1
|
Ma JX, Wang X, Pan YR, Wang ZY, Guo X, Liu J, Ren NQ, Butler D. Data-driven systematic analysis of waterborne viruses and health risks during the wastewater reclamation process. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 19:100328. [PMID: 37965045 PMCID: PMC10641159 DOI: 10.1016/j.ese.2023.100328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 11/16/2023]
Abstract
Waterborne viral epidemics are a major threat to public health. Increasing interest in wastewater reclamation highlights the importance of understanding the health risks associated with potential microbial hazards, particularly for reused water in direct contact with humans. This study focused on identifying viral epidemic patterns in municipal wastewater reused for recreational applications based on long-term, spatially explicit global literature data during 2000-2021, and modelled human health risks from multiple exposure pathways using a well-established quantitative microbial risk assessment methodology. Global median viral loads in municipal wastewater ranged from 7.92 × 104 to 1.4 × 106 GC L-1 in the following ascending order: human adenovirus (HAdV), norovirus (NoV) GII, enterovirus (EV), NoV GI, rotavirus (RV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Following secondary or tertiary wastewater treatment, NoV GI, NoV GII, EV, and RV showed a relatively higher and more stable log reduction value with medians all above 0.8 (84%), whereas SARS-CoV-2 and HAdV showed a relatively lower reduction, with medians ranging from 0.33 (53%) to 0.55 (72%). A subsequent disinfection process effectively enhanced viral removal to over 0.89-log (87%). The predicted event probability of virus-related gastrointestinal illness and acute febrile respiratory illnesses in reclaimed recreational water exceeded the World Health Organization recommended recreational risk benchmark (5% and 1.9%, respectively). Overall, our results provided insights on health risks associated with reusing wastewater for recreational purposes and highlighted the need for establishing a regulatory framework ensuring the safety management of reclaimed waters.
Collapse
Affiliation(s)
- Jia-Xin Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
- Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
| | - Yi-Rong Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao-Yue Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Xuesong Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - David Butler
- Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
| |
Collapse
|
2
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Dehghani S, SeyedAlinaghi S, Karimi A, Afroughi F, Abshenas S, Azad K, Tantuoyir MM, Mohammadi P, Ghavam SM, Mojdeganlou H, Dadras O, Nazarian N, Vahedi F, Barzegary A, Mehraeen E. Evaluating the effects of air disinfectants in decontamination of COVID-19 aerosols. Health Sci Rep 2023; 6:e1042. [PMID: 36644313 PMCID: PMC9831143 DOI: 10.1002/hsr2.1042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Airborne transmission is the most crucial mode of COVID-19 transmission. Therefore, disinfecting the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) aerosols float can have important implications in limiting COVID-19 transmission. Herein, we aimed to review the studies that utilized various disinfectants to decontaminate and inactivate the SARS-CoV-2 aerosols. METHODS This study was a review that studied related articles published between December 1, 2019 and August 23, 2022. We searched the online databases of PubMed, Scopus, Web of Science, Cochrane, on August 23, 2021. The studies were downloaded into the EndNote software, duplicates were removed, and then the studies were screened based on the inclusion/exclusion criteria. The screening process involved two steps; first, the studies were screened based on their title and abstract and then their full texts. The included studies were used for the qualitative analysis. RESULTS From 664 retrieved records, only 31 met the inclusion criteria and were included in the final qualitative analysis. Various materials like Ozone, H2O2, alcohol, and TiO2 and methods like heating and using Ultraviolet were described in these studies to disinfect places contaminated by COVID-19. It appeared that the efficacy of these disinfectants varies considerably depending on the situation, time, and ultimately their mode of application. CONCLUSION Following reliable protocols in combination with the proper selection of disinfectant agents for each purpose would serve to achieve desired elimination of the SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Soheil Dehghani
- School of medicineTehran University of Medical SciencesTehranIran
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Amirali Karimi
- School of medicineTehran University of Medical SciencesTehranIran
| | - Fatemeh Afroughi
- Pars HospitalIran University of Medical SciencesTehranIran
- School of medicineIslamic Azad UniversityTehranIran
| | - Shayan Abshenas
- School of medicineKashan University of Medical SciencesKashanIran
| | - Kimia Azad
- School of medicineIslamic Azad UniversityTehranIran
| | - Marcarious M. Tantuoyir
- School of medicineTehran University of Medical SciencesTehranIran
- Biomedical Engineering UnitUniversity of Ghana Medical Center (UGMC)AccraGhana
| | - Parsa Mohammadi
- School of medicineTehran University of Medical SciencesTehranIran
| | - Seyed Mohammad Ghavam
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Hengameh Mojdeganlou
- Department of PathologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Omid Dadras
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
- Department of Global Public Health and Primary CareUniversity of BergenBergenNorway
| | | | - Farzin Vahedi
- School of medicineTehran University of Medical SciencesTehranIran
| | | | - Esmaeil Mehraeen
- Department of Health Information TechnologyKhalkhal University of Medical SciencesKhalkhalIran
| |
Collapse
|
4
|
Wartell BA, Proano C, Bakalian L, Kaya D, Croft K, McCreary M, Lichtenstein N, Miske V, Arcellana P, Boyer J, Benschoten IV, Anderson M, Crabb A, Gilson S, Gourley A, Wheeler T, Trest B, Bowman G, Kjellerup BV. Implementing wastewater surveillance for SARS-CoV-2 on a university campus: Lessons learned. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10807. [PMID: 36372781 PMCID: PMC9827968 DOI: 10.1002/wer.10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Wastewater surveillance, also known as wastewater-based epidemiology (WBE), has been successfully used to detect SARS-CoV-2 and other viruses in sewage in many locations in the United States and globally. This includes implementation of the surveillance on college and university campuses. A two-phase study was conducted during the 2020-2021 academic year to test the feasibility of a WBE system on campus and to supplement the clinical COVID-19 testing performed for the student, staff, and faculty body. The primary objective during the Fall 2020 semester was to monitor a large portion of the on-campus population and to obtain an understanding of the spreading of the SARS-CoV-2 virus. The Spring 2021 objective was focused on selected residence halls and groups of residents on campus, as this was more efficient and relevant for an effective follow-up response. Logistical problems and planning oversights initially occurred but were corrected with improved communication and experience. Many lessons were learned, including effective mapping, site planning, communication, personnel organization, and equipment management, and obtained along the way, thereby paving an opportune guide for future planning efforts. PRACTITIONER POINTS: WBE was successful in the detection of many SARS-CoV-2 variants incl. Alpha, Beta, Gamma, Delta, Lambda, Mu, and Omicron. Careful planning and contingencies were essential for a successful implementation of a SARS-CoV-2 monitoring program. A surveillance program may be important for detection and monitoring of other public health relevant targets in wastewater incl. bacteria, viruses, fungi and viruses. Diverse lessons were learned incl. effective mapping, site planning, communication, personnel organization, and equipment management, thereby providing a guide for future planning efforts.
Collapse
Affiliation(s)
- Brian A. Wartell
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Camila Proano
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Lena Bakalian
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Devrim Kaya
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Kristen Croft
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Michael McCreary
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Naomi Lichtenstein
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Victoria Miske
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Patricia Arcellana
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Jessica Boyer
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Isabelle Van Benschoten
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Marya Anderson
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Andrea Crabb
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Susan Gilson
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Anthony Gourley
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Tim Wheeler
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Brian Trest
- Facilities ManagementUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Glynnis Bowman
- Facilities ManagementUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Birthe V. Kjellerup
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| |
Collapse
|
5
|
Al Huraimel K, Alhosani M, Gopalani H, Kunhabdulla S, Stietiya MH. Elucidating the role of environmental management of forests, air quality, solid waste and wastewater on the dissemination of SARS-CoV-2. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 3:100006. [PMID: 37519421 PMCID: PMC9095661 DOI: 10.1016/j.heha.2022.100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 11/29/2022]
Abstract
The increasing frequency of zoonotic diseases is amongst several catastrophic repercussions of inadequate environmental management. Emergence, prevalence, and lethality of zoonotic diseases is intrinsically linked to environmental management which are currently at a destructive level globally. The effects of these links are complicated and interdependent, creating an urgent need of elucidating the role of environmental mismanagement to improve our resilience to future pandemics. This review focused on the pertinent role of forests, outdoor air, indoor air, solid waste and wastewater management in COVID-19 dissemination to analyze the opportunities prevailing to control infectious diseases considering relevant data from previous disease outbreaks. Global forest management is currently detrimental and hotspots of forest fragmentation have demonstrated to result in zoonotic disease emergences. Deforestation is reported to increase susceptibility to COVID-19 due to wildfire induced pollution and loss of forest ecosystem services. Detection of SARS-CoV-2 like viruses in multiple animal species also point to the impacts of biodiversity loss and forest fragmentation in relation to COVID-19. Available literature on air quality and COVID-19 have provided insights into the potential of air pollutants acting as plausible virus carrier and aggravating immune responses and expression of ACE2 receptors. SARS-CoV-2 is detected in outdoor air, indoor air, solid waste, wastewater and shown to prevail on solid surfaces and aerosols for prolonged hours. Furthermore, lack of protection measures and safe disposal options in waste management are evoking concerns especially in underdeveloped countries due to high infectivity of SARS-CoV-2. Inadequate legal framework and non-adherence to environmental regulations were observed to aggravate the postulated risks and vulnerability to future waves of pandemics. Our understanding underlines the urgent need to reinforce the fragile status of global environmental management systems through the development of strict legislative frameworks and enforcement by providing institutional, financial and technical supports.
Collapse
Affiliation(s)
- Khaled Al Huraimel
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Mohamed Alhosani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Hetasha Gopalani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Shabana Kunhabdulla
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Mohammed Hashem Stietiya
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Jia X, Shahzad K, Klemeš JJ, Jia X. Changes in water use and wastewater generation influenced by the COVID-19 pandemic: A case study of China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115024. [PMID: 35447447 PMCID: PMC8986492 DOI: 10.1016/j.jenvman.2022.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/19/2022] [Accepted: 04/03/2022] [Indexed: 05/12/2023]
Abstract
This paper examines and projects the water use and wastewater generation during and after the SARS-CoV-2 (COVID-19) in China, and discussed the water use/wastewater generation pattern changes among different sectors. Existing studies on the impact of pandemic spread-prevention measures on water consumption and wastewater treatment during the pandemic are reviewed. The water use and wastewater discharge in China through the COVID-19 period are then projected and analyzed using Multivariate Linear Regression. The projection is carried out for years 2019-2023 and covers an (estimated) full process of pre-pandemic, pandemic outbreak, and recovery phase and provides essential information for determining the complete phase impact of the COVID-19. Two scenarios, i.e. the recovery scenario and the business as usual scenario, are set to investigate the water use and wastewater generation characteristics after the pandemic. The results imply that in both scenarios, the water use in China shows a V-shaped trend from 2019 to 2023 and reached a low point in 2020 of 5,813✕108 m3. The wastewater discharge shows an increasing trend throughout the COVID period in both scenarios. The results are also compared with the water consumption and wastewater generation during the SARS-CoV-1 period. The implication for policymakers is the possible increase of water use and wastewater discharge in the post COVID period and the necessity to ensure the water supply and control of water pollution and wastewater discharge.
Collapse
Affiliation(s)
- Xuexiu Jia
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic.
| | - Khurram Shahzad
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic.
| | - Xiaoping Jia
- Qingdao University of Science and Technology, 99 Songling Rd, Laoshan District, Qingdao, Shandong, China.
| |
Collapse
|
7
|
Beattie RE, Blackwood AD, Clerkin T, Dinga C, Noble RT. Evaluating the impact of sample storage, handling, and technical ability on the decay and recovery of SARS-CoV-2 in wastewater. PLoS One 2022; 17:e0270659. [PMID: 35749532 PMCID: PMC9232146 DOI: 10.1371/journal.pone.0270659] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
Wastewater based epidemiology (WBE) is useful for tracking and monitoring the level of disease prevalence in a community and has been used extensively to complement clinical testing during the current COVID-19 pandemic. Despite the numerous benefits, sources of variability in sample storage, handling, and processing methods can make WBE data difficult to generalize. We performed an experiment to determine sources of variability in WBE data including the impact of storage time, handling, and processing techniques on the concentration of SARS-CoV-2 in wastewater influent from three wastewater treatment plants (WWTP) in North Carolina over 19 days. The SARS-CoV-2 concentration in influent samples held at 4°C did not degrade significantly over the 19-day experiment. Heat pasteurization did not significantly impact the concentration of SARS-CoV-2 at two of the three WWTP but did reduce viral recovery at the WWTP with the smallest population size served. On each processing date, one filter from each sample was processed immediately while a replicate filter was frozen at -80°C. Once processed, filters previously frozen were found to contain slightly higher concentrations (<0.2 log copies/L) than their immediately processed counterparts, indicating freezing filters is a viable method for delayed quantification and may even improve recovery at WWTP with low viral concentrations. Investigation of factors contributing to variability during sample processing indicated that analyst experience level contributed significantly (p<0.001) to accepted droplet generation while extraction efficiency and reverse transcription efficiency contributed significantly (p<0.05) to day-to-day SARS-CoV-2 variability. This study provides valuable practical information for minimizing decay and/or loss of SARS CoV-2 in wastewater influent while adhering to safety procedures, promoting efficient laboratory workflows, and accounting for sources of variability.
Collapse
Affiliation(s)
- Rachelle E. Beattie
- Department of Earth, Marine, and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States of America
| | - A. Denene Blackwood
- Department of Earth, Marine, and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States of America
| | - Thomas Clerkin
- Department of Earth, Marine, and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States of America
| | - Carly Dinga
- Department of Earth, Marine, and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States of America
| | - Rachel T. Noble
- Department of Earth, Marine, and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States of America
| |
Collapse
|
8
|
Sobsey MD. Absence of virological and epidemiological evidence that SARS-CoV-2 poses COVID-19 risks from environmental fecal waste, wastewater and water exposures. JOURNAL OF WATER AND HEALTH 2022; 20:126-138. [PMID: 35100160 DOI: 10.2166/wh.2021.182] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This review considers evidence for infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presence and COVID-19 infection and illness resulting from exposure to environmental fecal wastes and waters. There is no documented evidence that (1) infectious, replication-capable SARS-CoV-2 is present in environmental fecal wastes, wastewater or water, and (2) well-documented epidemiological evidence of COVID-19 infection, illness or death has never been reported for these exposure media. COVID-19 is transmitted mainly by direct personal contact and respiratory secretions as airborne droplets and aerosols, and less so by respiratory-secreted fomites via contact (touch) exposures. While SARS-CoV-2 often infects the gastrointestinal tract of infected people, its presence as infectious, replication-capable virus in environmental fecal wastes and waters has never been documented. There is only rare and unquantified evidence of infectious, replication-capable SARS-CoV-2 in recently shed feces of COVID-19 hospital patients. The human infectivity dose-response relationship of SARS-CoV-2 is unknown, thereby making it impossible to estimate evidence-based quantitative health effects assessments by quantitative microbial risk assessment methods requiring both known exposure assessment and health effects assessment data. The World Health Organization, Water Environment Federation, US Centers for Disease Control and Prevention and others do not consider environmental fecal wastes and waters as sources of exposure to infectious SARS-CoV-2 causing COVID-19 infection and illness.
Collapse
Affiliation(s)
- Mark D Sobsey
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA E-mail:
| |
Collapse
|
9
|
Mainardi PH, Bidoia ED. Challenges and emerging perspectives of an international SARS-CoV-2 epidemiological surveillance in wastewater. AN ACAD BRAS CIENC 2021; 93:e20210163. [PMID: 34878048 DOI: 10.1590/0001-3765202120210163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/23/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is a new type of coronavirus capable to infect humans and cause the severe acute respiratory syndrome COVID-19, a disease that has been causing huge impacts across the Earth. COVID-19 patients, including mild, pre-symptomatic and asymptomatic cases, were often seen to contain infectious fragments of SARS-CoV-2 in feces and urine samples. Therefore, studies to detect the new coronavirus in wastewater, which collect and concentrate human excreta, have been extremely useful as a viral tracking tool in communities. This type of monitoring, in addition to serve as a non-invasive early warning of COVID-19 outbreaks, would provide better predictions about the SARS-CoV-2 spread and strongly contribute to maintenance the global health. Although current methods to detect viruses in wastewater, based on molecular RT-PCR and RT-qPCR techniques, were considered as reliable and provided accurate qualitative and quantitative results, they have been facing considerable challenges concerning the SARS-CoV-2 surveillance. In this review, the methods used to detect the SARS-CoV-2 in wastewater and the challenges to implement an international viral monitoring network were described. The article also addressed the emerging perspectives associated with the SARS-CoV-2 epidemiological surveillance in this environment and the importance of a worldwide collaboration to generate and disseminate the detection results.
Collapse
Affiliation(s)
- Pedro H Mainardi
- Universidade Estadual Paulista Júlio de Mesquita Filho /UNESP, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Av. 24A, 1515, Bela Vista, 13506900 Rio Claro, SP, Brazil
| | - Ederio D Bidoia
- Universidade Estadual Paulista Júlio de Mesquita Filho /UNESP, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Av. 24A, 1515, Bela Vista, 13506900 Rio Claro, SP, Brazil
| |
Collapse
|
10
|
Sharma A, Mishra RK, Goud KY, Mohamed MA, Kummari S, Tiwari S, Li Z, Narayan R, Stanciu LA, Marty JL. Optical Biosensors for Diagnostics of Infectious Viral Disease: A Recent Update. Diagnostics (Basel) 2021; 11:2083. [PMID: 34829430 PMCID: PMC8625106 DOI: 10.3390/diagnostics11112083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
The design and development of biosensors, analytical devices used to detect various analytes in different matrices, has emerged. Biosensors indicate a biorecognition element with a physicochemical analyzer or detector, i.e., a transducer. In the present scenario, various types of biosensors have been deployed in healthcare and clinical research, for instance, biosensors for blood glucose monitoring. Pathogenic microbes are contributing mediators of numerous infectious diseases that are becoming extremely serious worldwide. The recent outbreak of COVID-19 is one of the most recent examples of such communal and deadly diseases. In efforts to work towards the efficacious treatment of pathogenic viral contagions, a fast and precise detection method is of the utmost importance in biomedical and healthcare sectors for early diagnostics and timely countermeasures. Among various available sensor systems, optical biosensors offer easy-to-use, fast, portable, handy, multiplexed, direct, real-time, and inexpensive diagnosis with the added advantages of specificity and sensitivity. Many progressive concepts and extremely multidisciplinary approaches, including microelectronics, microelectromechanical systems (MEMSs), nanotechnologies, molecular biology, and biotechnology with chemistry, are used to operate optical biosensors. A portable and handheld optical biosensing device would provide fast and reliable results for the identification and quantitation of pathogenic virus particles in each sample. In the modern day, the integration of intelligent nanomaterials in the developed devices provides much more sensitive and highly advanced sensors that may produce the results in no time and eventually help clinicians and doctors enormously. This review accentuates the existing challenges engaged in converting laboratory research to real-world device applications and optical diagnostics methods for virus infections. The review's background and progress are expected to be insightful to the researchers in the sensor field and facilitate the design and fabrication of optical sensors for life-threatening viruses with broader applicability to any desired pathogens.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Budhera, Gurugram 122505, Haryana, India;
| | - Rupesh Kumar Mishra
- Bindley Bio-Science Center, Lab 222, 1203 W. State St., Purdue University, West Lafayette, IN 47907, USA
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - K. Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Mona A. Mohamed
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority, Giza 99999, Egypt;
| | - Shekher Kummari
- Department of Chemistry, National Institute of Technology, Warangal 506004, Telangana, India;
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chattisgarh, India;
| | - Zhanhong Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Yangpu District, Shanghai 200093, China;
| | - Roger Narayan
- Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695, USA;
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Lia A. Stanciu
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Jean Louis Marty
- BAE-LBBM Laboratory, University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
11
|
Giacobbo A, Rodrigues MAS, Zoppas Ferreira J, Bernardes AM, de Pinho MN. A critical review on SARS-CoV-2 infectivity in water and wastewater. What do we know? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145721. [PMID: 33610994 PMCID: PMC7870439 DOI: 10.1016/j.scitotenv.2021.145721] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 04/14/2023]
Abstract
The COVID-19 outbreak circulating the world is far from being controlled, and possible contamination routes are still being studied. There are no confirmed cases yet, but little is known about the infection possibility via contact with sewage or contaminated water as well as with aerosols generated during the pumping and treatment of these aqueous matrices. Therefore, this article presents a literature review on the detection of SARS-CoV-2 in human excreta and its pathways through the sewer system and wastewater treatment plants until it reaches the water bodies, highlighting their occurrence and infectivity in sewage and natural water. Research lines are still indicated, which we believe are important for improving the detection, quantification, and mainly the infectivity analyzes of SARS-CoV-2 and other enveloped viruses in sewage and natural water. In fact, up till now, no case of transmission via contact with sewage or contaminated water has been reported and the few studies conducted with these aqueous matrices have not detected infectious viruses. On the other hand, studies are showing that SARS-CoV-2 can remain viable, i.e., infectious, for up to 4.3 and 6 days in sewage and water, respectively, and that other species of coronavirus may remain viable in these aqueous matrices for more than one year, depending on the sample conditions. These are strong pieces of evidence that the contamination mediated by contact with sewage or contaminated water cannot be ruled out, even because other more resistant and infectious mutations of SARS-CoV-2 may appear.
Collapse
Affiliation(s)
- Alexandre Giacobbo
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, Agronomia, Porto Alegre, RS 91509-900, Brazil; Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, Lisbon 1049-001, Portugal.
| | - Marco Antônio Siqueira Rodrigues
- Post-Graduation Program in Materials Technology and Industrial Processes, Pure Sciences and Technology Institute, Feevale University, Rodovia RS-239, n. 2755, Vila Nova, Novo Hamburgo, RS 93525-075, Brazil.
| | - Jane Zoppas Ferreira
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, Agronomia, Porto Alegre, RS 91509-900, Brazil.
| | - Andréa Moura Bernardes
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, Agronomia, Porto Alegre, RS 91509-900, Brazil.
| | - Maria Norberta de Pinho
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, Lisbon 1049-001, Portugal; Chemical Engineering Department, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, Lisbon 1049-001, Portugal.
| |
Collapse
|