1
|
Boix-Montesinos P, Carrascosa-Marco P, Armiñán A, Vicent MJ. Identification of functional biomarkers for personalized nanomedicine in advanced breast cancer in vitro models. J Control Release 2025; 381:113584. [PMID: 40086758 DOI: 10.1016/j.jconrel.2025.113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/30/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
Nanomedicines represent promising advanced therapeutics for the enhanced treatment of breast cancer, the primary cause of cancer-related deaths in women; however, the clinical translation of nanomedicines remains challenging. Advanced in vitro models of breast cancer may improve preclinical evaluations and the identification of biomarkers that aid the stratification of patients who would benefit from a given nanomedicine. In this study, we first developed a matrix-embedded breast cancer cell spheroid model representing the extracellular matrix and confirmed the faithful recapitulation of disease aggressiveness in vitro. We then characterized factors influencing nanomedicine drug release (i.e., cathepsin B levels/activity, reactive oxygen species levels, glutathione levels, and cytoplasmic pH values) and evaluated nanomedicine internalization and cytotoxicity evaluation in our spheroid model. We confirmed the reduced-to-oxidized glutathione ratio as a functional biomarker of disulfide linker-containing polypeptide-drug conjugate effectiveness. We then established a biobank of patient-derived breast cancer organoids that recapitulate clinical intra-tumor and inter-tumor heterogeneity as a more advanced model. Analysis in organoids revealed that patient-specific responses to a polypeptide-based nanomedicine correlated with cathepsin B levels, supporting the potential of the functional biomarker for patient-tailored nanomedicine selection. Our findings highlight that exhaustively characterized advanced in vitro models support the evaluation of nanomedicines and the identification of functional biomarkers.
Collapse
Affiliation(s)
- Paz Boix-Montesinos
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain
| | - Paula Carrascosa-Marco
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain
| | - Ana Armiñán
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCCIII, Madrid, Spain.
| | - María J Vicent
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCCIII, Madrid, Spain.
| |
Collapse
|
2
|
Cao S, Pang Y, Wei Y, Wang D, Xiong A, Yang J, Zeng H. Nanozymes in biomedicine: Unraveling trends, research foci, and future trajectories via bibliometric insights (from 2007 to 2024). Int J Biol Macromol 2025; 309:142798. [PMID: 40185460 DOI: 10.1016/j.ijbiomac.2025.142798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Nanozymes, a new generation of artificial enzymes, have attracted significant attention in biomedical applications due to their multifunctional properties, multi-enzyme mimicking abilities, cost-effectiveness, and high stability. Leveraging these diverse catalytic activities, an increasing number of nanozyme-based therapeutic strategies have been developed for the treatment of various diseases. Despite substantial research efforts, a significant gap remains in comprehensive studies examining the progression, key areas, current trends, and future directions in this field. This study provides a comprehensive overview of nanozyme applications in biomedical research over the past 17 years, utilizing data from the Web of Science Core Collection, covering the period from January 1, 2007, to October 8, 2024. Advanced bibliometric and visualization tools were employed to facilitate a comprehensive analysis. The results highlight China's dominant role in this field, accounting for 76.83 % of total publications, significantly influencing the evolution of research in this area. Key contributions were made by institutions such as the Chinese Academy of Sciences, the University of Chinese Academy of Sciences, and the University of Science and Technology of China, with Qu Xiaogang as the leading author. The journal ACS Applied Materials & Interfaces has become the most prolific publisher in this field. Keyword analysis indicates that since 2022, research hotspots in this field have increasingly focused on areas such as photothermal therapy, chemodynamic therapy, and ferroptosis. Challenges such as obstacles to clinical translation, limitations in recyclability, and insufficient targeting ability were addressed. The potential applications of emerging interdisciplinary technologies, such as artificial intelligence, machine learning, and organoids, in advancing nanozyme development were explored. This study offers a data-driven roadmap for researchers to navigate the evolving landscape of nanozyme innovation, emphasizing interdisciplinary collaboration in impactful biomedical applications.
Collapse
Affiliation(s)
- Siyang Cao
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yingchen Pang
- Department of Pulmonary and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Pulmonary and Critical Care Medicine, Shenzhen Xinhua Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yihao Wei
- Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong; Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, People's Republic of China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, People's Republic of China
| | - Deli Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Ao Xiong
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Zhang X, Chan HW, Shao Z, Wang Q, Chow S, Chow SF. Navigating translational research in nanomedicine: A strategic guide to formulation and manufacturing. Int J Pharm 2025; 671:125202. [PMID: 39799998 DOI: 10.1016/j.ijpharm.2025.125202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Over the past two decades, extensive research has focused on both the fundamental and applied aspects of nanomedicine, driven by the compelling advantages that nanoparticles offer over their bulk counterparts. Despite this intensive research effort, fewer than 100 nanomedicines have been approved by the U.S. Food and Drug Administration and the European Medicines Agency since 1989. This disparity highlights a substantial gap in translational research, reflecting the disconnect between the prolific research in nanomedicine and the limited number of products that successfully reach and sustain themselves in the market. For instance, the nanomedicine DepoCyt, which received FDA approval in 1999 for the treatment of lymphomatous meningitis, was discontinued in 2017 due to persistent manufacturing issues. To address similar translational challenges, this review aims to identify and analyse issues related to the formulation design and manufacturing of nanomedicines. It provides an overview of the most prevalent manufacturing technologies and excipients used in nanomedicine production, followed by a critical evaluation of their clinical translatability. Furthermore, the review presents strategies for the rational formulation design and optimization of nanomedicine manufacturing, adhering to the principles of quality-by-design and quality risk management.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong Special Administrative Region
| | - Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Zitong Shao
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong Special Administrative Region
| | - Qiyun Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong Special Administrative Region
| | - Stephanie Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong Special Administrative Region.
| |
Collapse
|
4
|
Boix-Montesinos P, Medel M, Malfanti A, Đorđević S, Masiá E, Charbonnier D, Carrascosa-Marco P, Armiñán A, Vicent MJ. Rational design of a poly-L-glutamic acid-based combination conjugate for hormone-responsive breast cancer treatment. J Control Release 2024; 375:193-208. [PMID: 39242032 DOI: 10.1016/j.jconrel.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Breast cancer represents the most prevalent tumor type worldwide, with hormone-responsive breast cancer the most common subtype. Despite the effectiveness of endocrine therapy, advanced disease forms represent an unmet clinical need. While drug combination therapies remain promising, differences in pharmacokinetic profiles result in suboptimal ratios of free drugs reaching tumors. We identified a synergistic combination of bisdemethoxycurcumin and exemestane through drug screening and rationally designed star-shaped poly-L-glutamic acid-based combination conjugates carrying these drugs conjugated through pH-responsive linkers for hormone-responsive breast cancer treatment. We synthesized/characterized single and combination conjugates with synergistic drug ratios/loadings. Physicochemical characterization/drug release kinetics studies suggested that lower drug loading prompted a less compact conjugate conformation that supported optimal release. Screening in monolayer and spheroid breast cancer cell cultures revealed that combination conjugates possessed enhanced cytotoxicity/synergism compared to physical mixtures of single-drug conjugates/free drugs; moreover, a combination conjugate with the lowest drug loading outperformed remaining conjugates. This candidate inhibited proliferation-associated signaling, reduced inflammatory chemokine/exosome levels, and promoted autophagy in spheroids; furthermore, it outperformed a physical mixture of single-drug conjugates/free drugs regarding cytotoxicity in patient-derived breast cancer organoids. Our findings highlight the importance of rational design and advanced in vitro models for the selection of polypeptide-based combination conjugates.
Collapse
Affiliation(s)
- Paz Boix-Montesinos
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - María Medel
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain
| | - Alessio Malfanti
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Snežana Đorđević
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain
| | - Esther Masiá
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - David Charbonnier
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), IISCIII and CIEMAT, Madrid, Spain
| | - Paula Carrascosa-Marco
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Ana Armiñán
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain.
| | - María J Vicent
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
5
|
Yang Y, Cui J, Kong Y, Hou Y, Ma C. Organoids: new frontiers in tumor immune microenvironment research. Front Immunol 2024; 15:1422031. [PMID: 39136020 PMCID: PMC11317300 DOI: 10.3389/fimmu.2024.1422031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
The tumor microenvironment (TME) contains cells that regulate medication response and cancer growth in a major way. Tumor immunology research has been rejuvenated and cancer treatment has been changed by immunotherapy, a rapidly developing therapeutic approach. The growth patterns of tumor cells in vivo and the heterogeneity, complexity, and individuality of tumors produced from patients are not reflected in traditional two-dimensional tumor cell profiles. On the other hand, an in vitro three-dimensional (3D) model called the organoid model is gaining popularity. It can replicate the physiological and pathological properties of the original tissues in vivo. Tumor cells are the source of immune organoids. The TME characteristics can be preserved while preserving the variety of tumors by cultivating epithelial tumor cells with various stromal and immunological components. In addition to having genetic and physical similarities to human diseases and the ability to partially reconstruct the complex structure of tumors, these models are now widely used in research fields including cancer, developmental biology, regenerative mechanisms, drug development, disease modeling, and organ transplantation. This study reviews the function of organoids in immunotherapy and the tumor immune milieu. We also discuss current developments and suggest translational uses of tumor organoids in immuno-oncology research, immunotherapy modeling, and precision medicine.
Collapse
Affiliation(s)
- Yujia Yang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Immunology Department of Hebei Medical University, Shijiazhuang, China
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinlei Cui
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Immunology Department of Hebei Medical University, Shijiazhuang, China
| | - Yajie Kong
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Immunology Department of Hebei Medical University, Shijiazhuang, China
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yu Hou
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Immunology Department of Hebei Medical University, Shijiazhuang, China
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Cuiqing Ma
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Immunology Department of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Meng T, He D, Han Z, Shi R, Wang Y, Ren B, Zhang C, Mao Z, Luo G, Deng J. Nanomaterial-Based Repurposing of Macrophage Metabolism and Its Applications. NANO-MICRO LETTERS 2024; 16:246. [PMID: 39007981 PMCID: PMC11250772 DOI: 10.1007/s40820-024-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms. Nanomaterials (NMs) have been engineered to monitor macrophage metabolism, enabling the evaluation of disease progression and the replication of intricate physiological signal patterns. They achieve this either directly or by delivering regulatory signals, thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy. However, a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking. This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy. We initially explore the relationship between metabolism, polarization, and disease, before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy. Finally, we discuss the prospects and challenges of NM-mediated metabolic immunotherapy, aiming to accelerate clinical translation. We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.
Collapse
Affiliation(s)
- Tingting Meng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rong Shi
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
- Department of Breast Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, 730030, People's Republic of China
| | - Yuhan Wang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Bibo Ren
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Cheng Zhang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
7
|
Yang Y, Kong Y, Cui J, Hou Y, Gu Z, Ma C. Advances and Applications of Cancer Organoids in Drug Screening and Personalized Medicine. Stem Cell Rev Rep 2024; 20:1213-1226. [PMID: 38532032 DOI: 10.1007/s12015-024-10714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
In recent years, the rapid emergence of 3D organoid technology has garnered significant attention from researchers. These miniature models accurately replicate the structure and function of human tissues and organs, offering more physiologically relevant platforms for cancer research. These intricate 3D structures not only serve as promising models for studying human cancer, but also significantly contribute to the advancement of various potential applications in the field of cancer research. To date, organoids have been efficiently constructed from both normal and malignant tissues originating from patients. Using such bioengineering platforms, simulations of infections and cancer processes, mutations and carcinogenesis can be achieved, and organoid technology is also expected to facilitate drug testing and personalized therapies. In conclusion, regenerative medicine has the potential to enhance organoid technology and current transplantation treatments by utilizing genetically identical healthy organoids as substitutes for irreversibly deteriorating diseased organs. This review explored the evolution of cancer organoids and emphasized the significant role these models play in fundamental research and the advancement of personalized medicine in oncology.
Collapse
Affiliation(s)
- Yujia Yang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Yajie Kong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Jinlei Cui
- Immunology Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Yu Hou
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Zhanjing Gu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Cuiqing Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Immunology Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
8
|
Mao X, Wu S, Huang D, Li C. Complications and comorbidities associated with antineoplastic chemotherapy: Rethinking drug design and delivery for anticancer therapy. Acta Pharm Sin B 2024; 14:2901-2926. [PMID: 39027258 PMCID: PMC11252465 DOI: 10.1016/j.apsb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 07/20/2024] Open
Abstract
Despite the considerable advancements in chemotherapy as a cornerstone modality in cancer treatment, the prevalence of complications and pre-existing diseases is on the rise among cancer patients along with prolonged survival and aging population. The relationships between these disorders and cancer are intricate, bearing significant influence on the survival and quality of life of individuals with cancer and presenting challenges for the prognosis and outcomes of malignancies. Herein, we review the prevailing complications and comorbidities that often accompany chemotherapy and summarize the lessons to learn from inadequate research and management of this scenario, with an emphasis on possible strategies for reducing potential complications and alleviating comorbidities, as well as an overview of current preclinical cancer models and practical advice for establishing bio-faithful preclinical models in such complex context.
Collapse
Affiliation(s)
- Xiaoman Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuang Wu
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Dandan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Medical Research Institute, Southwest University, Chongqing 400715, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Ji F, Shi C, Shu Z, Li Z. Nanomaterials Enhance Pyroptosis-Based Tumor Immunotherapy. Int J Nanomedicine 2024; 19:5545-5579. [PMID: 38882539 PMCID: PMC11178094 DOI: 10.2147/ijn.s457309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Pyroptosis, a pro-inflammatory and lytic programmed cell death pathway, possesses great potential for antitumor immunotherapy. By releasing cellular contents and a large number of pro-inflammatory factors, tumor cell pyroptosis can promote dendritic cell maturation, increase the intratumoral infiltration of cytotoxic T cells and natural killer cells, and reduce the number of immunosuppressive cells within the tumor. However, the efficient induction of pyroptosis and prevention of damage to normal tissues or cells is an urgent concern to be addressed. Recently, a wide variety of nanoplatforms have been designed to precisely trigger pyroptosis and activate the antitumor immune responses. This review provides an update on the progress in nanotechnology for enhancing pyroptosis-based tumor immunotherapy. Nanomaterials have shown great advantages in triggering pyroptosis by delivering pyroptosis initiators to tumors, increasing oxidative stress in tumor cells, and inducing intracellular osmotic pressure changes or ion imbalances. In addition, the challenges and future perspectives in this field are proposed to advance the clinical translation of pyroptosis-inducing nanomedicines.
Collapse
Affiliation(s)
- Fujian Ji
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Chunyu Shi
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Zhenbo Shu
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Zhongmin Li
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
10
|
Ortiz-Perez A, Zhang M, Fitzpatrick LW, Izquierdo-Lozano C, Albertazzi L. Advanced optical imaging for the rational design of nanomedicines. Adv Drug Deliv Rev 2024; 204:115138. [PMID: 37980951 DOI: 10.1016/j.addr.2023.115138] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Despite the enormous potential of nanomedicines to shape the future of medicine, their clinical translation remains suboptimal. Translational challenges are present in every step of the development pipeline, from a lack of understanding of patient heterogeneity to insufficient insights on nanoparticle properties and their impact on material-cell interactions. Here, we discuss how the adoption of advanced optical microscopy techniques, such as super-resolution optical microscopies, correlative techniques, and high-content modalities, could aid the rational design of nanocarriers, by characterizing the cell, the nanomaterial, and their interaction with unprecedented spatial and/or temporal detail. In this nanomedicine arena, we will discuss how the implementation of these techniques, with their versatility and specificity, can yield high volumes of multi-parametric data; and how machine learning can aid the rapid advances in microscopy: from image acquisition to data interpretation.
Collapse
Affiliation(s)
- Ana Ortiz-Perez
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Miao Zhang
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Laurence W Fitzpatrick
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cristina Izquierdo-Lozano
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|