1
|
Qian Y, Wang C, Xu R, Wang J, Chen Q, Zhu Z, Hu Q, Shen Q, Shen JW. Copper-based metal-organic frameworks for antitumor application. J Nanobiotechnology 2025; 23:135. [PMID: 39987136 PMCID: PMC11847370 DOI: 10.1186/s12951-025-03220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
It is urgent to exploit multifunctional materials and combined approaches for efficient antitumor effects. Copper-based metal-organic frameworks (Cu-MOFs) have excellent performances in catalysis, biocompatibility, photothermal conversion, and regulate metabolism, which make them attract more and more attention in antitumor application. Therefore, in this review, representative ligands, synthetic methods, antitumor mechanism, and antitumor applications of Cu-MOFs were provided. Special emphasis is placed on the recent antitumor applications of Cu-MOFs in drug carriers, antitumor therapy, tumor imaging, and theranostic, which are summarized with examples. Finally, we presented the dilemma faced by Cu-MOFs and offered a new perspective for future antitumor application. Hopefully, this review may serve as a reference for further development and application of Cu-MOFs.
Collapse
Affiliation(s)
- Yangwei Qian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Chenxi Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Ruru Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Jin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Qinyue Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Zirui Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
| |
Collapse
|
2
|
Li ZD, Liu F, Zeng Y, Liu Y, Luo W, Yuan F, Li S, Li Q, Chen J, Fujita M, Zhang G, Li Y. EGCG suppresses PD-1 expression of T cells via inhibiting NF-κB phosphorylation and nuclear translocation. Int Immunopharmacol 2024; 133:112069. [PMID: 38643710 DOI: 10.1016/j.intimp.2024.112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Epigallocatechin-3-gallate (EGCG) is an important tea polyphenol with anti-tumor potential. Our previous studies revealed that EGCG was a promising immune checkpoint inhibitor (ICI) as it could downregulate expression of programmed cell death 1 ligand 1 (PD-L1) in tumor cells, thereby resulting tumor killing effect. In particular, EGCG can effectively avoid the inflammatory storm caused by anti-tumor therapy, which is a healthy green capacity absent from many ICIs. However, the relationship between EGCG and programmed cell death 1 (PD-1) of T cells remains unclear. In this work, we explored the effect of EGCG on T cells and found that EGCG suppressed PD-1 via inhibiting NF-κB phosphorylation and nuclear translocation. Furtherly, the capability of EGCG was confirmed in tumor-bearing mice to inhibit PD-1 expression in T cells and enhance apoptosis in tumor cells. These results implied that EGCG could inhibit the expression of PD-1 in T cells, thereby promoting anti-tumor effects of T cells. EGCG will be a promising candidate in anti-tumor therapy.
Collapse
Affiliation(s)
- Zhong-Da Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fangfang Liu
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanqiao Zeng
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yingnan Liu
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenhe Luo
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feng Yuan
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Su Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qi Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiaxin Chen
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Guofang Zhang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|