Great advances were made in the last decades at the clinical level, by identifying the genetic mutations underlying the different forms of the disease. These were matched by extraordinary findings in the Developmental Biology field, which elucidated the cellular and molecular mechanisms involved in embryo body segmentation into the precursors of the axial skeleton. Of particular relevance was the discovery of the somitogenesis molecular clock that controls the progression of somite boundary formation over time. An overview of these concepts is presented, including the evidence obtained from animal models on the embryonic origins of the mutant-dependent disease. Evidence of an environmental contribution to the severity of the disease is discussed. Finally, a brief reference is made to emerging in vitro models of human somitogenesis which are being employed to model the molecular and cellular events occurring in SCDO. These represent great promise for understanding this and other human diseases and for the development of more efficient therapeutic approaches.
Collapse
Affiliation(s)
- Ana Nóbrega
- CBMR, Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal; (A.N.); (A.C.M.-F.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana C. Maia-Fernandes
- CBMR, Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal; (A.N.); (A.C.M.-F.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Raquel P. Andrade
- CBMR, Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal; (A.N.); (A.C.M.-F.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
10
|
Anderson MJ, Magidson V, Kageyama R, Lewandoski M. Fgf4 maintains Hes7 levels critical for normal somite segmentation clock function. eLife 2020; 9:55608. [PMID: 33210601 PMCID: PMC7717904 DOI: 10.7554/elife.55608] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
During vertebrate development, the presomitic mesoderm (PSM) periodically segments into somites, which will form the segmented vertebral column and associated muscle, connective tissue, and dermis. The periodicity of somitogenesis is regulated by a segmentation clock of oscillating Notch activity. Here, we examined mouse mutants lacking only Fgf4 or Fgf8, which we previously demonstrated act redundantly to prevent PSM differentiation. Fgf8 is not required for somitogenesis, but Fgf4 mutants display a range of vertebral defects. We analyzed Fgf4 mutants by quantifying mRNAs fluorescently labeled by hybridization chain reaction within Imaris-based volumetric tissue subsets. These data indicate that FGF4 maintains Hes7 levels and normal oscillatory patterns. To support our hypothesis that FGF4 regulates somitogenesis through Hes7, we demonstrate genetic synergy between Hes7 and Fgf4, but not with Fgf8. Our data indicate that Fgf4 is potentially important in a spectrum of human Segmentation Defects of the Vertebrae caused by defective Notch oscillations.
Collapse
Affiliation(s)
- Matthew J Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, United States
| |
Collapse
|
11
|
A continuation method for spatially discretized models with nonlocal interactions conserving size and shape of cells and lattices. J Math Biol 2020; 81:981-1028. [PMID: 32959067 PMCID: PMC7560951 DOI: 10.1007/s00285-020-01534-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/15/2020] [Indexed: 11/18/2022]
Abstract
In this paper, we introduce a continuation method for the spatially discretized models, while conserving the size and shape of the cells and lattices. This proposed method is realized using the shift operators and nonlocal operators of convolution types. Through this method and using the shift operator, the nonlinear spatially discretized model on the uniform and nonuniform lattices can be systematically converted into a spatially continuous model; this renders both models point-wisely equivalent. Moreover, by the convolution with suitable kernels, we mollify the shift operator and approximate the spatially discretized models using the nonlocal evolution equations, rendering suitable for the application in both experimental and mathematical analyses. We also demonstrate that this approximation is supported by the singular limit analysis, and that the information of the lattice and cells is expressed in the shift and nonlocal operators. The continuous models designed using our method can successfully replicate the patterns corresponding to those of the original spatially discretized models obtained from the numerical simulations. Furthermore, from the observations of the isotropy of the Delta–Notch signaling system in a developing real fly brain, we propose a radially symmetric kernel for averaging the cell shape using our continuation method. We also apply our method for cell division and proliferation to spatially discretized models of the differentiation wave and describe the discrete models on the sphere surface. Finally, we demonstrate an application of our method in the linear stability analysis of the planar cell polarity model.
Collapse
|
12
|
Likhoshvai VA, Golubyatnikov VP, Khlebodarova TM. Limit cycles in models of circular gene networks regulated by negative feedback loops. BMC Bioinformatics 2020; 21:255. [PMID: 32921311 PMCID: PMC7488683 DOI: 10.1186/s12859-020-03598-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The regulatory feedback loops that present in structural and functional organization of molecular-genetic systems and the phenomenon of the regulatory signal delay, a time period between the moment of signal reception and its implementation, provide natural conditions for complicated dynamic regimes in these systems. The delay phenomenon at the intracellular level is a consequence of the matrix principle of data transmission, implemented through the rather complex processes of transcription and translation.However, the rules of the influence of system structure on system dynamics are not clearly understood. Knowledge of these rules is particularly important for construction of synthetic gene networks with predetermined properties. RESULTS We study dynamical properties of models of simplest circular gene networks regulated by negative feedback mechanisms. We have shown existence and stability of oscillating trajectories (cycles) in these models. Two algorithms of construction and localization of these cycles have been proposed. For one of these models, we have solved an inverse problem of parameters identification. CONCLUSIONS The modeling results demonstrate that non-stationary dynamics in the models of circular gene networks with negative feedback loops is achieved by a high degree of non-linearity of the mechanism of the autorepressor influence on its own expression, by the presence of regulatory signal delay, the value of which must exceed a certain critical value, and transcription/translation should be initiated from a sufficiently strong promoter/Shine-Dalgarno site. We believe that the identified patterns are key elements of the oscillating construction design.
Collapse
Affiliation(s)
- Vitaly A Likhoshvai
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch RAS, Novosibirsk, Russia
| | - Vladimir P Golubyatnikov
- Laboratory of Inverse Problems of Mathematical Physics, Sobolev Institute of Mathematics Siberian Branch RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| | - Tamara M Khlebodarova
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
13
|
Tietz KT, Gallagher TL, Mannings MC, Morrow ZT, Derr NL, Amacher SL. Pumilio response and AU-rich elements drive rapid decay of Pnrc2-regulated cyclic gene transcripts. Dev Biol 2020; 462:129-140. [PMID: 32246943 DOI: 10.1016/j.ydbio.2020.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/18/2020] [Accepted: 03/20/2020] [Indexed: 01/06/2023]
Abstract
Vertebrate segmentation is regulated by the segmentation clock, a biological oscillator that controls periodic formation of somites, or embryonic segments, which give rise to many mesodermal tissue types. This molecular oscillator generates cyclic gene expression with the same periodicity as somite formation in the presomitic mesoderm (PSM), an area of mesenchymal cells that give rise to mature somites. Molecular components of the clock include the Hes/her family of genes that encode transcriptional repressors, but additional genes cycle. Cyclic gene transcripts are cleared rapidly, and clearance depends upon the pnrc2 (proline-rich nuclear receptor co-activator 2) gene that encodes an mRNA decay adaptor. Previously, we showed that the her1 3'UTR confers instability to otherwise stable transcripts in a Pnrc2-dependent manner, however, the molecular mechanism(s) by which cyclic gene transcripts are cleared remained largely unknown. To identify features of the her1 3'UTR that are critical for Pnrc2-mediated decay, we developed an array of transgenic inducible reporter lines carrying different regions of the 3'UTR. We find that the terminal 179 nucleotides (nts) of the her1 3'UTR are necessary and sufficient to confer rapid instability. Additionally, we show that the 3'UTR of another cyclic gene, deltaC (dlc), also confers Pnrc2-dependent instability. Motif analysis reveals that both her1 and dlc 3'UTRs contain terminally-located Pumilio response elements (PREs) and AU-rich elements (AREs), and we show that the PRE and ARE in the last 179 nts of the her1 3'UTR drive rapid turnover of reporter mRNA. Finally, we show that mutation of Pnrc2 residues and domains that are known to facilitate interaction of human PNRC2 with decay factors DCP1A and UPF1 reduce the ability of Pnrc2 to restore normal cyclic gene expression in pnrc2 mutant embryos. Our findings suggest that Pnrc2 interacts with decay machinery components and cooperates with Pumilio (Pum) proteins and ARE-binding proteins to promote rapid turnover of cyclic gene transcripts during somitogenesis.
Collapse
Affiliation(s)
- Kiel T Tietz
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Thomas L Gallagher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Monica C Mannings
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Zachary T Morrow
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicolas L Derr
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharon L Amacher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
14
|
Regulation of Proneural Wave Propagation Through a Combination of Notch-Mediated Lateral Inhibition and EGF-Mediated Reaction Diffusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:77-91. [PMID: 32060872 DOI: 10.1007/978-3-030-34436-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Notch-mediated lateral inhibition regulates binary cell fate choice, resulting in salt-and-pepper pattern formation during various biological processes. In many cases, Notch signaling acts together with other signaling systems. However, it is not clear what happens when Notch signaling is combined with other signaling systems. Mathematical modeling and the use of a simple biological model system will be essential to address this uncertainty. A wave of differentiation in the Drosophila visual center, the "proneural wave," accompanies the activity of the Notch and EGF signaling pathways. Although all of the Notch signaling components required for lateral inhibition are involved in the proneural wave, no salt-and-pepper pattern is found during the progression of the proneural wave. Instead, Notch is activated along the wave front and regulates proneural wave progression. How does Notch signaling control wave propagation without forming a salt-and-pepper pattern? A mathematical model of the proneural wave, based on biological evidence, has demonstrated that Notch-mediated lateral inhibition is implemented within the proneural wave and that the diffusible action of EGF cancels salt-and-pepper pattern formation. The results from numerical simulation have been confirmed by genetic experiments in vivo and suggest that the combination of Notch-mediated lateral inhibition and EGF-mediated reaction diffusion enables a novel function of Notch signaling that regulates propagation of the proneural wave. Similar mechanisms may play important roles in diverse biological processes found in animal development and cancer pathogenesis.
Collapse
|
15
|
Takagi A, Isomura A, Yoshioka-Kobayashi K, Kageyama R. Dynamic Delta-like1 expression in presomitic mesoderm cells during somite segmentation. Gene Expr Patterns 2019; 35:119094. [PMID: 31899345 DOI: 10.1016/j.gep.2019.119094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 12/28/2022]
Abstract
During somite segmentation, the expression of clock genes such as Hes7 oscillates synchronously in the presomitic mesoderm (PSM). This synchronous oscillation slows down in the anterior PSM, leading to wave-like propagating patterns from the posterior to anterior PSM. Such dynamic expression depends on Notch signaling and is critical for somite formation. However, it remains to be determined how slowing oscillations in the anterior PSM are controlled, and whether the expression of the Notch ligand Delta-like1 (Dll1) oscillates on the surface of individual PSM cells, as postulated to be responsible for synchronous oscillation. Here, by using Dll1 fluorescent reporter mice, we performed live-imaging of Dll1 expression in PSM cells and found the oscillatory expression of Dll1 protein on the cell surface regions. Furthermore, a comparison of live-imaging of Dll1 and Hes7 oscillations revealed that the delay from Dll1 peaks to Hes7 peaks increased in the anterior PSM, suggesting that the Hes7 response to Dll1 becomes slower in the anterior PSM. These results raise the possibility that Dll1 protein oscillations on the cell surface regulate synchronous Hes7 oscillations, and that the slower response of Hes7 to Dll1 leads to slower oscillations in the anterior PSM.
Collapse
Affiliation(s)
- Akari Takagi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Akihiro Isomura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Kumiko Yoshioka-Kobayashi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
16
|
Baron JW, Galla T. Intrinsic noise, Delta-Notch signalling and delayed reactions promote sustained, coherent, synchronized oscillations in the presomitic mesoderm. J R Soc Interface 2019; 16:20190436. [PMID: 31771454 DOI: 10.1098/rsif.2019.0436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Using a stochastic individual-based modelling approach, we examine the role that Delta-Notch signalling plays in the regulation of a robust and reliable somite segmentation clock. We find that not only can Delta-Notch signalling synchronize noisy cycles of gene expression in adjacent cells in the presomitic mesoderm (as is known), but it can also amplify and increase the coherence of these cycles. We examine some of the shortcomings of deterministic approaches to modelling these cycles and demonstrate how intrinsic noise can play an active role in promoting sustained oscillations, giving rise to noise-induced quasi-cycles. Finally, we explore how translational/transcriptional delays can result in the cycles in neighbouring cells oscillating in anti-phase and we study how this effect relates to the propagation of noise-induced stochastic waves.
Collapse
Affiliation(s)
- Joseph W Baron
- Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Tobias Galla
- Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK.,IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
17
|
Ivanov D. Notch Signaling-Induced Oscillatory Gene Expression May Drive Neurogenesis in the Developing Retina. Front Mol Neurosci 2019; 12:226. [PMID: 31607861 PMCID: PMC6761228 DOI: 10.3389/fnmol.2019.00226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022] Open
Abstract
After integrating classic and cutting-edge research, we proposed a unified model that attempts to explain the key steps of mammalian retinal neurogenesis. We proposed that the Notch signaling-induced lateral inhibition mechanism promotes oscillatory expression of Hes1. Oscillating Hes1 inhibitory activity as a result leads to oscillatory expression of Notch signaling inhibitors, activators/inhibitors of retinal neuronal phenotypes, and cell cycle-promoting genes all within a retinal progenitor cell (RPC). We provided a mechanism explaining not only how oscillatory expression prevents the progenitor-to-precursor transition, but also how this transition happens. Our proposal of the mechanism posits that the levels of the above factors not only oscillate but also rise (with the exception of Hes1) as the factors accumulate within a progenitor. Depending on which factors accumulate fastest and reach the required supra-threshold levels (cell cycle activators or Notch signaling inhibitors), the progenitor either proliferates or begins to differentiate without any further proliferation when Notch signaling ceases. Thus, oscillatory gene expression may regulate an RPC's decision to proliferate or differentiate. Meanwhile, a post-mitotic precursor's selection of one retinal neuronal phenotype over many others depends on the expression level of key transcription factors (activators) required for each of these retinal neuronal phenotypes. Because the events described above are stochastic due to oscillatory gene expression and gene product inheritance from a mother RPC after its division, an RPC or precursor's decision requires the assignment of probabilities to specific outcomes in the selection process. While low and sustained (non-oscillatory) Notch signaling activity is required to promote the transition of retinal progenitors into various retinal neuronal phenotypes, we propose that the lateral inhibition mechanism, combined with high expression of the BMP signaling-induced Inhibitor of Differentiation (ID) protein family, promotes high and sustained (non-oscillatory) Hes1 and Hes5 expression. These events facilitate the transition of an RPC into the Müller glia (MG) phenotype at the late stage of retinal development.
Collapse
Affiliation(s)
- Dmitry Ivanov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
18
|
An S, Ma L, Wan L. TSEE: an elastic embedding method to visualize the dynamic gene expression patterns of time series single-cell RNA sequencing data. BMC Genomics 2019; 20:224. [PMID: 30967106 PMCID: PMC6456934 DOI: 10.1186/s12864-019-5477-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Time series single-cell RNA sequencing (scRNA-seq) data are emerging. However, the analysis of time series scRNA-seq data could be compromised by 1) distortion created by assorted sources of data collection and generation across time samples and 2) inheritance of cell-to-cell variations by stochastic dynamic patterns of gene expression. This calls for the development of an algorithm able to visualize time series scRNA-seq data in order to reveal latent structures and uncover dynamic transition processes. RESULTS In this study, we propose an algorithm, termed time series elastic embedding (TSEE), by incorporating experimental temporal information into the elastic embedding (EE) method, in order to visualize time series scRNA-seq data. TSEE extends the EE algorithm by penalizing the proximal placement of latent points that correspond to data points otherwise separated by experimental time intervals. TSEE is herein used to visualize time series scRNA-seq datasets of embryonic developmental processed in human and zebrafish. We demonstrate that TSEE outperforms existing methods (e.g. PCA, tSNE and EE) in preserving local and global structures as well as enhancing the temporal resolution of samples. Meanwhile, TSEE reveals the dynamic oscillation patterns of gene expression waves during zebrafish embryogenesis. CONCLUSIONS TSEE can efficiently visualize time series scRNA-seq data by diluting the distortions of assorted sources of data variation across time stages and achieve the temporal resolution enhancement by preserving temporal order and structure. TSEE uncovers the subtle dynamic structures of gene expression patterns, facilitating further downstream dynamic modeling and analysis of gene expression processes. The computational framework of TSEE is generalizable by allowing the incorporation of other sources of information.
Collapse
Affiliation(s)
- Shaokun An
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Liang Ma
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Lin Wan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
19
|
Fujino Y, Yamada K, Sugaya C, Ooka Y, Ovara H, Ban H, Akama K, Otosaka S, Kinoshita H, Yamasu K, Mishima Y, Kawamura A. Deadenylation by the CCR4-NOT complex contributes to the turnover of hairy-related mRNAs in the zebrafish segmentation clock. FEBS Lett 2018; 592:3388-3398. [PMID: 30281784 DOI: 10.1002/1873-3468.13261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 01/09/2023]
Abstract
In the zebrafish segmentation clock, hairy/enhancer of split-related genes her1, her7, and hes6 encodes components of core oscillators. Since the expression of cyclic genes proceeds rapidly in the presomitic mesoderm (PSM), these hairy-related mRNAs are subject to strict post-transcriptional regulation. In this study, we demonstrate that inhibition of the CCR4-NOT deadenylase complex lengthens poly(A) tails of hairy-related mRNAs and increases the amount of these mRNAs, which is accompanied by defective somite segmentation. In transgenic embryos, we show that EGFP mRNAs with 3'UTRs of hairy-related genes exhibit turnover similar to endogenous mRNAs. Our results suggest that turnover rates of her1, her7, and hes6 mRNAs are differently regulated by the CCR4-NOT deadenylase complex possibly through their 3'UTRs in the zebrafish PSM.
Collapse
Affiliation(s)
- Yuuri Fujino
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Kazuya Yamada
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Chihiro Sugaya
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Yuko Ooka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Hiroki Ovara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Hiroyuki Ban
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Kagari Akama
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Shiori Otosaka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Hirofumi Kinoshita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Yuichiro Mishima
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Japan
| | - Akinori Kawamura
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| |
Collapse
|
20
|
Wittmann G, Lechan RM. Prss56 expression in the rodent hypothalamus: Inverse correlation with pro-opiomelanocortin suggests oscillatory gene expression in adult rat tanycytes. J Comp Neurol 2018; 526:2444-2461. [PMID: 30242838 DOI: 10.1002/cne.24504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/27/2018] [Accepted: 07/12/2018] [Indexed: 11/11/2022]
Abstract
We recently reported that the number of hypothalamic tanycytes expressing pro-opiomelanocortin (Pomc) is highly variable among brains of adult rats. While its cause and significance remain unknown, identifying other variably expressed genes in tanycytes may help understand this curious phenomenon. In this in situ hybridization study, we report that the Prss56 gene, which encodes a trypsin-like serine protease and is expressed in neural stem/progenitor cells, shows a similarly variable mRNA expression in tanycytes of adult rats and correlates inversely with tanycyte Pomc mRNA. Prss56 was expressed in α1, β1, subsets of α2, and some median eminence γ tanycytes, but virtually absent from β2 tanycytes. Prss56 was also expressed in vimentin positive tanycyte-like cells in the parenchyma of the ventromedial and arcuate nuclei, and in thyrotropin beta subunit-expressing cells of the pars tuberalis of the pituitary. In contrast to adults, Prss56 expression was uniformly high in tanycytes in adolescent rats. In mice, Prss56-expressing tanycytes and parenchymal cells were also observed but fewer in number and without significant variations. The results identify Prss56 as a second gene that is expressed variably in tanycytes of adult rats. We propose that the variable, inversely correlating expression of Prss56 and Pomc reflect periodically oscillating gene expression in tanycytes rather than stable expression levels that vary between individual rats. A possible functional link between Prss56 and POMC, and Prss56 as a potential marker for migrating tanycytes are discussed.
Collapse
Affiliation(s)
- Gábor Wittmann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Ronald M Lechan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts.,Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
21
|
Functional roles of the Ripply-mediated suppression of segmentation gene expression at the anterior presomitic mesoderm in zebrafish. Mech Dev 2018; 152:21-31. [PMID: 29879477 DOI: 10.1016/j.mod.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/02/2018] [Indexed: 01/06/2023]
Abstract
Somites sequentially form with a regular interval by the segmentation from the anterior region of the presomitic mesoderm (PSM). The expression of several genes involved in the somite segmentation is switched off at the transition from the anterior PSM to somites. Zebrafish Ripply1, which down-regulates a T-box transcription factor Tbx6, is required for the suppression of segmentation gene expression. However, the functional roles of the Ripply-mediated suppression of segmentation gene expression at the anterior PSM remain elusive. In this study, we generated ripply1 mutants and examined genetic interaction between ripply1/2 and tbx6. Zebrafish ripply1-/- embryos failed to form the somite boundaries as was observed in knockdown embryos. We found that somite segmentation defects in ripply1 mutants were suppressed by heterozygous mutation of tbx6 or partial translational inhibition of tbx6 by antisense morpholino. We further showed that somite boundaries that were recovered in tbx6+/-; ripply1-/- embryos were dependent on the function of ripply2, indicating that relative gene dosage between ripply1/2 and tbx6 plays a critical role in the somite formation. Interestingly, the expression of segmentation genes such mesp as was still not fully suppressed at the anterior PSM of tbx6+/-; ripply1-/- embryos although the somite formation and rostral-caudal polarity of somites were properly established. Furthermore, impaired myogenesis was observed in the segmented somites in tbx6+/-; ripply1-/- embryos. These results revealed that partial suppression of the segmentation gene expression by Ripply is sufficient to establish the rostral-caudal polarity of somites, and that stronger suppression of the segmentation gene expression by Ripply is required for proper myogenesis in zebrafish embryos.
Collapse
|
22
|
Hemmi N, Akiyama-Oda Y, Fujimoto K, Oda H. A quantitative study of the diversity of stripe-forming processes in an arthropod cell-based field undergoing axis formation and growth. Dev Biol 2018; 437:84-104. [DOI: 10.1016/j.ydbio.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 12/25/2022]
|
23
|
Bigas A, Porcheri C. Notch and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:235-263. [DOI: 10.1007/978-3-319-89512-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Illuminating information transfer in signaling dynamics by optogenetics. Curr Opin Cell Biol 2017; 49:9-15. [DOI: 10.1016/j.ceb.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 11/18/2022]
|
25
|
Petrungaro G, Uriu K, Morelli LG. Mobility-induced persistent chimera states. Phys Rev E 2017; 96:062210. [PMID: 29347445 DOI: 10.1103/physreve.96.062210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 06/07/2023]
Abstract
We study the dynamics of mobile, locally coupled identical oscillators in the presence of coupling delays. We find different kinds of chimera states in which coherent in-phase and antiphase domains coexist with incoherent domains. These chimera states are dynamic and can persist for long times for intermediate mobility values. We discuss the mechanisms leading to the formation of these chimera states in different mobility regimes. This finding could be relevant for natural and technological systems composed of mobile communicating agents.
Collapse
Affiliation(s)
- Gabriela Petrungaro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, Buenos Aires C1425FQD, Argentina
- Departamento de Física, FCEyN UBA, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Koichiro Uriu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, Buenos Aires C1425FQD, Argentina
- Departamento de Física, FCEyN UBA, Ciudad Universitaria, Buenos Aires 1428, Argentina
- Max Planck Institute for Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Strasse 11, Dortmund D-44227, Germany
| |
Collapse
|
26
|
|
27
|
Uriu K, Morelli LG. Determining the impact of cell mixing on signaling during development. Dev Growth Differ 2017. [PMID: 28627749 DOI: 10.1111/dgd.12366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cell movement and intercellular signaling occur simultaneously to organize morphogenesis during embryonic development. Cell movement can cause relative positional changes between neighboring cells. When intercellular signals are local such cell mixing may affect signaling, changing the flow of information in developing tissues. Little is known about the effect of cell mixing on intercellular signaling in collective cellular behaviors and methods to quantify its impact are lacking. Here we discuss how to determine the impact of cell mixing on cell signaling drawing an example from vertebrate embryogenesis: the segmentation clock, a collective rhythm of interacting genetic oscillators. We argue that comparing cell mixing and signaling timescales is key to determining the influence of mixing. A signaling timescale can be estimated by combining theoretical models with cell signaling perturbation experiments. A mixing timescale can be obtained by analysis of cell trajectories from live imaging. After comparing cell movement analyses in different experimental settings, we highlight challenges in quantifying cell mixing from embryonic timelapse experiments, especially a reference frame problem due to embryonic motions and shape changes. We propose statistical observables characterizing cell mixing that do not depend on the choice of reference frames. Finally, we consider situations in which both cell mixing and signaling involve multiple timescales, precluding a direct comparison between single characteristic timescales. In such situations, physical models based on observables of cell mixing and signaling can simulate the flow of information in tissues and reveal the impact of observed cell mixing on signaling.
Collapse
Affiliation(s)
- Koichiro Uriu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina.,Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.,Departamento de Física, FCEyN, UBA, Pabellon 1, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| |
Collapse
|
28
|
Rauwerda H, Pagano JFB, de Leeuw WC, Ensink W, Nehrdich U, de Jong M, Jonker M, Spaink HP, Breit TM. Transcriptome dynamics in early zebrafish embryogenesis determined by high-resolution time course analysis of 180 successive, individual zebrafish embryos. BMC Genomics 2017; 18:287. [PMID: 28399811 PMCID: PMC5387192 DOI: 10.1186/s12864-017-3672-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/29/2017] [Indexed: 02/08/2023] Open
Abstract
Background Recently, much progress has been made in the field of gene-expression in early embryogenesis. However, the dynamic behaviour of transcriptomes in individual embryos has hardly been studied yet and the time points at which pools of embryos are collected are usually still quite far apart. Here, we present a high-resolution gene-expression time series with 180 individual zebrafish embryos, obtained from nine different spawns, developmentally ordered and profiled from late blastula to mid-gastrula stage. On average one embryo per minute was analysed. The focus was on identification and description of the transcriptome dynamics of the expressed genes in this embryonic stage, rather than to biologically interpret profiles in cellular processes and pathways. Results In the late blastula to mid-gastrula stage, we found 6,734 genes being expressed with low variability and rather gradual changes. Ten types of dynamic behaviour were defined, such as genes with continuously increasing or decreasing expression, and all expressed genes were grouped into these types. Also, the exact expression starting and stopping points of several hundred genes during this developmental period could be pinpointed. Although the resolution of the experiment was so high, that we were able to clearly identify four known oscillating genes, no genes were observed with a peaking expression. Additionally, several genes showed expression at two or three distinct levels that strongly related to the spawn an embryo originated from. Conclusion Our unique experimental set-up of whole-transcriptome analysis of 180 individual embryos, provided an unparalleled in-depth insight into the dynamics of early zebrafish embryogenesis. The existence of a tightly regulated embryonic transcriptome program, even between individuals from different spawns is shown. We have made the expression profile of all genes available for domain experts. The fact that we were able to separate the different spawns by their gene-expression variance over all expressed genes, underlines the importance of spawn specificity, as well as the unexpectedly tight gene-expression regulation in early zebrafish embryogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3672-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Han Rauwerda
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna F B Pagano
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim C de Leeuw
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim Ensink
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrike Nehrdich
- Institute Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Mark de Jong
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,Present address: GenomeScan B.V., Plesmanlaan, Leiden, The Netherlands
| | - Martijs Jonker
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Herman P Spaink
- Institute Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Timo M Breit
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands. .,Institute Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands. .,MAD/AB&RB, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Abstract
In the developing vertebrate embryo, segmentation initiates through the formation of repeated segments, or somites, on either side of the posterior neural tube along the anterior to posterior axis. The periodicity of somitogenesis is regulated by a molecular oscillator, the segmentation clock, driving cyclic gene expression in the unsegmented paraxial mesoderm, from which somites derive. Three signaling pathways underlie the molecular mechanism of the oscillator: Wnt, FGF, and Notch. In particular, Notch has been demonstrated to be an essential piece in the intricate somitogenesis regulation puzzle. Notch is required to synchronize oscillations between neighboring cells, and is moreover necessary for somite formation and clock gene oscillations. Following ligand activation, the Notch receptor is cleaved to liberate the active intracellular domain (NICD) and during somitogenesis NICD itself is produced and degraded in a cyclical manner, requiring tightly regulated, and coordinated turnover. It was recently shown that the pace of the segmentation clock is exquisitely sensitive to levels/stability of NICD. In this review, we focus on what is known about the mechanisms regulating NICD turnover, crucial to the activity of the pathway in all developmental contexts. To date, the regulation of NICD stability has been attributed to phosphorylation of the PEST domain which serves to recruit the SCF/Sel10/FBXW7 E3 ubiquitin ligase complex involved in NICD turnover. We will describe the pathophysiological relevance of NICD-FBXW7 interaction, whose defects have been linked to leukemia and a variety of solid cancers.
Collapse
Affiliation(s)
- Francesca A Carrieri
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee Dundee, UK
| | - Jacqueline Kim Dale
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee Dundee, UK
| |
Collapse
|
30
|
Velaithan V, Okuda KS, Ng MF, Samat N, Leong SW, Faudzi SMM, Abas F, Shaari K, Cheong SC, Tan PJ, Patel V. Zebrafish phenotypic screen identifies novel Notch antagonists. Invest New Drugs 2017; 35:166-179. [PMID: 28058624 DOI: 10.1007/s10637-016-0423-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/28/2016] [Indexed: 12/15/2022]
Abstract
Zebrafish represents a powerful in vivo model for phenotype-based drug discovery to identify clinically relevant small molecules. By utilizing this model, we evaluated natural product derived compounds that could potentially modulate Notch signaling that is important in both zebrafish embryogenesis and pathogenic in human cancers. A total of 234 compounds were screened using zebrafish embryos and 3 were identified to be conferring phenotypic alterations similar to embryos treated with known Notch inhibitors. Subsequent secondary screens using HEK293T cells overexpressing truncated Notch1 (HEK293TΔE) identified 2 compounds, EDD3 and 3H4MB, to be potential Notch antagonists. Both compounds reduced protein expression of NOTCH1, Notch intracellular domain (NICD) and hairy and enhancer of split-1 (HES1) in HEK293TΔE and downregulated Notch target genes. Importantly, EDD3 treatment of human oral cancer cell lines demonstrated reduction of Notch target proteins and genes. EDD3 also inhibited proliferation and induced G0/G1 cell cycle arrest of ORL-150 cells through inducing p27KIP1. Our data demonstrates the utility of the zebrafish phenotypic screen and identifying EDD3 as a promising Notch antagonist for further development as a novel therapeutic agent.
Collapse
Affiliation(s)
- Vithya Velaithan
- Cancer Research Malaysia, 12A, Jalan TP5, Taman Perindustrian UEP, 47600, Subang Jaya, Malaysia
| | - Kazuhide Shaun Okuda
- Cancer Research Malaysia, 12A, Jalan TP5, Taman Perindustrian UEP, 47600, Subang Jaya, Malaysia
| | - Mei Fong Ng
- Cancer Research Malaysia, 12A, Jalan TP5, Taman Perindustrian UEP, 47600, Subang Jaya, Malaysia
| | - Norazwana Samat
- Cancer Research Malaysia, 12A, Jalan TP5, Taman Perindustrian UEP, 47600, Subang Jaya, Malaysia
| | - Sze Wei Leong
- Laboratory of Natural Products, Institute of Bioscience Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Siti Munirah Mohd Faudzi
- Laboratory of Natural Products, Institute of Bioscience Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sok Ching Cheong
- Cancer Research Malaysia, 12A, Jalan TP5, Taman Perindustrian UEP, 47600, Subang Jaya, Malaysia
| | - Pei Jean Tan
- Cancer Research Malaysia, 12A, Jalan TP5, Taman Perindustrian UEP, 47600, Subang Jaya, Malaysia
| | - Vyomesh Patel
- Cancer Research Malaysia, 12A, Jalan TP5, Taman Perindustrian UEP, 47600, Subang Jaya, Malaysia.
| |
Collapse
|
31
|
Time to Decide? Dynamical Analysis Predicts Partial Tip/Stalk Patterning States Arise during Angiogenesis. PLoS One 2016; 11:e0166489. [PMID: 27846305 PMCID: PMC5113036 DOI: 10.1371/journal.pone.0166489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
Angiogenesis is a highly dynamic morphogenesis process; however, surprisingly little is known about the timing of the different molecular processes involved. Although the role of the VEGF-notch-DLL4 signaling pathway has been established as essential for tip/stalk cell competition during sprouting, the speed and dynamic properties of the underlying process at the individual cell level has not been fully elucidated. In this study, using mathematical modeling we investigate how specific, biologically meaningful, local conditions around and within an individual cell can influence their unique tip/stalk phenotype switching kinetics. To this end we constructed an ordinary differential equation model of VEGF-notch-DLL4 signaling in a system of two, coupled endothelial cells (EC). Our studies reveal that at any given point in an angiogenic vessel the time it takes a cell to decide to take on a tip or stalk phenotype may be drastically different, and this asynchrony of tip/stalk cell decisions along vessels itself acts to speed up later competitions. We unexpectedly uncover intermediate "partial" yet stable states lying between the tip and stalk cell fates, and identify that internal cellular factors, such as NAD-dependent deacetylase sirtuin-1 (Sirt1) and Lunatic fringe 1 (Lfng1), can specifically determine the length of time a cell spends in these newly identified partial tip/stalk states. Importantly, the model predicts that these partial EC states can arise during normal angiogenesis, in particular during cell rearrangement in sprouts, providing a novel two-stage mechanism for rapid adaptive behavior to the cells highly dynamic environment. Overall, this study demonstrates that different factors (both internal and external to EC) can be used to modulate the speed of tip/stalk decisions, opening up new opportunities and challenges for future biological experiments and therapeutic targeting to manipulate vascular network topology, and our basic understanding of developmental/pathological angiogenesis.
Collapse
|
32
|
A comprehensive transcriptomic analysis of differentiating embryonic stem cells in response to the overexpression of Mesogenin 1. Aging (Albany NY) 2016; 8:2324-2336. [PMID: 27713115 PMCID: PMC5115891 DOI: 10.18632/aging.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 09/22/2016] [Indexed: 11/25/2022]
Abstract
The mutation of somitogenesis protein Mesogenin 1 (Msgn1) has been widely used to study the direct link between somitogenesis and the development of an embryo. Several studies have used gene expression profiling of somitogenesis to identify the key genes in the process, but few have focused on the pathways involved and the coexpression patterns of associated pathways. Here we employed time-course microarray datasets of differentiating embryonic stem cells by overexpressing the transcription factor Msgn1 from the public database library of Gene Expression Omnibus (GEO). Then we applied gene set enrichment analysis (GSEA) to the datasets and performed candidate transcription factors selection. As a result, several significantly regulated pathways and transcription factors (TFs), as well as some of the specific signaling pathways, were identified during somitogenesis under Msgn1 overexpression, most of which had not been reported previously. Finally, significant core genes such as Hes1 and Notch1 as well as some of the TFs such as PPARs and FOXs were identified to construct coexpression networks of related pathways, the expression patterns of which had been validated by our following quantitative real-time PCR (qRT-PCR). The results of our study may help us better understand the molecular mechanisms of somitogenesis in mice at the genome-wide level.
Collapse
|
33
|
Notch-mediated lateral inhibition regulates proneural wave propagation when combined with EGF-mediated reaction diffusion. Proc Natl Acad Sci U S A 2016; 113:E5153-62. [PMID: 27535937 DOI: 10.1073/pnas.1602739113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Notch-mediated lateral inhibition regulates binary cell fate choice, resulting in salt and pepper patterns during various developmental processes. However, how Notch signaling behaves in combination with other signaling systems remains elusive. The wave of differentiation in the Drosophila visual center or "proneural wave" accompanies Notch activity that is propagated without the formation of a salt and pepper pattern, implying that Notch does not form a feedback loop of lateral inhibition during this process. However, mathematical modeling and genetic analysis clearly showed that Notch-mediated lateral inhibition is implemented within the proneural wave. Because partial reduction in EGF signaling causes the formation of the salt and pepper pattern, it is most likely that EGF diffusion cancels salt and pepper pattern formation in silico and in vivo. Moreover, the combination of Notch-mediated lateral inhibition and EGF-mediated reaction diffusion enables a function of Notch signaling that regulates propagation of the wave of differentiation.
Collapse
|
34
|
Multi-Compartmentalisation in the MAPK Signalling Pathway Contributes to the Emergence of Oscillatory Behaviour and to Ultrasensitivity. PLoS One 2016; 11:e0156139. [PMID: 27243235 PMCID: PMC4887093 DOI: 10.1371/journal.pone.0156139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/20/2022] Open
Abstract
Signal transduction through the Mitogen Activated Protein Kinase (MAPK) pathways is evolutionarily highly conserved. Many cells use these pathways to interpret changes to their environment and respond accordingly. The pathways are central to triggering diverse cellular responses such as survival, apoptosis, differentiation and proliferation. Though the interactions between the different MAPK pathways are complex, nevertheless, they maintain a high level of fidelity and specificity to the original signal. There are numerous theories explaining how fidelity and specificity arise within this complex context; spatio-temporal regulation of the pathways and feedback loops are thought to be very important. This paper presents an agent based computational model addressing multi-compartmentalisation and how this influences the dynamics of MAPK cascade activation. The model suggests that multi-compartmentalisation coupled with periodic MAPK kinase (MAPKK) activation may be critical factors for the emergence of oscillation and ultrasensitivity in the system. Finally, the model also establishes a link between the spatial arrangements of the cascade components and temporal activation mechanisms, and how both contribute to fidelity and specificity of MAPK mediated signalling.
Collapse
|
35
|
Astudillo L, Da Silva TG, Wang Z, Han X, Jin K, VanWye J, Zhu X, Weaver K, Oashi T, Lopes PEM, Orton D, Neitzel LR, Lee E, Landgraf R, Robbins DJ, MacKerell AD, Capobianco AJ. The Small Molecule IMR-1 Inhibits the Notch Transcriptional Activation Complex to Suppress Tumorigenesis. Cancer Res 2016; 76:3593-603. [PMID: 27197169 DOI: 10.1158/0008-5472.can-16-0061] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/30/2016] [Indexed: 12/17/2022]
Abstract
In many cancers, aberrant Notch activity has been demonstrated to play a role in the initiation and maintenance of the neoplastic phenotype and in cancer stem cells, which may allude to its additional involvement in metastasis and resistance to therapy. Therefore, Notch is an exceedingly attractive therapeutic target in cancer, but the full range of potential targets within the pathway has been underexplored. To date, there are no small-molecule inhibitors that directly target the intracellular Notch pathway or the assembly of the transcriptional activation complex. Here, we describe an in vitro assay that quantitatively measures the assembly of the Notch transcriptional complex on DNA. Integrating this approach with computer-aided drug design, we explored potential ligand-binding sites and screened for compounds that could disrupt the assembly of the Notch transcriptional activation complex. We identified a small-molecule inhibitor, termed Inhibitor of Mastermind Recruitment-1 (IMR-1), that disrupted the recruitment of Mastermind-like 1 to the Notch transcriptional activation complex on chromatin, thereby attenuating Notch target gene transcription. Furthermore, IMR-1 inhibited the growth of Notch-dependent cell lines and significantly abrogated the growth of patient-derived tumor xenografts. Taken together, our findings suggest that a novel class of Notch inhibitors targeting the transcriptional activation complex may represent a new paradigm for Notch-based anticancer therapeutics, warranting further preclinical characterization. Cancer Res; 76(12); 3593-603. ©2016 AACR.
Collapse
Affiliation(s)
- Luisana Astudillo
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, Florida. Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Thiago G Da Silva
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, Florida. Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Zhiqiang Wang
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, Florida. Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Xiaoqing Han
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, Florida. Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ke Jin
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, Florida. Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Jeffrey VanWye
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, Florida. Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Xiaoxia Zhu
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, Florida. Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Kelly Weaver
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, Florida. Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Taiji Oashi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Pedro E M Lopes
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | | | - Leif R Neitzel
- Department of Cell and Developmental Biology and Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ethan Lee
- Department of Cell and Developmental Biology and Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ralf Landgraf
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida. Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida
| | - David J Robbins
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, Florida. Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Anthony J Capobianco
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, Florida. Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.
| |
Collapse
|
36
|
Janssen R, Budd GE. Gene expression analysis reveals that Delta/Notch signalling is not involved in onychophoran segmentation. Dev Genes Evol 2016; 226:69-77. [PMID: 26935716 PMCID: PMC4819559 DOI: 10.1007/s00427-016-0529-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/09/2016] [Indexed: 11/24/2022]
Abstract
Delta/Notch (Dl/N) signalling is involved in the gene regulatory network underlying the segmentation process in vertebrates and possibly also in annelids and arthropods, leading to the hypothesis that segmentation may have evolved in the last common ancestor of bilaterian animals. Because of seemingly contradicting results within the well-studied arthropods, however, the role and origin of Dl/N signalling in segmentation generally is still unclear. In this study, we investigate core components of Dl/N signalling by means of gene expression analysis in the onychophoran Euperipatoides kanangrensis, a close relative to the arthropods. We find that neither Delta or Notch nor any other investigated components of its signalling pathway are likely to be involved in segment addition in onychophorans. We instead suggest that Dl/N signalling may be involved in posterior elongation, another conserved function of these genes. We suggest further that the posterior elongation network, rather than classic Dl/N signalling, may be in the control of the highly conserved segment polarity gene network and the lower-level pair-rule gene network in onychophorans. Consequently, we believe that the pair-rule gene network and its interaction with Dl/N signalling may have evolved within the arthropod lineage and that Dl/N signalling has thus likely been recruited independently for segment addition in different phyla.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| |
Collapse
|
37
|
Williams DR, Shifley ET, Braunreiter KM, Cole SE. Disruption of somitogenesis by a novel dominant allele of Lfng suggests important roles for protein processing and secretion. Development 2016; 143:822-30. [PMID: 26811377 DOI: 10.1242/dev.128538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/14/2016] [Indexed: 12/29/2022]
Abstract
Vertebrate somitogenesis is regulated by a segmentation clock. Clock-linked genes exhibit cyclic expression, with a periodicity matching the rate of somite production. In mice, lunatic fringe (Lfng) expression oscillates, and LFNG protein contributes to periodic repression of Notch signaling. We hypothesized that rapid LFNG turnover could be regulated by protein processing and secretion. Here, we describe a novel Lfng allele (Lfng(RLFNG)), replacing the N-terminal sequences of LFNG, which allow for protein processing and secretion, with the N-terminus of radical fringe (a Golgi-resident protein). This allele is predicted to prevent protein secretion without altering the activity of LFNG, thus increasing the intracellular half-life of the protein. This allele causes dominant skeletal and somite abnormalities that are distinct from those seen in Lfng loss-of-function embryos. Expression of clock-linked genes is perturbed and mature Hes7 transcripts are stabilized in the presomitic mesoderm of mutant mice, suggesting that both transcriptional and post-transcriptional regulation of clock components are perturbed by RLFNG expression. Contrasting phenotypes in the segmentation clock and somite patterning of mutant mice suggest that LFNG protein may have context-dependent effects on Notch activity.
Collapse
Affiliation(s)
- Dustin R Williams
- The Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Emily T Shifley
- The Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Kara M Braunreiter
- The Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Susan E Cole
- The Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
38
|
Sheeba CJ, Andrade RP, Palmeirim I. Mechanisms of vertebrate embryo segmentation: Common themes in trunk and limb development. Semin Cell Dev Biol 2016; 49:125-34. [DOI: 10.1016/j.semcdb.2016.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 01/02/2023]
|
39
|
Wang G, Li Y, Wang XY, Chuai M, Yeuk-Hon Chan J, Lei J, Münsterberg A, Lee KKH, Yang X. Misexpression of BRE gene in the developing chick neural tube affects neurulation and somitogenesis. Mol Biol Cell 2015; 26:978-92. [PMID: 25568339 PMCID: PMC4342032 DOI: 10.1091/mbc.e14-06-1144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This is the first study of the role of BRE in embryonic development using early chick embryos. BRE is expressed in the developing neural tube, neural crest cells, and somites. BRE thus plays an important role in regulating neurogenesis and indirectly somitogenesis during early chick embryo development. The brain and reproductive expression (BRE) gene is expressed in numerous adult tissues and especially in the nervous and reproductive systems. However, little is known about BRE expression in the developing embryo or about its role in embryonic development. In this study, we used in situ hybridization to reveal the spatiotemporal expression pattern for BRE in chick embryo during development. To determine the importance of BRE in neurogenesis, we overexpressed BRE and also silenced BRE expression specifically in the neural tube. We established that overexpressing BRE in the neural tube indirectly accelerated Pax7+ somite development and directly increased HNK-1+ neural crest cell (NCC) migration and TuJ-1+ neurite outgrowth. These altered morphogenetic processes were associated with changes in the cell cycle of NCCs and neural tube cells. The inverse effect was obtained when BRE expression was silenced in the neural tube. We also determined that BMP4 and Shh expression in the neural tube was affected by misexpression of BRE. This provides a possible mechanism for how altering BRE expression was able to affect somitogenesis, neurogenesis, and NCC migration. In summary, our results demonstrate that BRE plays an important role in regulating neurogenesis and indirectly somite differentiation during early chick embryo development.
Collapse
Affiliation(s)
- Guang Wang
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Yan Li
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xiao-Yu Wang
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - John Yeuk-Hon Chan
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Jian Lei
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Kenneth Ka Ho Lee
- Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xuesong Yang
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
40
|
Isomura A, Kageyama R. Ultradian oscillations and pulses: coordinating cellular responses and cell fate decisions. Development 2014; 141:3627-36. [PMID: 25249457 PMCID: PMC4197574 DOI: 10.1242/dev.104497] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biological clocks play key roles in organismal development, homeostasis and function. In recent years, much work has focused on circadian clocks, but emerging studies have highlighted the existence of ultradian oscillators – those with a much shorter periodicity than 24 h. Accumulating evidence, together with recently developed optogenetic approaches, suggests that such ultradian oscillators play important roles during cell fate decisions, and analyzing the functional links between ultradian oscillation and cell fate determination will contribute to a deeper understanding of the design principle of developing embryos. In this Review, we discuss the mechanisms of ultradian oscillatory dynamics and introduce examples of ultradian oscillators in various biological contexts. We also discuss how optogenetic technology has been used to elucidate the biological significance of ultradian oscillations.
Collapse
Affiliation(s)
- Akihiro Isomura
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
41
|
Beck CW. Development of the vertebrate tailbud. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 4:33-44. [DOI: 10.1002/wdev.163] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/29/2014] [Accepted: 10/05/2014] [Indexed: 01/09/2023]
|
42
|
Wanglar C, Takahashi J, Yabe T, Takada S. Tbx protein level critical for clock-mediated somite positioning is regulated through interaction between Tbx and Ripply. PLoS One 2014; 9:e107928. [PMID: 25259583 PMCID: PMC4178057 DOI: 10.1371/journal.pone.0107928] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022] Open
Abstract
Somitogenesis in vertebrates is a complex and dynamic process involving many sequences of events generated from the segmentation clock. Previous studies with mouse embryos revealed that the presumptive somite boundary is periodically created at the anterior border of the expression domain of Tbx6 protein. Ripply1 and Ripply2 are required for the determination of the Tbx6 protein border, but the mechanism by which this Tbx6 domain is regulated remains unclear. Furthermore, since zebrafish and frog Ripplys are known to be able to suppress Tbx6 function at the transcription level, it is also unclear whether Ripply-mediated mechanism of Tbx6 regulation is conserved among different species. Here, we tested the generality of Tbx6 protein-mediated process in somite segmentation by using zebrafish and further examined the mechanism of regulation of Tbx6 protein. By utilizing an antibody against zebrafish Tbx6/Fss, previously referred to as Tbx24, we found that the anterior border of Tbx6 domain coincided with the presumptive intersomitic boundary even in the zebrafish and it shifted dynamically during 1 cycle of segmentation. Consistent with the findings in mice, the tbx6 mRNA domain was located far anterior to its protein domain, indicating the possibility of posttranscriptional regulation. When both ripply1/2 were knockdown, the Tbx6 domain was anteriorly expanded. We further directly demonstrated that Ripply could reduce the expression level of Tbx6 protein depending on physical interaction between Ripply and Tbx6. Moreover, the onset of ripply1 and ripply2 expression occurred after reduction of FGF signaling at the anterior PSM, but this expression initiated much earlier on treatment with SU5402, a chemical inhibitor of FGF signaling. These results strongly suggest that Ripply is a direct regulator of the Tbx6 protein level for the establishment of intersomitic boundaries and mediates a reduction in FGF signaling for the positioning of the presumptive intersomitic boundary in the PSM.
Collapse
Affiliation(s)
- Chimwar Wanglar
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Jun Takahashi
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Taijiro Yabe
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- * E-mail:
| |
Collapse
|
43
|
Amariei C, Tomita M, Murray DB. Quantifying periodicity in omics data. Front Cell Dev Biol 2014; 2:40. [PMID: 25364747 PMCID: PMC4207034 DOI: 10.3389/fcell.2014.00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/31/2014] [Indexed: 11/18/2022] Open
Abstract
Oscillations play a significant role in biological systems, with many examples in the fast, ultradian, circadian, circalunar, and yearly time domains. However, determining periodicity in such data can be problematic. There are a number of computational methods to identify the periodic components in large datasets, such as signal-to-noise based Fourier decomposition, Fisher's g-test and autocorrelation. However, the available methods assume a sinusoidal model and do not attempt to quantify the waveform shape and the presence of multiple periodicities, which provide vital clues in determining the underlying dynamics. Here, we developed a Fourier based measure that generates a de-noised waveform from multiple significant frequencies. This waveform is then correlated with the raw data from the respiratory oscillation found in yeast, to provide oscillation statistics including waveform metrics and multi-periods. The method is compared and contrasted to commonly used statistics. Moreover, we show the utility of the program in the analysis of noisy datasets and other high-throughput analyses, such as metabolomics and flow cytometry, respectively.
Collapse
Affiliation(s)
- Cornelia Amariei
- Institute for Advanced Biosciences, Keio University Tsuruoka, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University Tsuruoka, Japan
| | - Douglas B Murray
- Institute for Advanced Biosciences, Keio University Tsuruoka, Japan
| |
Collapse
|
44
|
Slack J. Establishment of spatial pattern. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:379-88. [PMID: 25081639 DOI: 10.1002/wdev.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 11/11/2022]
Abstract
An overview and perspective are presented of mechanisms for the development of spatial pattern in animal embryos. It is intended both for new entrants to developmental biology and for specialists in other fields, with only a basic knowledge of animal life cycles being required. The first event of pattern formation is normally the localization of a cytoplasmic determinant in the egg, either during oogenesis or post-fertilization. Following cleavage to a multicellular stage, some cells contain the determinant and others do not. The determinant confers a specific developmental pathway on the cells that contain it, often making them the source of the first extracellular signal, or inducing factor. Inducing factors often form concentration gradients to which cells respond by up or downregulating genes at various concentration thresholds. This enables an initial situation consisting of two cell states (with or without the determinant) to generate a multistate pattern. Multiple rounds of gradient signaling, interspersed with phases of morphogenetic movements, can generate a complex pattern using a small number of signals and responding genes. Development proceeds in a hierarchical manner, with broad body subdivisions being specified initially, and becoming successively subdivided to give individual organs and tissues composed of multiple cell types in a characteristic arrangement. Double gradient models can account for embryonic regulation, whereby a similarly proportioned body pattern is formed following removal of material. Processes that are involved at the later stages include the formation of repeating structures by the combination of an oscillator with a gradient, and the formation of tissues with one cell type scattered in a background of another through a process called lateral inhibition. This set of processes make up a 'developmental toolkit' which can be deployed in various sequences and combinations to generate a very wide variety of structures and cell types.
Collapse
Affiliation(s)
- Jonathan Slack
- Department of Biology and Biochemistry, University of Bath, Bath, UK; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
45
|
Hendriks GJ, Gaidatzis D, Aeschimann F, Großhans H. Extensive oscillatory gene expression during C. elegans larval development. Mol Cell 2014; 53:380-92. [PMID: 24440504 DOI: 10.1016/j.molcel.2013.12.013] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/25/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
Oscillations are a key to achieving dynamic behavior and thus occur in biological systems as diverse as the beating heart, defecating worms, and nascent somites. Here we report pervasive, large-amplitude, and phase-locked oscillations of gene expression in developing C. elegans larvae, caused by periodic transcription. Nearly one fifth of detectably expressed transcripts oscillate with an 8 hr period, and hundreds change >10-fold. Oscillations are important for molting but occur in all phases, implying additional functions. Ribosome profiling reveals that periodic mRNA accumulation causes rhythmic translation, potentially facilitating transient protein accumulation as well as coordinated production of stable, complex structures such as the cuticle. Finally, large-amplitude oscillations in RNA sampled from whole worms indicate robust synchronization of gene expression programs across cells and tissues, suggesting that these oscillations will be a powerful new model to study coordinated gene expression in an animal.
Collapse
Affiliation(s)
- Gert-Jan Hendriks
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Swiss Institute of Bioinformatics, CH-4058 Basel, Switzerland
| | - Florian Aeschimann
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| |
Collapse
|
46
|
Harima Y, Takashima Y, Ueda Y, Ohtsuka T, Kageyama R. Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene. Cell Rep 2012; 3:1-7. [PMID: 23219549 DOI: 10.1016/j.celrep.2012.11.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/26/2012] [Accepted: 11/15/2012] [Indexed: 01/04/2023] Open
Abstract
Periodic somite segmentation is controlled by the cyclic gene Hes7, whose oscillatory expression depends upon negative feedback with a delayed timing. The mechanism that regulates the pace of segmentation remains to be determined, but mathematical modeling has predicted that negative feedback with shorter delays would give rise to dampened but more rapid oscillations. Here, we show that reducing the number of introns within the Hes7 gene shortens the delay and results in a more rapid tempo of both Hes7 oscillation and somite segmentation, increasing the number of somites and vertebrae in the cervical and upper thoracic region. These results suggest that the number of introns is important for the appropriate tempo of oscillatory expression and that Hes7 is a key regulator of the pace of the segmentation clock.
Collapse
Affiliation(s)
- Yukiko Harima
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|