1
|
Liu W, Li J, Lu H, Peng Y. Sponge iron strengthens the activity of anammox biofilm under low nitrogen conditions in a two-stage fixed-bed biofilm reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120194. [PMID: 38430875 DOI: 10.1016/j.jenvman.2024.120194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/09/2023] [Accepted: 01/20/2024] [Indexed: 03/05/2024]
Abstract
Strengthening the activity competitiveness of anaerobic ammonium oxidation (anammox) bacteria (AnAOB) under low nitrogen conditions is indispensable for mainstream anammox application. This study demonstrates that sponge iron addition (42.8 g/L) effectively increased apparent AnAOB activity and extracellular polymeric substance (EPS) production of low load anammox biofilms cultivated under low (influent of 60 mg N/L) and even ultra-low (influent of 10 mg N/L) nitrogen conditions. In-situ batch tests showed that after sponge iron addition the specific AnAOB activity in the low and ultra-low nitrogen systems further increased to 1.18 and 0.47 mmol/g VSS/h, respectively, with an apparent growth rate for AnAOB of 0.011 ± 0.001 d-1 and 0.004 ± 0.001 d-1, respectively. The averaged EPS concentration of anammox biofilm in both low (from 35.84 to 71.05 mg/g VSS) and ultra-low (from 44.14 to 57.59 mg/g VSS) nitrogen systems increased significantly, while a higher EPS protein/polysaccharide ratio, which was positively correlated with AnAOB activity, was observed in the low nitrogen system (3.54 ± 0.34) than that in the ultra-low nitrogen system (1.82 ± 0.10). In addition, Candidatus Brocadia was detected as dominant AnAOB in the anammox biofilm under the low (12.2 %) and ultra-low (24.7 %) nitrogen condition. Notably, the genus Streptomyces (26.3 %), capable for funge-like codenitrification, increased unexpectedly in the low nitrogen system, but not affecting the nitrogen removal performance. Therefore, using sponge iron to strengthen AnAOB activity under low nitrogen conditions is feasible, providing support for mainstream anammox applications.
Collapse
Affiliation(s)
- Wenlong Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
2
|
Liang Y, Li Z, Zhang B, Zhang Y, Ji S, Qiu G, Wu H, Wei C. Decryption for nitrogen removal in Anammox-based coupled systems: Nitrite-induced mechanisms. BIORESOURCE TECHNOLOGY 2023:129274. [PMID: 37290714 DOI: 10.1016/j.biortech.2023.129274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
This study investigated the effects of NO2- on synergetic interactions between Anammox bacteria (AnAOB) and sulfur-oxidizing bacteria (SOB) in an autotrophic denitrification-Anammox system. The presence of NO2- (0-75 mg-N/L) was shown to significantly enhance NH4+ and NO3- conversion rates, achieving intensified synergy between AnAOB and SOB. However, once NO2- exceed a threshold concentration (100 mg-N/L), both NH4+ and NO3- conversion rates decreased with increased NO2- consumption via autotrophic denitrification. The cooperation between AnAOB and SOB was decoupled due to the NO2- inhibition. Improved system reliability and nitrogen removal performance was achieved in a long-term reactor operation with NO2- in the influent; reverse transcription-quantitative polymerase chain reaction analysis showed elevated hydrazine synthase gene transcription levels (5.00-fold), comparing to these in the reactor without NO2-. This study elucidated the mechanism of NO2- induced synergetic interactions between AnAOB and SOB, providing theoretical guidance for engineering applications of Anammox-based coupled systems.
Collapse
Affiliation(s)
- Yitong Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Bin Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yushen Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Sijia Ji
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Chen X, Liu L, Bi Y, Meng F, Wang D, Qiu C, Yu J, Wang S. A review of anammox metabolic response to environmental factors: Characteristics and mechanisms. ENVIRONMENTAL RESEARCH 2023; 223:115464. [PMID: 36773633 DOI: 10.1016/j.envres.2023.115464] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a promising low carbon and economic biological nitrogen removal technology. Considering the anammox technology has been easily restricted by environmental factors in practical engineering applications, therefore, it is necessary to understand the metabolic response characteristics of anammox bacteria to different environmental factors, and then guide the application of the anammox process. This review presented the latest advances of the research progress of the effects of different environmental factors on the metabolic pathway of anammox bacteria. The effects as well as mechanisms of conventional environmental factors and emerging pollutants on the anammox metabolic processes were summarized. Also, the role of quorum sensing (QS) mediating the bacteria growth, gene expression and other metabolic process in the anammox system were also reviewed. Finally, interaction and cross-feeding mechanisms of microbial communities in the anammox system were discussed. This review systematically summarized the variations of metabolic mechanism response to the external environment and cross-feeding interactions in the anammox process, which would provide an in-depth understanding for the anammox metabolic process and a comprehensive guidance for future anammox-related metabolic studies and engineering applications.
Collapse
Affiliation(s)
- Xiaoying Chen
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China.
| |
Collapse
|
4
|
Li X, Feng Y, Zhang K, Zhou J, Sun J, Rong K, Liu S. Composite carrier enhanced bacterial adhesion and nitrogen removal in partial nitrification/anammox process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161659. [PMID: 36657689 DOI: 10.1016/j.scitotenv.2023.161659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The rapid start-up and stable operation of one-stage (Partial nitrification/anammox) PN/A process for low-ammonium wastewater are difficult to be achieved, and many carriers are designed to solve this problem. Here, a composite carrier was developed, in which sepiolite and non-woven fabrics were assembled in polypropylene spherical shells. At the start-up phase, PA reactor using the composite carriers reached a higher nitrogen removal rate of 134.50 ± 19.60 mg·N·L-1d-1, in contrast to that of 48.85 ± 19.64 mg·N·L-1d-1 in the PB reactor without sepiolite carriers. When the final influent ammonium concentration of PN/A process is 100 mg/L, the total nitrogen removal efficiency can reach 72 ± 0.03 %. High biomass immobilization ability of composite carrier was evidenced by the greater adsorption trend between sludge and sepiolite than that between sludge and non-woven fabrics, where hydrophobic interaction and Van der Waals interaction played a major role. Extracellular protein (PN) content and the ratio of PN and extracellular polysaccharide of samples in PA were significantly higher than those in PB, verifying higher biofilm formation ability on the composite carrier. The composite carrier also increased the abundance of dominant bacteria in PN/A process, especially AOB, the relative abundance of which reached 46.11 %. And it increased the abundance of essential functional genes for nitrogen conversion as their perfect acid neutralizing effects. This study is of great significance in improving the start-up speed and stable operation of this process.
Collapse
Affiliation(s)
- Xinjue Li
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Jingqi Sun
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Kaiyu Rong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| |
Collapse
|
5
|
Hou J, Cheng Y, Pan H, Kang P. Tailored Bimetallic Ni-Sn Catalyst for Electrochemical Ammonia Oxidation to Dinitrogen with High Selectivity. Inorg Chem 2023; 62:3986-3992. [PMID: 36821791 DOI: 10.1021/acs.inorgchem.2c04440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Direct electrochemical ammonia oxidation reaction (eAOR) is an efficient and sustainable strategy to process wastewater containing ammonia, and it endures overoxidation and severely competitive oxygen evolution reaction (OER). Herein, we synthesized a Ni(OH)2/SnO2 composite catalyst by a multistep strategy and applied it to the eAOR process. Ni(OH)2/SnO2 exhibited a N2-N Faradaic efficiency (FEN2-N) of 84.2%, with a N2 partial current density (jN2-N) of 2.7 mA cm-2 at 1.55 V vs reversible hydrogen electrode (RHE) in 0.5 M K2SO4 with 10 mM NH3-N (pH 11). The oxophilic Sn promoted NH3 absorption on Ni sites while suppressing the OER. As the active species, NiOOH accelerated the dimerization of intermediates (*NH2 or *NH) to form N2.
Collapse
Affiliation(s)
- Jing Hou
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| | - Yingying Cheng
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| | - Hui Pan
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| | - Peng Kang
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
6
|
Cui H, Yang Y, Zhang X, Dong L, Yang Y, Huang M, He Y, Lu X, Zhen G. Nitrogen removal and microbial mechanisms in a novel tubular bioreactor-enhanced floating treatment wetland for the treatment of high nitrate river water. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10767. [PMID: 35941098 DOI: 10.1002/wer.10767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
A novel tubular bioreactor-enhanced floating treatment wetland (TB-EFTW) was developed for the in situ treatment of high nitrate river water. When compared with the enhanced floating treatment wetland (EFTW), the TB-EFTW system achieved 30% higher total nitrogen removal efficiency. Further, the average TN level of the TB-EFTW effluent was below the Grade IV requirement (1.5 mg/L) specified in Chinese standard (GB3838-2002). Microbial analysis revealed that both aerobic and anoxic denitrifying bacteria coexisted in the new system. The relative abundance of aerobic and anoxic denitrifiers were 42.69% and 22% at the middle and end of the tubular bioreactor (TB), respectively. It is reasonable to assume that effective nitrogen removal can mainly be attributed to the addition of solid carbon source and the spatial difference in DO distribution (oxic-anoxic areas in sequence) inside the TB. The initial investment cost and operating costs associated with the TB-EFTW system are approximately 14,000 and 3500 yuan per 1000 m3 river water, respectively. Considering its low cost, minimal maintenance requirements, and effective nitrogen removal, this newly developed system can be regarded as a promising technology for treating high nitrate river water. PRACTITIONER POINTS: A novel TB-EFTW system was developed to upgrade traditional in situ treatment techniques. The TB-EFTW could achieve 30% higher nitrogen removal efficiency than EFTWs. Both aerobic and anoxic denitrifying bacteria coexisted in the system. The system shows better technical and economic performance compared with routine techniques.
Collapse
Affiliation(s)
- He Cui
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, China
| | - Yinchuan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Xin Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, China
| | - Lei Dong
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, China
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Yifeng Yang
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, China
| | - Minsheng Huang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yan He
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| |
Collapse
|