1
|
Ganz TR, Bassing SB, DeVivo MT, Gardner B, Kertson BN, Satterfield LC, Shipley LA, Turnock BY, Walker SL, Abrahamson D, Wirsing AJ, Prugh LR. White-tailed deer population dynamics in a multipredator landscape shaped by humans. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3003. [PMID: 38890813 DOI: 10.1002/eap.3003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/20/2024]
Abstract
Large terrestrial mammals increasingly rely on human-modified landscapes as anthropogenic footprints expand. Land management activities such as timber harvest, agriculture, and roads can influence prey population dynamics by altering forage resources and predation risk via changes in habitat, but these effects are not well understood in regions with diverse and changing predator guilds. In northeastern Washington state, USA, white-tailed deer (Odocoileus virginianus) are vulnerable to multiple carnivores, including recently returned gray wolves (Canis lupus), within a highly human-modified landscape. To understand the factors governing predator-prey dynamics in a human context, we radio-collared 280 white-tailed deer, 33 bobcats (Lynx rufus), 50 cougars (Puma concolor), 28 coyotes (C. latrans), and 14 wolves between 2016 and 2021. We first estimated deer vital rates and used a stage-structured matrix model to estimate their population growth rate. During the study, we observed a stable to declining deer population (lambda = 0.97, 95% confidence interval: 0.88, 1.05), with 74% of Monte Carlo simulations indicating population decrease and 26% of simulations indicating population increase. We then fit Cox proportional hazard models to evaluate how predator exposure, use of human-modified landscapes, and winter severity influenced deer survival and used these relationships to evaluate impacts on overall population growth. We found that the population growth rate was dually influenced by a negative direct effect of apex predators and a positive effect of timber harvest and agricultural areas. Cougars had a stronger effect on deer population dynamics than wolves, and mesopredators had little influence on the deer population growth rate. Areas of recent timber harvest had 55% more forage biomass than older forests, but horizontal visibility did not differ, suggesting that timber harvest did not influence predation risk. Although proximity to roads did not affect the overall population growth rate, vehicle collisions caused a substantial proportion of deer mortalities, and reducing these collisions could be a win-win for deer and humans. The influence of apex predators and forage indicates a dual limitation by top-down and bottom-up factors in this highly human-modified system, suggesting that a reduction in apex predators would intensify density-dependent regulation of the deer population owing to limited forage availability.
Collapse
Affiliation(s)
- Taylor R Ganz
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Sarah B Bassing
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Melia T DeVivo
- Washington Department of Fish and Wildlife, Spokane Valley, Washington, USA
| | - Beth Gardner
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Brian N Kertson
- Washington Department of Fish and Wildlife, Snoqualmie, Washington, USA
| | - Lauren C Satterfield
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Lisa A Shipley
- School of the Environment, Washington State University, Pullman, Washington, USA
| | | | | | | | - Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Laura R Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Cristescu B, Elbroch LM, Forrester TD, Allen ML, Spitz DB, Wilmers CC, Wittmer HU. Standardizing protocols for determining the cause of mortality in wildlife studies. Ecol Evol 2022; 12:e9034. [PMID: 35784072 PMCID: PMC9219102 DOI: 10.1002/ece3.9034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 12/05/2022] Open
Abstract
Mortality site investigations of telemetered wildlife are important for cause-specific survival analyses and understanding underlying causes of observed population dynamics. Yet, eroding ecoliteracy and a lack of quality control in data collection can lead researchers to make incorrect conclusions, which may negatively impact management decisions for wildlife populations. We reviewed a random sample of 50 peer-reviewed studies published between 2000 and 2019 on survival and cause-specific mortality of ungulates monitored with telemetry devices. This concise review revealed extensive variation in reporting of field procedures, with many studies omitting critical information for the cause of mortality inference. Field protocols used to investigate mortality sites and ascertain the cause of mortality are often minimally described and frequently fail to address how investigators dealt with uncertainty. We outline a step-by-step procedure for mortality site investigations of telemetered ungulates, including evidence that should be documented in the field. Specifically, we highlight data that can be useful to differentiate predation from scavenging and more conclusively identify the predator species that killed the ungulate. We also outline how uncertainty in identifying the cause of mortality could be acknowledged and reported. We demonstrate the importance of rigorous protocols and prompt site investigations using data from our 5-year study on survival and cause-specific mortality of telemetered mule deer (Odocoileus hemionus) in northern California. Over the course of our study, we visited mortality sites of neonates (n = 91) and adults (n = 23) to ascertain the cause of mortality. Rapid site visitations significantly improved the successful identification of the cause of mortality and confidence levels for neonates. We discuss the need for rigorous and standardized protocols that include measures of confidence for mortality site investigations. We invite reviewers and journal editors to encourage authors to provide supportive information associated with the identification of causes of mortality, including uncertainty.
Collapse
Affiliation(s)
- Bogdan Cristescu
- Environmental Studies DepartmentUniversity of CaliforniaSanta CruzCaliforniaUSA
| | | | - Tavis D. Forrester
- Oregon Department of Fish and WildlifeWildlife ResearchLa GrandeOregonUSA
| | | | - Derek B. Spitz
- Environmental Studies DepartmentUniversity of CaliforniaSanta CruzCaliforniaUSA
| | | | - Heiko U. Wittmer
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| |
Collapse
|
3
|
Marrotte RR, Howe EJ, Beauclerc KB, Potter D, Northrup JM. Explaining detection heterogeneity with finite mixture and non-Euclidean movement in spatially explicit capture-recapture models. PeerJ 2022; 10:e13490. [PMID: 35694380 PMCID: PMC9186326 DOI: 10.7717/peerj.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/03/2022] [Indexed: 01/17/2023] Open
Abstract
Landscape structure affects animal movement. Differences between landscapes may induce heterogeneity in home range size and movement rates among individuals within a population. These types of heterogeneity can cause bias when estimating population size or density and are seldom considered during analyses. Individual heterogeneity, attributable to unknown or unobserved covariates, is often modelled using latent mixture distributions, but these are demanding of data, and abundance estimates are sensitive to the parameters of the mixture distribution. A recent extension of spatially explicit capture-recapture models allows landscape structure to be modelled explicitly by incorporating landscape connectivity using non-Euclidean least-cost paths, improving inference, especially in highly structured (riparian & mountainous) landscapes. Our objective was to investigate whether these novel models could improve inference about black bear (Ursus americanus) density. We fit spatially explicit capture-recapture models with standard and complex structures to black bear data from 51 separate study areas. We found that non-Euclidean models were supported in over half of our study areas. Associated density estimates were higher and less precise than those from simple models and only slightly more precise than those from finite mixture models. Estimates were sensitive to the scale (pixel resolution) at which least-cost paths were calculated, but there was no consistent pattern across covariates or resolutions. Our results indicate that negative bias associated with ignoring heterogeneity is potentially severe. However, the most popular method for dealing with this heterogeneity (finite mixtures) yielded potentially unreliable point estimates of abundance that may not be comparable across surveys, even in data sets with 136-350 total detections, 3-5 detections per individual, 97-283 recaptures, and 80-254 spatial recaptures. In these same study areas with high sample sizes, we expected that landscape features would not severely constrain animal movements and modelling non-Euclidian distance would not consistently improve inference. Our results suggest caution in applying non-Euclidean SCR models when there is no clear landscape covariate that is known to strongly influence the movement of the focal species, and in applying finite mixture models except when abundant data are available.
Collapse
Affiliation(s)
- Robby R. Marrotte
- Wildlife Research & Monitoring Section, Ministry of Northern Development, Mines, Natural Resources and Forestry, Peterborough, Ontario, Canada
| | - Eric J. Howe
- Wildlife Research & Monitoring Section, Ministry of Northern Development, Mines, Natural Resources and Forestry, Peterborough, Ontario, Canada
| | - Kaela B. Beauclerc
- Wildlife Research & Monitoring Section, Ministry of Northern Development, Mines, Natural Resources and Forestry, Peterborough, Ontario, Canada
| | - Derek Potter
- Wildlife Research & Monitoring Section, Ministry of Northern Development, Mines, Natural Resources and Forestry, Peterborough, Ontario, Canada
| | - Joseph M. Northrup
- Wildlife Research & Monitoring Section, Ministry of Northern Development, Mines, Natural Resources and Forestry, Peterborough, Ontario, Canada,Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
5
|
LaBarge LR, Evans MJ, Miller JRB, Cannataro G, Hunt C, Elbroch LM. Pumas
Puma concolor
as ecological brokers: a review of their biotic relationships. Mamm Rev 2022. [DOI: 10.1111/mam.12281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laura R. LaBarge
- Program in Evolution, Ecology and Behavior, Department of Environment and Sustainability, The State University of New York University at Buffalo Amherst NY14260USA
- Center for Conservation Innovation Defenders of Wildlife Washington DC20036USA
- Max Planck Institute of Animal Behavior Bücklestraße 5 Konstanz DE78467Germany
| | - Michael J. Evans
- Center for Conservation Innovation Defenders of Wildlife Washington DC20036USA
- Department of Environmental Science and Policy George Mason University 4400 University Dr Fairfax VA22030USA
| | - Jennifer R. B. Miller
- Center for Conservation Innovation Defenders of Wildlife Washington DC20036USA
- Department of Environmental Science and Policy George Mason University 4400 University Dr Fairfax VA22030USA
| | - Gillian Cannataro
- Center for Conservation Innovation Defenders of Wildlife Washington DC20036USA
- Conservation, Management and Welfare Sciences Association of Zoos and Aquariums 8403 Colesville Rd., Suite 710 Silver Spring MD20910‐3314USA
| | - Christian Hunt
- Field Conservation Defenders of Wildlife Washington DC20036USA
| | | |
Collapse
|
6
|
Clark TJ, Hebblewhite M. Predator control may not increase ungulate populations in the future: A formal meta‐analysis. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. J. Clark
- Wildlife Biology Program Department of Ecosystem and Conservation Sciences W. A. Franke College of Forestry and Conservation University of Montana Missoula MT USA
| | - Mark Hebblewhite
- Wildlife Biology Program Department of Ecosystem and Conservation Sciences W. A. Franke College of Forestry and Conservation University of Montana Missoula MT USA
| |
Collapse
|