1
|
Hubmann R, Hilgarth M, Löwenstern T, Lienhard A, Sima F, Reisinger M, Hobel-Kleisch C, Porpaczy E, Haferlach T, Hoermann G, Laccone F, Jungbauer C, Valent P, Staber PB, Shehata M, Jäger U. Somatic Recombination Between an Ancient and a Recent NOTCH2 Gene Variant Is Associated with the NOTCH2 Gain-of-Function Phenotype in Chronic Lymphocytic Leukemia. Int J Mol Sci 2024; 25:12581. [PMID: 39684291 DOI: 10.3390/ijms252312581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Constitutively active NOTCH2 signaling is a hallmark in chronic lymphocytic leukemia (CLL). The precise underlying defect remains obscure. Here we show that the mRNA sequence coding for the NOTCH2 negative regulatory region (NRR) is consistently deleted in CLL cells. The most common NOTCH2ΔNRR-DEL2 deletion is associated with two intronic single nucleotide variations (SNVs) which either create (CTTAT, G>A for rs2453058) or destroy (CTCGT, A>G for rs5025718) a putative splicing branch point sequence (BPS). Phylogenetic analysis demonstrates that rs2453058 is part of an ancient NOTCH2 gene variant (*1A01) which is associated with type 2 diabetes mellitus (T2DM) and is two times more frequent in Europeans than in East Asians, resembling the differences in CLL incidence. In contrast, rs5025718 belongs to a recent NOTCH2 variant (*1a4) that dominates the world outside Africa. Nanopore sequencing indicates that somatic reciprocal crossing over between rs2453058 (*1A01) and rs5025718 (*1a4) leads to recombined NOTCH2 alleles with altered BPS patterns in NOTCH2*1A01/*1a4 CLL cases. This would explain the loss of the NRR domain by aberrant pre-mRNA splicing and consequently the NOTCH2 gain-of-function phenotype. Together, our findings suggest that somatic recombination of inherited NOTCH2 variants might be relevant to CLL etiology and may at least partly explain its geographical clustering.
Collapse
Affiliation(s)
- Rainer Hubmann
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Martin Hilgarth
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tamara Löwenstern
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Lienhard
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Filip Sima
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Manuel Reisinger
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Claudia Hobel-Kleisch
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Edit Porpaczy
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Gregor Hoermann
- MLL Munich Leukemia Laboratory, 81377 Munich, Germany
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Christof Jungbauer
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Philipp B Staber
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Medhat Shehata
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrich Jäger
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Skhoun H, El Fessikh M, Khattab M, Mchich B, Agadr A, Abilkassem R, Dakka N, Flatters D, Camproux AC, Ouzzif Z, El Baghdadi J. A Novel NRAS Variant Near the Splice Junction in Moroccan Childhood Acute Lymphoblastic Leukemia: A Molecular Dynamics Study. Biochem Genet 2024:10.1007/s10528-024-10968-2. [PMID: 39514082 DOI: 10.1007/s10528-024-10968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The RAS genes are importantly implicated in oncogenesis and are frequently mutated in childhood acute lymphoblastic leukemia. This study is the first to our knowledge, to determine the mutational status of NRAS and KRAS genes in Moroccan pediatric acute lymphoblastic leukemia (ALL). Polymerase chain reaction and Sanger sequencing were performed for 45 ALL samples to explore the coding exons. The functional effect of the mutation was evaluated using in silico prediction tools and molecular modeling. We identified a novel variant c.290 G > C p.Arg97Thr within NRAS gene in a patient with T-ALL, which is a rare missense point mutation affecting the last base of exon 3. Analyses revealed that p.Arg97Thr impairs the adjacent splice site efficiency. Moreover, it leads to structural modifications at local and global levels of the protein through the loss of hydrogen bonds. Additionally, the molecular dynamics (MD) simulation showed that it slightly increases the stability of NRAS protein by locally decreasing the flexibility of the mutated region. No variant was detected within KRAS gene. R97 at NRAS gene is an overlapping splice site residue. Our findings suggest that the NRAS p.Arg97Thr variant may disrupt the splicing machinery and functions of the protein, thus playing a vital role in leukemogenesis. In addition, the highly druggable pocket may possibly be studied for its therapeutic implications.
Collapse
Affiliation(s)
- Hanaa Skhoun
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Meriem El Fessikh
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohammed Khattab
- Pediatric Hematology and Oncology Center, Children's Hospital, Rabat, Morocco
- Centre of Childhood Care and Prevention, Cheikh Zaid International University Hospital, Rabat, Morocco
| | - Basma Mchich
- Unité de Biologie Fonctionnelle Et Adaptative, Université Paris Cité, CNRS, INSERM, Paris, France
| | - Aomar Agadr
- Department of Pediatrics, Military Hospital Mohammed V, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Rachid Abilkassem
- Department of Pediatrics, Military Hospital Mohammed V, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Nadia Dakka
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Delphine Flatters
- Unité de Biologie Fonctionnelle Et Adaptative, Université Paris Cité, CNRS, INSERM, Paris, France
| | - Anne-Claude Camproux
- Unité de Biologie Fonctionnelle Et Adaptative, Université Paris Cité, CNRS, INSERM, Paris, France
| | - Zohra Ouzzif
- Laboratories Pole, Military Hospital Mohammed V, Rabat, Morocco
| | - Jamila El Baghdadi
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco.
- Laboratories Pole, Military Hospital Mohammed V, Rabat, Morocco.
| |
Collapse
|
3
|
Tahashi Y, Ode R, Fujiwara K, Takeda JI, Ohno K. Detection of pre-mRNA involved in abnormal splicing using Graph Neural Network and Nearest Correlation Method. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40040085 DOI: 10.1109/embc53108.2024.10782054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
BACKGROUND DNA is the building block of genetic information, and is composed of alternating sequences of exons with genetic information and introns without no genetic information. DNA is damaged by normal metabolic activities and environmental factors, causing base substitutions. Changes at the single nucleotide level are called Single Nucleotide Variants (SNVs), which usually result in mRNAs that are non-pathogenic or produce harmless proteins by splicing. However, when pathogenic SNVs are present in DNA, abnormal RNA splicing may cause transcription and translation of the wrong genetic information, resulting in genetic diseases such as cancer. METHODS We proposed a new method for detecting pre-mRNA with SNVs that cause abnormal RNA splicing, which utilizes a Graph Neural Network (GNN) and the Nearest Correlation (NC) method which is a similarity measure based on the correlation among multiple inputs. In the proposed method, multiple features were extracted from target sequences and their similarities are calculated by means of the NC method. A GNN model is trained from a graph constructed based on the similarities among the sequences and used as input of LightGBM in order to classify pre-mRNA with SNVs. RESULTS The specificity, recall, G-mean, ROC-AUC (area under the ROC curve), and PR-AUC (area under the PR curve) of the proposed method were 0.73±0.080, 0.69±0.13, 0.71±0.073, 0.76±0.062, and 0.42±0.10. CONCLUSION The proposed method will contribute to preventing misjudgment of the disease and lead to the selection of the correct treatment in the future.
Collapse
|
4
|
Han Y, Han J, Li Z, Chen S, Liu J, Zhou R, Zhao S, Li D, Liu Z, Zhao Y, Hao J, Chai G. Identification and characterization of a novel intronic splicing mutation in CSF1R-related leukoencephalopathy. CNS Neurosci Ther 2024; 30:e14815. [PMID: 38922778 PMCID: PMC11194178 DOI: 10.1111/cns.14815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/16/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS Colony stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rapidly progressing neurodegenerative disease caused by CSF1R gene mutations. This study aimed to identify and investigate the effect of a novel intronic mutation (c.1754-3C>G) of CSF1R on splicing. METHODS A novel intronic mutation was identified using whole-exome sequencing. To investigate the impact of this mutation, we employed various bioinformatics tools to analyze the transcription of the CSF1R gene and the three-dimensional structure of its encoded protein. Furthermore, reverse transcription polymerase chain reaction (RT-PCR) was performed to validate the findings. RESULTS A novel mutation (c.1754-3C>G) in CSF1R was identified, which results in exon 13 skipping due to the disruption of the 3' splice site consensus sequence NYAG/G. This exon skipping event was further validated in the peripheral blood of the mutation carrier through RT-PCR and Sanger sequencing. Protein structure prediction indicated a disruption in the tyrosine kinase domain, with the truncated protein showing significant structural alterations. CONCLUSIONS Our findings underscore the importance of intronic mis-splicing mutations in the diagnosis and management of CSF1R-related leukoencephalopathy.
Collapse
Affiliation(s)
- Yilai Han
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Jinming Han
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Zhen Li
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Siqi Chen
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Ju Liu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Ruxing Zhou
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Shufang Zhao
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Dawei Li
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Zheng Liu
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Yinan Zhao
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Junwei Hao
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
- Beijing Municipal Geriatric Medical Research CenterBeijingChina
- Key Laboratory for Neurodegenerative Diseases of Ministry of EducationBeijingChina
| | - Guoliang Chai
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
- Beijing Municipal Geriatric Medical Research CenterBeijingChina
- Chinese Institutes for Medical ResearchBeijingChina
| |
Collapse
|
5
|
Dagli-Hernandez C, Ferreira GM, Freitas RCCD, Borges JB, Oliveira VFD, Gonçalves RM, Faludi AA, Marçal EDSR, Bastos GM, Bortolin RH, Hirata MH, Hirata RDC. Predicted deleterious variants in ABCA1, LPL, LPA and KIF6 are associated with statin response and adverse events in patients with familial hypercholesterolemia and disturb protein structure and stability. Pharmacogenet Genomics 2024; 34:91-104. [PMID: 38682317 DOI: 10.1097/fpc.0000000000000524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
OBJECTIVES This study explored the association of deleterious variants in pharmacodynamics (PD) genes with statin response and adverse effects in patients with familial hypercholesterolemia (FH) and analyzed their potential effects on protein structure and stability. METHODS Clinical and laboratory data were obtained from 144 adult FH patients treated with statins. A panel of 32 PD genes was analyzed by exon-targeted gene sequencing. Deleterious variants were identified using prediction algorithms and their structural effects were analyzed by molecular modeling studies. RESULTS A total of 102 variants were predicted as deleterious (83 missense, 8 stop-gain, 4 frameshift, 1 indel, 6 splicing). The variants ABCA1 rs769705621 (indel), LPA rs41267807 (p.Tyr2023Cys) and KIF6 rs20455 (p.Trp719Arg) were associated with reduced low-density lipoprotein cholesterol (LDLc) response to statins, and the LPL rs1801177 (p.Asp36Asn) with increased LDLc response (P < 0.05). LPA rs3124784 (p.Arg2016Cys) was predicted to increase statin response (P = 0.022), and ABCA1 rs769705621 to increase the risk of statin-related adverse events (SRAE) (P = 0.027). LPA p.Arg2016Cys and LPL p.Asn36Asp maintained interactions with solvent, LPA p.Tyr2023Cys reduced intramolecular interaction with Gln1987, and KIF6 p.Trp719Arg did not affect intramolecular interactions. DDMut analysis showed that LPA p.Arg2016Cys and p.Tyr2023Cys and LPL p.Asp36Asn caused energetically favorable changes, and KIF6 p.Trp719Arg resulted in unfavorable energetic changes, affecting protein stability. CONCLUSION Deleterious variants in ABCA1, LPA, LPL and KIF6 are associated with variability in LDLc response to statins, and ABCA1 rs769705621 is associated with SRAE risk in FH patients. Molecular modeling studies suggest that LPA p.Tyr2023Cys and KIF6 p.Trp719Arg disturb protein conformational structure and stability.
Collapse
Affiliation(s)
- Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Holm LL, Doktor TK, Flugt KK, Petersen US, Petersen R, Andresen B. All exons are not created equal-exon vulnerability determines the effect of exonic mutations on splicing. Nucleic Acids Res 2024; 52:4588-4603. [PMID: 38324470 PMCID: PMC11077056 DOI: 10.1093/nar/gkae077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
It is now widely accepted that aberrant splicing of constitutive exons is often caused by mutations affecting cis-acting splicing regulatory elements (SREs), but there is a misconception that all exons have an equal dependency on SREs and thus a similar vulnerability to aberrant splicing. We demonstrate that some exons are more likely to be affected by exonic splicing mutations (ESMs) due to an inherent vulnerability, which is context dependent and influenced by the strength of exon definition. We have developed VulExMap, a tool which is based on empirical data that can designate whether a constitutive exon is vulnerable. Using VulExMap, we find that only 25% of all exons can be categorized as vulnerable, whereas two-thirds of 359 previously reported ESMs in 75 disease genes are located in vulnerable exons. Because VulExMap analysis is based on empirical data on splicing of exons in their endogenous context, it includes all features important in determining the vulnerability. We believe that VulExMap will be an important tool when assessing the effect of exonic mutations by pinpointing whether they are located in exons vulnerable to ESMs.
Collapse
Affiliation(s)
- Lise L Holm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
- Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
- Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Katharina K Flugt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
- Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ulrika S S Petersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
- Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Rikke Petersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
- Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
- Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
7
|
Cotrina-Vinagre FJ, Rodríguez-García ME, Del Pozo-Filíu L, Hernández-Laín A, Arteche-López A, Morte B, Sevilla M, Pérez-Jurado LA, Quijada-Fraile P, Camacho A, Martínez-Azorín F. Expanding the genetic and phenotypic spectrum of congenital myasthenic syndrome: new homozygous VAMP1 splicing variants in 2 novel individuals. J Hum Genet 2024; 69:187-196. [PMID: 38355957 DOI: 10.1038/s10038-024-01228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
We report the cases of two Spanish pediatric patients with hypotonia, muscle weakness and feeding difficulties at birth. Whole-exome sequencing (WES) uncovered two new homozygous VAMP1 (Vesicle Associated Membrane Protein 1) splicing variants, NM_014231.5:c.129+5 G > A in the boy patient (P1) and c.341-24_341-16delinsAGAAAA in the girl patient (P2). This gene encodes the vesicle-associated membrane protein 1 (VAMP1) that is a component of a protein complex involved in the fusion of synaptic vesicles with the presynaptic membrane. VAMP1 has a highly variable C-terminus generated by alternative splicing that gives rise to three main isoforms (A, B and D), being VAMP1A the only isoform expressed in the nervous system. In order to assess the pathogenicity of these variants, expression experiments of RNA for VAMP1 were carried out. The c.129+5 G > A and c.341-24_341-16delinsAGAAAA variants induced aberrant splicing events resulting in the deletion of exon 2 (r.5_131del; p.Ser2TrpfsTer7) in the three isoforms in the first case, and the retention of the last 14 nucleotides of the 3' of intron 4 (r.340_341ins341-14_341-1; p.Ile114AsnfsTer77) in the VAMP1A isoform in the second case. Pathogenic VAMP1 variants have been associated with autosomal dominant spastic ataxia 1 (SPAX1) and with autosomal recessive presynaptic congenital myasthenic syndrome (CMS). Our patients share the clinical manifestations of CMS patients with two important differences: they do not show the typical electrophysiological pattern that suggests pathology of pre-synaptic neuromuscular junction, and their muscular biopsies present hypertrophic fibers type 1. In conclusion, our data expand both genetic and phenotypic spectrum associated with VAMP1 variants.
Collapse
Affiliation(s)
- Francisco Javier Cotrina-Vinagre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN). Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Elena Rodríguez-García
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN). Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Madrid, Spain
| | - Lucía Del Pozo-Filíu
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN). Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Aurelio Hernández-Laín
- Servicio de Anatomía Patológica (Neuropatología), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana Arteche-López
- Servicio de Genética, Hospital Universitario 12 de Octubre, E-28041, Madrid, Spain
| | - Beatriz Morte
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Madrid, Spain
- Instituto de Investigaciones Biomedicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Marta Sevilla
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Madrid, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Genetics Service, Hospital del Mar, Barcelona, Spain
| | - Luis Alberto Pérez-Jurado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Madrid, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Genetics Service, Hospital del Mar, Barcelona, Spain
| | - Pilar Quijada-Fraile
- Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, Madrid, Spain
| | - Ana Camacho
- Sección de Neurología Infantil, Hospital 12 de Octubre, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Martínez-Azorín
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN). Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Madrid, Spain.
| |
Collapse
|
8
|
Plavc L, Skubic C, Dolenc Grošelj L, Rozman D. Variants in the circadian clock genes PER2 and PER3 associate with familial sleep phase disorders. Chronobiol Int 2024; 41:757-766. [PMID: 38695651 DOI: 10.1080/07420528.2024.2348016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Delayed sleep phase disorder and advanced sleep phase disorder cause disruption of the circadian clock and present with extreme morning/evening chronotype with unclear role of the genetic etiology, especially for delayed sleep phase disorder. To assess if genotyping can aid in clinical diagnosis, we examined the presence of genetic variants in circadian clock genes previously linked to both sleep disorders in Slovenian patient cohort. Based on Morning-evening questionnaire, we found 15 patients with extreme chronotypes, 13 evening and 2 morning, and 28 controls. Sanger sequencing was used to determine the presence of carefully selected candidate SNPs in regions of the CSNK1D, PER2/3 and CRY1 genes. In a patient with an extreme morning chronotype and a family history of circadian sleep disorder we identified two heterozygous missense variants in PER3 gene, c.1243C>G (NM_001377275.1 (p.Pro415Ala)) and c.1250A>G (NM_001377275.1 (p.His417Arg)). The variants were significantly linked to Advanced sleep phase disorder and were also found in proband's father with extreme morningness. Additionally, a rare SNP was found in PER2 gene in a patient with clinical picture of Delayed sleep phase disorder. The novel variant in PER2 (NM_022817.3):c.1901-218 G>T was found in proband's parent with eveningness, indicating an autosomal dominant inheritance. We identified a family with autosomal dominant inheritance of two PER3 heterozygous variants that can be linked to Advanced sleep phase disorder. We revealed also a rare hereditary form of Delayed sleep phase disorder with a new PER2 variant with autosomal dominant inheritance, shedding the light into the genetic causality.
Collapse
Affiliation(s)
- Laura Plavc
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Cene Skubic
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Leja Dolenc Grošelj
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Lee H, Ozbulak U, Park H, Depuydt S, De Neve W, Vankerschaver J. Assessing the reliability of point mutation as data augmentation for deep learning with genomic data. BMC Bioinformatics 2024; 25:170. [PMID: 38689247 PMCID: PMC11059627 DOI: 10.1186/s12859-024-05787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Deep neural networks (DNNs) have the potential to revolutionize our understanding and treatment of genetic diseases. An inherent limitation of deep neural networks, however, is their high demand for data during training. To overcome this challenge, other fields, such as computer vision, use various data augmentation techniques to artificially increase the available training data for DNNs. Unfortunately, most data augmentation techniques used in other domains do not transfer well to genomic data. RESULTS Most genomic data possesses peculiar properties and data augmentations may significantly alter the intrinsic properties of the data. In this work, we propose a novel data augmentation technique for genomic data inspired by biology: point mutations. By employing point mutations as substitutes for codons, we demonstrate that our newly proposed data augmentation technique enhances the performance of DNNs across various genomic tasks that involve coding regions, such as translation initiation and splice site detection. CONCLUSION Silent and missense mutations are found to positively influence effectiveness, while nonsense mutations and random mutations in non-coding regions generally lead to degradation. Overall, point mutation-based augmentations in genomic datasets present valuable opportunities for improving the accuracy and reliability of predictive models for DNA sequences.
Collapse
Affiliation(s)
| | - Utku Ozbulak
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea
| | - Homin Park
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea
- IDLab, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Stephen Depuydt
- Erasmus Brussels University of Applied Sciences and Arts, Brussels, Belgium
| | - Wesley De Neve
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea
- IDLab, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Joris Vankerschaver
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea.
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.
| |
Collapse
|
10
|
Emilius L, Bremm F, Binder AK, Schaft N, Dörrie J. Tumor Antigens beyond the Human Exome. Int J Mol Sci 2024; 25:4673. [PMID: 38731892 PMCID: PMC11083240 DOI: 10.3390/ijms25094673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Lisabeth Emilius
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
11
|
Wang Y, Zhai Y, Zhang M, Song C, Zhang Y, Zhang G. Escaping from CRISPR-Cas-mediated knockout: the facts, mechanisms, and applications. Cell Mol Biol Lett 2024; 29:48. [PMID: 38589794 PMCID: PMC11003099 DOI: 10.1186/s11658-024-00565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats and associated Cas protein (CRISPR-Cas), a powerful genome editing tool, has revolutionized gene function investigation and exhibits huge potential for clinical applications. CRISPR-Cas-mediated gene knockout has already become a routine method in research laboratories. However, in the last few years, accumulating evidences have demonstrated that genes knocked out by CRISPR-Cas may not be truly silenced. Functional residual proteins could be generated in such knockout organisms to compensate the putative loss of function, termed herein knockout escaping. In line with this, several CRISPR-Cas-mediated knockout screenings have discovered much less abnormal phenotypes than expected. How does knockout escaping happen and how often does it happen have not been systematically reviewed yet. Without knowing this, knockout results could easily be misinterpreted. In this review, we summarize these evidences and propose two main mechanisms allowing knockout escaping. To avoid the confusion caused by knockout escaping, several strategies are discussed as well as their advantages and disadvantages. On the other hand, knockout escaping also provides convenient tools for studying essential genes and treating monogenic disorders such as Duchenne muscular dystrophy, which are discussed in the end.
Collapse
Affiliation(s)
- Ying Wang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Yujing Zhai
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Mingzhe Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Chunlin Song
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yuqing Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Gang Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
12
|
Suárez-Herrera N, Garanto A, Collin RWJ. Understanding and Rescuing the Splicing Defect Caused by the Frequent ABCA4 Variant c.4253+43G>A Underlying Stargardt Disease. Nucleic Acid Ther 2024; 34:73-82. [PMID: 38466963 DOI: 10.1089/nat.2023.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Pathogenic variants in ABCA4 are the underlying molecular cause of Stargardt disease (STGD1), an autosomal recessive macular dystrophy characterized by a progressive loss of central vision. Among intronic ABCA4 variants, c.4253+43G>A is frequently detected in STGD1 cases and is classified as a hypomorphic allele, generally associated with late-onset cases. This variant was previously reported to alter splicing regulatory sequences, but the splicing outcome is not fully understood yet. In this study, we attempted to better understand its effect on splicing and to rescue the aberrant splicing via antisense oligonucleotides (AONs). Wild-type and c.4253+43G>A variant-harboring maxigene vectors revealed additional skipping events, which were not previously detected upon transfection in HEK293T cells. To restore exon inclusion, we designed a set of 27 AONs targeting either splicing silencer motifs or the variant region and screened these in maxigene-transfected HEK293T cells. Candidate AONs able to promote exon inclusion were selected for further testing in patient-derived photoreceptor precursor cells. Surprisingly, no robust splicing modulation was observed in this model system. Overall, this research helped to adequately characterize the splicing alteration caused by the c.4253+43G>A variant, although future development of AON-mediated exon inclusion therapy for ABCA4 is needed.
Collapse
Affiliation(s)
- Nuria Suárez-Herrera
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Liu D, Yu H, Xue N, Bao H, Gao Q, Tian Y. Alternative splicing patterns of hnrnp genes in gill tissues of rainbow trout (Oncorhynchus mykiss) during salinity changes. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110948. [PMID: 38281704 DOI: 10.1016/j.cbpb.2024.110948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Alternative splicing (AS) plays an important role in various physiological processes in eukaryotes, such as the stress response. However, patterns of AS events remain largely unexplored during salinity acclimation in fishes. In this study, we conducted AS analysis using RNA-seq datasets to explore splicing patterns in the gill tissues of rainbow trout exposed to altered salinity environments, ranging from 0 ‰ (T0) to 30 ‰ (T30). The results revealed 1441, 351, 483, 1051 and 1049 differentially alternatively spliced (DAS) events in 5 pairwise comparisons, including T6 vs. T0, T12 vs. T0, T18 vs. T0, T24 vs. T0, and T30 vs. T0, respectively. These DAS events were derived from 1290, 328, 444, 963 and 948 genes. Enrichment analysis indicated that these DAS genes were related to RNA splicing and processing. Among these, 14 DAS genes were identified as members of the large heterogeneous nuclear RNP (hnRNP) gene family. Alternative 3' splice site (A3SS), exon skipping (SE) and intron retention (RI) events resulted in the fragmentation or even loss of the functional RNA recognition motif (RRM) domains in hnrnpa0, hnrnp1a, hnrnp1b and hnrnpc genes. The incomplete RRM domains would hinder the interactions between hnRNP genes and pre-mRNAs. It would in turn influence the splicing patterns and mRNA stability of downstream target genes in response to salinity changes. The study provides insights into salinity acclimation in gill tissues of rainbow trout and serves as a significant reference on the osmoregulation mechanisms at post-transcription regulation levels in fish.
Collapse
Affiliation(s)
- Dazhi Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China
| | - Han Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China
| | - Na Xue
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China
| | - Hancheng Bao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China
| | - Qinfeng Gao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China.
| | - Yuan Tian
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China.
| |
Collapse
|
14
|
Liu C, He S, Chen J, Wang M, Li Z, Wei L, Chen Y, Du M, Liu D, Li C, An C, Bhadauria V, Lai J, Zhu W. A dual-subcellular localized β-glucosidase confers pathogen and insect resistance without a yield penalty in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1017-1032. [PMID: 38012865 PMCID: PMC10955503 DOI: 10.1111/pbi.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Maize is one of the most important crops for food, cattle feed and energy production. However, maize is frequently attacked by various pathogens and pests, which pose a significant threat to maize yield and quality. Identification of quantitative trait loci and genes for resistance to pests will provide the basis for resistance breeding in maize. Here, a β-glucosidase ZmBGLU17 was identified as a resistance gene against Pythium aphanidermatum, one of the causal agents of corn stalk rot, by genome-wide association analysis. Genetic analysis showed that both structural variations at the promoter and a single nucleotide polymorphism at the fifth intron distinguish the two ZmBGLU17 alleles. The causative polymorphism near the GT-AG splice site activates cryptic alternative splicing and intron retention of ZmBGLU17 mRNA, leading to the downregulation of functional ZmBGLU17 transcripts. ZmBGLU17 localizes in both the extracellular matrix and vacuole and contribute to the accumulation of two defence metabolites lignin and DIMBOA. Silencing of ZmBGLU17 reduces maize resistance against P. aphanidermatum, while overexpression significantly enhances resistance of maize against both the oomycete pathogen P. aphanidermatum and the Asian corn borer Ostrinia furnacalis. Notably, ZmBGLU17 overexpression lines exhibited normal growth and yield phenotype in the field. Taken together, our findings reveal that the apoplastic and vacuolar localized ZmBGLU17 confers resistance to both pathogens and insect pests in maize without a yield penalty, by fine-tuning the accumulation of lignin and DIMBOA.
Collapse
Affiliation(s)
- Chuang Liu
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Shengfeng He
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Junbin Chen
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Mingyu Wang
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Zhenju Li
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Luyang Wei
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Yan Chen
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Meida Du
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Dandan Liu
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Cai Li
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Chunju An
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
- State Key Laboratory of Maize Bio‐breedingChina Agricultural UniversityBeijingChina
| | - Vijai Bhadauria
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Wangsheng Zhu
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
- State Key Laboratory of Maize Bio‐breedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
15
|
Rodríguez-Hidalgo M, de Bruijn SE, Corradi Z, Rodenburg K, Lara-López A, Valverde-Megías A, Ávila-Fernández A, Fernandez-Caballero L, Del Pozo-Valero M, Corominas J, Gilissen C, Irigoyen C, Cremers FPM, Ayuso C, Ruiz-Ederra J, Roosing S. ABCA4 c.6480-35A>G, a novel branchpoint variant associated with Stargardt disease. Front Genet 2023; 14:1234032. [PMID: 37779911 PMCID: PMC10539688 DOI: 10.3389/fgene.2023.1234032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction: Inherited retinal dystrophies (IRDs) can be caused by variants in more than 280 genes. The ATP-binding cassette transporter type A4 (ABCA4) gene is one of these genes and has been linked to Stargardt disease type 1 (STGD1), fundus flavimaculatus, cone-rod dystrophy (CRD), and pan-retinal CRD. Approximately 25% of the reported ABCA4 variants affect RNA splicing. In most cases, it is necessary to perform a functional assay to determine the effect of these variants. Methods: Whole genome sequencing (WGS) was performed in one Spanish proband with Stargardt disease. The putative pathogenicity of c.6480-35A>G on splicing was investigated both in silico and in vitro. The in silico approach was based on the deep-learning tool SpliceAI. For the in vitro approach we used a midigene splice assay in HEK293T cells, based on a previously established wild-type midigene (BA29) containing ABCA4 exons 46 to 48. Results: Through the analysis of WGS data, we identified two candidate variants in ABCA4 in one proband: a previously described deletion, c.699_768+342del (p.(Gln234Phefs*5)), and a novel branchpoint variant, c.6480-35A>G. Segregation analysis confirmed that the variants were in trans. For the branchpoint variant, SpliceAI predicted an acceptor gain with a high score (0.47) at position c.6480-47. A midigene splice assay in HEK293T cells revealed the inclusion of the last 47 nucleotides of intron 47 creating a premature stop codon and allowed to categorize the variant as moderately severe. Subsequent analysis revealed the presence of this variant as a second allele besides c.1958G>A p.(Arg653His) in an additional Spanish proband in a large cohort of IRD cases. Conclusion: A splice-altering effect of the branchpoint variant, confirmed by the midigene splice assay, along with the identification of this variant in a second unrelated individual affected with STGD, provides sufficient evidence to classify the variant as likely pathogenic. In addition, this research highlights the importance of studying non-coding regions and performing functional assays to provide a conclusive molecular diagnosis.
Collapse
Affiliation(s)
- María Rodríguez-Hidalgo
- Department of Neuroscience, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- Department of Genetic, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Suzanne E. de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kim Rodenburg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Almudena Ávila-Fernández
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Fernandez-Caballero
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Del Pozo-Valero
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Corominas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cristina Irigoyen
- Department of Neuroscience, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- Ophthalmology Service, Donostia Universy Hospital, Donostia-San Sebastián, Spain
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Carmen Ayuso
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Ruiz-Ederra
- Department of Neuroscience, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- Department of Ophthalmology, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
16
|
Joudaki A, Takeda JI, Masuda A, Ode R, Fujiwara K, Ohno K. FexSplice: A LightGBM-Based Model for Predicting the Splicing Effect of a Single Nucleotide Variant Affecting the First Nucleotide G of an Exon. Genes (Basel) 2023; 14:1765. [PMID: 37761905 PMCID: PMC10531444 DOI: 10.3390/genes14091765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Single nucleotide variants (SNVs) affecting the first nucleotide G of an exon (Fex-SNVs) identified in various diseases are mostly recognized as missense or nonsense variants. Their effect on pre-mRNA splicing has been seldom analyzed, and no curated database is available. We previously reported that Fex-SNVs affect splicing when the length of the polypyrimidine tract is short or degenerate. However, we cannot readily predict the splicing effects of Fex-SNVs. We here scrutinized the available literature and identified 106 splicing-affecting Fex-SNVs based on experimental evidence. We similarly identified 106 neutral Fex-SNVs in the dbSNP database with a global minor allele frequency (MAF) of more than 0.01 and less than 0.50. We extracted 115 features representing the strength of splicing cis-elements and developed machine-learning models with support vector machine, random forest, and gradient boosting to discriminate splicing-affecting and neutral Fex-SNVs. Gradient boosting-based LightGBM outperformed the other two models, and the length and nucleotide compositions of the polypyrimidine tract played critical roles in the discrimination. Recursive feature elimination showed that the LightGBM model using 15 features achieved the best performance with an accuracy of 0.80 ± 0.12 (mean and SD), a Matthews Correlation Coefficient (MCC) of 0.57 ± 0.15, an area under the curve of the receiver operating characteristics curve (AUROC) of 0.86 ± 0.08, and an area under the curve of the precision-recall curve (AUPRC) of 0.87 ± 0.09 using a 10-fold cross-validation. We developed a web service program, named FexSplice that accepts a genomic coordinate either on GRCh37/hg19 or GRCh38/hg38 and returns a predicted probability of aberrant splicing of A, C, and T variants.
Collapse
Affiliation(s)
- Atefeh Joudaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (A.J.); (J.-i.T.); (A.M.)
| | - Jun-ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (A.J.); (J.-i.T.); (A.M.)
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (A.J.); (J.-i.T.); (A.M.)
| | - Rikumo Ode
- Department of Materials Science and Engineering, Nagoya University Graduate School of Engineering, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.O.); (K.F.)
| | - Koichi Fujiwara
- Department of Materials Science and Engineering, Nagoya University Graduate School of Engineering, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.O.); (K.F.)
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (A.J.); (J.-i.T.); (A.M.)
| |
Collapse
|
17
|
Aradhya S, Facio FM, Metz H, Manders T, Colavin A, Kobayashi Y, Nykamp K, Johnson B, Nussbaum RL. Applications of artificial intelligence in clinical laboratory genomics. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:e32057. [PMID: 37507620 DOI: 10.1002/ajmg.c.32057] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
The transition from analog to digital technologies in clinical laboratory genomics is ushering in an era of "big data" in ways that will exceed human capacity to rapidly and reproducibly analyze those data using conventional approaches. Accurately evaluating complex molecular data to facilitate timely diagnosis and management of genomic disorders will require supportive artificial intelligence methods. These are already being introduced into clinical laboratory genomics to identify variants in DNA sequencing data, predict the effects of DNA variants on protein structure and function to inform clinical interpretation of pathogenicity, link phenotype ontologies to genetic variants identified through exome or genome sequencing to help clinicians reach diagnostic answers faster, correlate genomic data with tumor staging and treatment approaches, utilize natural language processing to identify critical published medical literature during analysis of genomic data, and use interactive chatbots to identify individuals who qualify for genetic testing or to provide pre-test and post-test education. With careful and ethical development and validation of artificial intelligence for clinical laboratory genomics, these advances are expected to significantly enhance the abilities of geneticists to translate complex data into clearly synthesized information for clinicians to use in managing the care of their patients at scale.
Collapse
Affiliation(s)
- Swaroop Aradhya
- Invitae Corporation, San Francisco, California, USA
- Adjunct Clinical Faculty, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Hillery Metz
- Invitae Corporation, San Francisco, California, USA
| | - Toby Manders
- Invitae Corporation, San Francisco, California, USA
| | | | | | - Keith Nykamp
- Invitae Corporation, San Francisco, California, USA
| | | | - Robert L Nussbaum
- Invitae Corporation, San Francisco, California, USA
- Volunteer Faculty, School of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
18
|
Sullivan PJ, Gayevskiy V, Davis RL, Wong M, Mayoh C, Mallawaarachchi A, Hort Y, McCabe MJ, Beecroft S, Jackson MR, Arts P, Dubowsky A, Laing N, Dinger ME, Scott HS, Oates E, Pinese M, Cowley MJ. Introme accurately predicts the impact of coding and noncoding variants on gene splicing, with clinical applications. Genome Biol 2023; 24:118. [PMID: 37198692 PMCID: PMC10190034 DOI: 10.1186/s13059-023-02936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/10/2023] [Indexed: 05/19/2023] Open
Abstract
Predicting the impact of coding and noncoding variants on splicing is challenging, particularly in non-canonical splice sites, leading to missed diagnoses in patients. Existing splice prediction tools are complementary but knowing which to use for each splicing context remains difficult. Here, we describe Introme, which uses machine learning to integrate predictions from several splice detection tools, additional splicing rules, and gene architecture features to comprehensively evaluate the likelihood of a variant impacting splicing. Through extensive benchmarking across 21,000 splice-altering variants, Introme outperformed all tools (auPRC: 0.98) for the detection of clinically significant splice variants. Introme is available at https://github.com/CCICB/introme .
Collapse
Affiliation(s)
- Patricia J Sullivan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Velimir Gayevskiy
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, Australia
| | - Ryan L Davis
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, Australia
- Department of Neurogenetics, Kolling Institute, St. Leonards, NSW, Australia
- Sydney Medical School-Northern, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Marie Wong
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Amali Mallawaarachchi
- Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, Australia
- Clinical Genetics Unit, Institute of Precision Medicine and Bioinformatics, Sydney Local Health District, Sydney, Australia
| | - Yvonne Hort
- Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, Australia
| | - Mark J McCabe
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, Australia
| | - Sarah Beecroft
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
| | - Matilda R Jackson
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, Australia
- Australian Genomics, Parkville, VIC, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, Australia
| | - Andrew Dubowsky
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Nigel Laing
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
| | - Marcel E Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, Australia
- Australian Genomics, Parkville, VIC, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Emily Oates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Mark Pinese
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Orosz G, Szabó L, Bereti S, Zámbó V, Csala M, Kereszturi É. Molecular Basis of Unequal Alternative Splicing of Human SCD5 and Its Alteration by Natural Genetic Variations. Int J Mol Sci 2023; 24:ijms24076517. [PMID: 37047490 PMCID: PMC10095032 DOI: 10.3390/ijms24076517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Alternative splicing (AS) is a major means of post-transcriptional control of gene expression, and provides a dynamic versatility of protein isoforms. Cancer-related AS disorders have diagnostic, prognostic and therapeutic values. Changes in the expression and AS of human stearoyl-CoA desaturase-5 (SCD5) are promising specific tumor markers, although the transcript variants (TVs) of the gene have not yet been confirmed. Our in silico, in vitro and in vivo study focuses on the distribution of SCD5 TVs (A and B) in human tissues, the functionality of the relevant splice sites, and their modulation by certain single-nucleotide variations (SNVs). An order of magnitude higher SCD5A expression was found compared with SCD5B. This unequal splicing is attributed to a weaker recognition of the SCD5B-specific splicing acceptor site, based on predictions confirmed by an optimized minigene assay. The pronounced dominance of SCD5A was largely modified (rs1430176385_A, rs1011850309_A) or even inverted (rs1011850309_C) by natural SNVs at the TV-specific splice sites. Our results provide long missing data on the proportion of SCD5 TVs in human tissues and reveal mutation-driven changes in SCD5 AS, potentially affecting tumor-associated reprogramming of lipid metabolism, thus having prognostic significance, which may be utilized for novel and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Gabriella Orosz
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Luca Szabó
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Szanna Bereti
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Veronika Zámbó
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Éva Kereszturi
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
20
|
Putscher E, Hecker M, Fitzner B, Boxberger N, Schwartz M, Koczan D, Lorenz P, Zettl UK. Genetic risk variants for multiple sclerosis are linked to differences in alternative pre-mRNA splicing. Front Immunol 2022; 13:931831. [PMID: 36405756 PMCID: PMC9670805 DOI: 10.3389/fimmu.2022.931831] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/12/2022] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system to which a genetic predisposition contributes. Over 200 genetic regions have been associated with increased disease risk, but the disease-causing variants and their functional impact at the molecular level are mostly poorly defined. We hypothesized that single-nucleotide polymorphisms (SNPs) have an impact on pre-mRNA splicing in MS. METHODS Our study focused on 10 bioinformatically prioritized SNP-gene pairs, in which the SNP has a high potential to alter alternative splicing events (ASEs). We tested for differential gene expression and differential alternative splicing in B cells from MS patients and healthy controls. We further examined the impact of the SNP genotypes on ASEs and on splice isoform expression levels. Novel genotype-dependent effects on splicing were verified with splicing reporter minigene assays. RESULTS We were able to confirm previously described findings regarding the relation of MS-associated SNPs with the ASEs of the pre-mRNAs from GSDMB and SP140. We also observed an increased IL7R exon 6 skipping when comparing relapsing and progressive MS patients to healthy subjects. Moreover, we found evidence that the MS risk alleles of the SNPs rs3851808 (EFCAB13), rs1131123 (HLA-C), rs10783847 (TSFM), and rs2014886 (TSFM) may contribute to a differential splicing pattern. Of particular interest is the genotype-dependent exon skipping of TSFM due to the SNP rs2014886. The minor allele T creates a donor splice site, resulting in the expression of the exon 3 and 4 of a short TSFM transcript isoform, whereas in the presence of the MS risk allele C, this donor site is absent, and thus the short transcript isoform is not expressed. CONCLUSION In summary, we found that genetic variants from MS risk loci affect pre-mRNA splicing. Our findings substantiate the role of ASEs with respect to the genetics of MS. Further studies on how disease-causing genetic variants may modify the interactions between splicing regulatory sequence elements and RNA-binding proteins can help to deepen our understanding of the genetic susceptibility to MS.
Collapse
Affiliation(s)
- Elena Putscher
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Michael Hecker
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Brit Fitzner
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Nina Boxberger
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Margit Schwartz
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Dirk Koczan
- Rostock University Medical Center, Institute of Immunology, Rostock, Germany
| | - Peter Lorenz
- Rostock University Medical Center, Institute of Immunology, Rostock, Germany
| | - Uwe Klaus Zettl
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| |
Collapse
|
21
|
Liu Y, Yeung WSB, Chiu PCN, Cao D. Computational approaches for predicting variant impact: An overview from resources, principles to applications. Front Genet 2022; 13:981005. [PMID: 36246661 PMCID: PMC9559863 DOI: 10.3389/fgene.2022.981005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
One objective of human genetics is to unveil the variants that contribute to human diseases. With the rapid development and wide use of next-generation sequencing (NGS), massive genomic sequence data have been created, making personal genetic information available. Conventional experimental evidence is critical in establishing the relationship between sequence variants and phenotype but with low efficiency. Due to the lack of comprehensive databases and resources which present clinical and experimental evidence on genotype-phenotype relationship, as well as accumulating variants found from NGS, different computational tools that can predict the impact of the variants on phenotype have been greatly developed to bridge the gap. In this review, we present a brief introduction and discussion about the computational approaches for variant impact prediction. Following an innovative manner, we mainly focus on approaches for non-synonymous variants (nsSNVs) impact prediction and categorize them into six classes. Their underlying rationale and constraints, together with the concerns and remedies raised from comparative studies are discussed. We also present how the predictive approaches employed in different research. Although diverse constraints exist, the computational predictive approaches are indispensable in exploring genotype-phenotype relationship.
Collapse
Affiliation(s)
- Ye Liu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S. B. Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Philip C. N. Chiu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
22
|
Pan YJ, Liu BW, Pei DS. The Role of Alternative Splicing in Cancer: Regulatory Mechanism, Therapeutic Strategy, and Bioinformatics Application. DNA Cell Biol 2022; 41:790-809. [PMID: 35947859 DOI: 10.1089/dna.2022.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
[Formula: see text] Alternative splicing (AS) can generate distinct transcripts and subsequent isoforms that play differential functions from the same pre-mRNA. Recently, increasing numbers of studies have emerged, unmasking the association between AS and cancer. In this review, we arranged AS events that are closely related to cancer progression and presented promising treatments based on AS for cancer therapy. Obtaining proliferative capacity, acquiring invasive properties, gaining angiogenic features, shifting metabolic ability, and getting immune escape inclination are all splicing events involved in biological processes. Spliceosome-targeted and antisense oligonucleotide technologies are two novel strategies that are hopeful in tumor therapy. In addition, bioinformatics applications based on AS were summarized for better prediction and elucidation of regulatory routines mingled in. Together, we aimed to provide a better understanding of complicated AS events associated with cancer biology and reveal AS a promising target of cancer treatment in the future.
Collapse
Affiliation(s)
- Yao-Jie Pan
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Bo-Wen Liu
- Department of General Surgery, Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
23
|
Tawfik CA, Elbagoury NM, Khater NI, Essawi ML. Mutation analysis reveals novel and known mutations in SAG gene in first two Egyptian families with Oguchi disease. BMC Ophthalmol 2022; 22:217. [PMID: 35549688 PMCID: PMC9103117 DOI: 10.1186/s12886-022-02444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background Oguchi disease is a rare type of congenital stationary night blindness associated with an abnormal fundus appearance. It is inherited in an autosomal recessive manner where two types exist according to the gene affected; type 1 associated with S-antigen (SAG) gene mutations and type 2 associated with rhodopsin kinase (GRK1) gene mutations. Purpose The aim of this work was to describe the clinical and genetic findings of the first two reported families of Oguchi disease in Egypt and African region. Methods Four members of two consanguineous Egyptian families with history of night blindness since childhood underwent complete ophthalmological examination, standard automated static perimetry, fundus color photography, fundus autofluorescence (FAF), fundus fluorescein angiography (FFA) in light-adapted state and spectral-domain optical coherence tomography (SD-OCT) of both the macula and the optic nerve head as well as central corneal thickness with repeated fundus photography following prolonged dark adaptation. Mutation screening of 7 coding exons of GRK1 gene and 15 coding exons of SAG gene as well as some flanking regions were performed using Sanger sequencing technique. The variants were tested for pathogenicity using different in silico functional analysis tools. Results The clinical examination and investigations confirmed Oguchi disease phenotype. One patient showed p.R193* (c.577C > T) which is a previously reported SAG gene mutation in a homozygous form. The other three patients from a different family showed (c.649–1 G > C), a novel canonical splice site SAG gene mutation in a homozygous form. Conclusion The identification of the novel canonical splice site SAG gene variant in three members of the same family with clinically confirmed Oguchi disease reinforces its pathogenicity. A fourth patient from another family carried a previously reported mutation in the same gene. SAG gene variants may be the underlying genetic cause for Oguchi disease in Egypt. Our findings have expanded the spectrum of Oguchi disease-associated mutations in SAG gene and may serve as a basis for genetic diagnosis for Oguchi disease.
Collapse
Affiliation(s)
- Caroline Atef Tawfik
- Department of Ophthalmology, Ain Shams University, 38 Abbasseya, Nour Mosque, El-Mohamady, Al Waili, Cairo, 11566, Egypt.
| | - Nagham Maher Elbagoury
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.,Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Noha Ibrahim Khater
- Department of Ophthalmology, Cairo University, Giza, Egypt.,Al Mouneer Diabetic Eye Center, Dokki, Giza, Egypt
| | - Mona Lotfi Essawi
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.,Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| |
Collapse
|
24
|
Deng H, Zhang Y, Ding J, Wang F. Presumed COL4A3/COL4A4 Missense/Synonymous Variants Induce Aberrant Splicing. Front Med (Lausanne) 2022; 9:838983. [PMID: 35386907 PMCID: PMC8977549 DOI: 10.3389/fmed.2022.838983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/07/2022] [Indexed: 12/27/2022] Open
Abstract
Background The incorrect interpretation of missense and synonymous variants can lead to improper molecular diagnosis and subsequent faulty genetic counselling. The aim of this study was to evaluate the pathogenicity of presumed COL4A3/COL4A4 missense and synonymous variants detected by next-generation sequencing to provide evidence for diagnosis and genetic counselling. Methods Patients' clinical findings and genetic data were analysed retrospectively. An in vitro minigene assay was conducted to assess the effect of presumed COL4A3/COL4A4 missense and synonymous variants on RNA splicing. Results Five unclassified COL4A3/COL4A4 variants, which were detected in five of 343 patients with hereditary kidney diseases, were analysed. All of them were predicted to affect splicing by Human Splicing Finder. The presumed COL4A3 missense variant c.4793T > G [p. (Leu1598Arg)] resulted in a loss of alternative full-length transcript during the splicing process. The COL4A3 transcript carried synonymous variant c.765G > A [p. (Thr255Thr)], led to an in-frame deletion of exon 13. Nevertheless, variants c.3566G > A [p. (Gly1189Glu)] in COL4A3 and c.3990G > A [p. (Pro1330Pro)], c.4766C > T [p. (Pro1589Leu)] in COL4A4 exhibited no deleterious effect on splicing. Among the five patients harbouring the abovementioned COL4A3/COL4A4 variants, three patients were genetically diagnosed with autosomal recessive Alport syndrome, one patient was highly suspected of having thin basement membrane nephropathy, and the other patient was clinically diagnosed with Alport syndrome. Conclusions COL4A3 presumed missense variant p. (Leu1598Arg) and synonymous variant p. (Thr255Thr) affect RNA splicing, which highlights the prime importance of transcript analysis of unclassified exonic sequence variants for better molecular diagnosis and genetic counselling. Meanwhile, the reliability of splicing predictions by predictive tools for exonic substitutions needs to be improved.
Collapse
Affiliation(s)
- Haiyue Deng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
25
|
Cheng Z, He X, Zou F, Xu ZE, Li C, Liu H, Miao J. Identification of Novel Mutations in Chinese Infants With Citrullinemia. Front Genet 2022; 13:783799. [PMID: 35309121 PMCID: PMC8929347 DOI: 10.3389/fgene.2022.783799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Citrullinemia is a rare autosomal recessive disorder characterized by elevated concentrations of citrulline in the blood resulting from malfunction of the urea cycle. It is categorized into two types, types I and II, which are caused by argininosuccinate synthase 1 (ASS1), and citrin (SLC25A13) gene mutations, respectively. In this study, we performed genetic analysis on nine Chinese infants with citrullinemia using next-generation sequencing, which identified a novel mutation (p.Leu313Met) and a rare mutation (p.Thr323Ile, rs1250895424) of ASS1. We also found a novel splicing mutation of SLC25A13: c.1311 + 4_+7del. Functional analysis of the ASS1 missense mutations showed that both significantly impaired the enzyme activity of ASS1, with the p. Thr323Ile mutation clearly affecting the interaction between ASS1 and protein arginine methyltransferase 7 (PRMT7). These findings expand the mutational spectrum of ASS1 and SLC25A13, and further our understanding of the molecular genetic mechanism of citrullinemia in the Chinese population.
Collapse
Affiliation(s)
- Zhi Cheng
- Key Laboratory of Birth Defects and Reproductive Health of the National Health and Family Planning Commission (Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiwen He
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Fa Zou
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhen-E Xu
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chun Li
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hao Liu
- Neonatal Disease Screening Center, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jingkun Miao
- Neonatal Disease Screening Center, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Jingkun Miao,
| |
Collapse
|
26
|
Rydzanicz M, Glinkowski W, Walczak A, Koppolu A, Kostrzewa G, Gasperowicz P, Pollak A, Stawiński P, Płoski R. Postzygotic mosaicism of a novel PTPN11 mutation in monozygotic twins discordant for metachondromatosis. Am J Med Genet A 2022; 188:1482-1487. [PMID: 35112464 DOI: 10.1002/ajmg.a.62670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 01/05/2023]
Abstract
Genetic mosaicism caused by postzygotic mutations is of a great interest due to its role in human disease. Monozygotic twins arising from a single zygote are considered as genetically identical, and any differences likely to be caused by postzygotic events. Thus, phenotypically discordant monozygotic twins offer a unique opportunity to study genotype-phenotype correlation. Here, we present a three-generation family starting from a pair of monozygotic twins discordant for metachondromatosis due to postzygotic p.(Gln175His) variant in the PTPN11 gene. Both phenotypically discordant monozygotic twins harbor p.(Gln175His), however significant differences in mosaic ratio is observed not only between twins, but also within different tissue types within one individual. Phenotypic manifestation of p.(Gln175His) in examined family clearly depends on allele variant fraction (VAF). Individuals harboring constitutional mutation (VAF 50%) present typical metachondromatosis. Milder phenotype is observed in twin harboring high-level mosaicism in the tissue of ectodermal origin (VAF 45%), but not in a blood (VAF 5%). Finally, her twin sister harboring low-level mosaicism in blood (VAF 2%) and nonblood (VAF 12%) tissues is phenotypically normal. Our results provide insights into biological role of mosaicism in disease and further support the usefulness of nonblood tissues as an optimal source of DNA for the identification of postzygotic mutations in phenotypically discordant monozygotic twins.
Collapse
Affiliation(s)
| | - Wojciech Glinkowski
- Center of Excellence "TeleOrto" for Telediagnostics and Treatment of Disorders and Injuries of the Locomotor System, Department of Medical Informatics and Telemedicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna Walczak
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Koppolu
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Grażyna Kostrzewa
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Gasperowicz
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Stawiński
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
27
|
Abstract
Targeting of pre-mRNA splicing has yielded a rich variety of strategies for altering gene expression as a treatment for disease. The search for therapeutics that can modulate splicing has been dominated by antisense oligonucleotides (ASOs) and small molecule compounds, with each platform achieving remarkably effective results in the clinic. The success of RNA-targeting drugs has led to the exploration of new strategies to expand the repertoire of this type of therapeutic. Here, we discuss some of the more common causes of faulty gene expression and provide examples of approaches that have been developed to target and correct these defects for therapeutic value.
Collapse
Affiliation(s)
- Jessica L Centa
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
28
|
D A, Y L, R S, H D, E B, Rm W, I V, L C, N.J D. Background splicing as a predictor of aberrant splicing in genetic disease. RNA Biol 2021; 19:256-265. [PMID: 35188075 PMCID: PMC8865296 DOI: 10.1080/15476286.2021.2024031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/26/2021] [Indexed: 11/29/2022] Open
Abstract
Mutations of splice sites, auxiliary splicing elements and the splicing machinery cause a wide range of genetic disease. Here we report that many of the complex effects of splicing mutations can be predicted from background splicing information, with emphasis on BRCA1, BRCA2 and DMD. Background splicing arises from very low level splicing between rarely used background splice sites and from low-level exon skipping between intron splice sites. We show how this information can be downloaded from the Snaptron database of spliced RNA, which we then compared with databases of human splice site mutations. We report that inactivating mutations of intron splice sites typically caused the non-mutated partner splice site to splice to a known background splice site in over 90% of cases and to the strongest background splice site in the large majority of cases. Consequently, background splicing information can usefully predict the effects of splice site mutations, which include cryptic splice activation and single or multiple exon skipping. In addition, de novo splice sites and splice sites involved in pseudoexon formation, recursive splicing and aberrant splicing in cancer show a 90% match to background splice sites, so establishing that the enhancement of background splicing causes a wide range of splicing aberrations. We also discuss how background splicing information can identify cryptic splice sites that might be usefully targeted by antisense oligonucleotides (ASOs) and how it might indicate possible multiple exon skipping side effects of ASOs designed to induce single exon skipping.
Collapse
Affiliation(s)
- Alexieva D
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Long Y
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Sarkar R
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Dhayan H
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Bruet E
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Winston Rm
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Vorechovsky I
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Castellano L
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (Ictem), London, UK
- School of Life Sciences, University of Sussex, Falmer, UK
| | - Dibb N.J
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| |
Collapse
|
29
|
Liang Q, Lin X, Wu X, Shao Y, Chen C, Dai J, Lu Y, Wu W, Ding Q, Wang X. Unraveling the molecular basis underlying nine putative splice site variants of von Willebrand factor. Hum Mutat 2021; 43:215-227. [PMID: 34882887 DOI: 10.1002/humu.24312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Approximately 10% of von Willebrand factor (VWF) gene variants are suspected to disrupt messenger RNA (mRNA) processing, the number of which might be underestimated due to the lack of transcript assays. In the present study, we provided a detailed strategy to evaluate the effects of nine putative splice site variants (PSSVs) of VWF on mRNA processing as well as protein properties and establish their genotype-phenotype relationships. Eight of nine PSSVs affected VWF splicing: c.322A>T, c.1534-13_1551delinsCA, and c.8116-2del caused exon skipping; c.221-2A>C, c.323+1G>T, and c.2547-13T>A resulted in the activation of cryptic splice sites; c.2684A>G led to exon skipping and activation of a cryptic splice site; c.2968-14A>G created a new splice site. The remaining c.5171-9del was likely benign. The efficiency of nonsense-mediated mRNA decay (NMD) was much higher in platelets compared to leukocytes, impairing the identification of aberrant transcripts in 4 of 8 PSSVs. The nonsense variant c.322A>T partially impaired mRNA processing, leaking a small amount of correct transcripts with c.322T (p.Arg108*), while the missense variant c.2684A>G totally disrupted normal splicing of VWF, rather than produced mutant protein with the substitution of Gln895Arg. The results of this study would certainly add novel insights into the molecular events behind von Willebrand disease.
Collapse
Affiliation(s)
- Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoyi Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyan Shao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yeling Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Petersen USS, Doktor TK, Andresen BS. Pseudoexon activation in disease by non-splice site deep intronic sequence variation - wild type pseudoexons constitute high-risk sites in the human genome. Hum Mutat 2021; 43:103-127. [PMID: 34837434 DOI: 10.1002/humu.24306] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/27/2022]
Abstract
Accuracy of pre-messenger RNA (pre-mRNA) splicing is crucial for normal gene expression. Complex regulation supports the spliceosomal distinction between authentic exons and the many seemingly functional splice sites delimiting pseudoexons. Pseudoexons are nonfunctional intronic sequences that can be activated for aberrant inclusion in mRNA, which may cause disease. Pseudoexon activation is very challenging to predict, in particular when activation occurs by sequence variants that alter the splicing regulatory environment without directly affecting splice sites. As pseudoexon inclusion often evades detection due to activation of nonsense-mediated mRNA decay, and because conventional diagnostic procedures miss deep intronic sequence variation, pseudoexon activation is a heavily underreported disease mechanism. Pseudoexon characteristics have mainly been studied based on in silico predicted sequences. Moreover, because recognition of sequence variants that create or strengthen splice sites is possible by comparison with well-established consensus sequences, this type of pseudoexon activation is by far the most frequently reported. Here we review all known human disease-associated pseudoexons that carry functional splice sites and are activated by deep intronic sequence variants located outside splice site sequences. We delineate common characteristics that make this type of wild type pseudoexons distinct high-risk sites in the human genome.
Collapse
Affiliation(s)
- Ulrika S S Petersen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
31
|
de Castro VF, Mattos D, de Carvalho FM, Cavalcanti DP, Duenas-Roque MM, Llerena J, Cosentino VR, Honjo RS, Leite JCL, Sanseverino MT, de Souza MPA, Bernardi P, Bolognese AM, Santana da Silva LC, Barbero P, Correia PS, Bueno LSM, Savastano CP, Orioli IM. New SHH and Known SIX3 Variants in a Series of Latin American Patients with Holoprosencephaly. Mol Syndromol 2021; 12:219-233. [PMID: 34421500 DOI: 10.1159/000515044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
Holoprosencephaly (HPE) is the failure of the embryonic forebrain to develop into 2 hemispheres promoting midline cerebral and facial defects. The wide phenotypic variability and causal heterogeneity make genetic counseling difficult. Heterozygous variants with incomplete penetrance and variable expressivity in the SHH, SIX3, ZIC2, and TGIF1 genes explain ∼25% of the known causes of nonchromosomal HPE. We studied these 4 genes and clinically described 27 Latin American families presenting with nonchromosomal HPE. Three new SHH variants and a third known SIX3 likely pathogenic variant found by Sanger sequencing explained 15% of our cases. Genotype-phenotype correlation in these 4 families and published families with identical or similar driver gene, mutated domain, conservation of residue in other species, and the type of variant explain the pathogenicity but not the phenotypic variability. Nine patients, including 2 with SHH pathogenic variants, presented benign variants of the SHH, SIX3, ZIC2, and TGIF1 genes with potential alteration of splicing, a causal proposition in need of further studies. Finding more families with the same SIX3 variant may allow further identification of genetic or environmental modifiers explaining its variable phenotypic expression.
Collapse
Affiliation(s)
- Viviane Freitas de Castro
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| | - Daniel Mattos
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| | - Flavia Martinez de Carvalho
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,ECLAMC at Laboratorio Epidemiol. Malformações Congênitas, IOC/FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Milagros M Duenas-Roque
- ECLAMC at Servicio de Genética, Hospital Nacional Edgardo Rebagliati Martins/EsSalud, Lima, Peru
| | - Juan Llerena
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,ECLAMC at Centro de Genética Médica, IFF/FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | - Pricila Bernardi
- Núcleo de Genética Clínica, Departamento de Clínica Médica/UFSC, Florianópolis, Brazil
| | - Ana Maria Bolognese
- Departamento de Ortodontia, Faculdade de Odontologia/UFRJ, Rio de Janeiro, Brazil
| | - Luiz Carlos Santana da Silva
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,Laboratório de Erros Inatos de Metabolismo, Instituto de Ciências Biológicas/UFP, Belém, Brazil
| | - Pablo Barbero
- RENAC, Centro Nacional de Genética Médica Dr. Eduardo E. Castilla/MS, Buenos Aires, Argentina
| | | | | | | | - Iêda Maria Orioli
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| |
Collapse
|
32
|
Takeda JI, Fukami S, Tamura A, Shibata A, Ohno K. IntSplice2: Prediction of the Splicing Effects of Intronic Single-Nucleotide Variants Using LightGBM Modeling. Front Genet 2021; 12:701076. [PMID: 34349788 PMCID: PMC8326971 DOI: 10.3389/fgene.2021.701076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/17/2021] [Indexed: 12/03/2022] Open
Abstract
Prediction of the effect of a single-nucleotide variant (SNV) in an intronic region on aberrant pre-mRNA splicing is challenging except for an SNV affecting the canonical GU/AG splice sites (ss). To predict pathogenicity of SNVs at intronic positions −50 (Int-50) to −3 (Int-3) close to the 3’ ss, we developed light gradient boosting machine (LightGBM)-based IntSplice2 models using pathogenic SNVs in the human gene mutation database (HGMD) and ClinVar and common SNVs in dbSNP with 0.01 ≤ minor allelic frequency (MAF) < 0.50. The LightGBM models were generated using features representing splicing cis-elements. The average recall/sensitivity and specificity of IntSplice2 by fivefold cross-validation (CV) of the training dataset were 0.764 and 0.884, respectively. The recall/sensitivity of IntSplice2 was lower than the average recall/sensitivity of 0.800 of IntSplice that we previously made with support vector machine (SVM) modeling for the same intronic positions. In contrast, the specificity of IntSplice2 was higher than the average specificity of 0.849 of IntSplice. For benchmarking (BM) of IntSplice2 with IntSplice, we made a test dataset that was not used to train IntSplice. After excluding the test dataset from the training dataset, we generated IntSplice2-BM and compared it with IntSplice using the test dataset. IntSplice2-BM was superior to IntSplice in all of the seven statistical measures of accuracy, precision, recall/sensitivity, specificity, F1 score, negative predictive value (NPV), and matthews correlation coefficient (MCC). We made the IntSplice2 web service at https://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice2.
Collapse
Affiliation(s)
- Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sae Fukami
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Tamura
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihide Shibata
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Anesthesiology, Toranomon Hospital, Tokyo, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
33
|
Guglielmi C, Scarpitta R, Gambino G, Conti E, Bellè F, Tancredi M, Cervelli T, Falaschi E, Cosini C, Aretini P, Congregati C, Marino M, Patruno M, Pilato B, Spina F, Balestrino L, Tenedini E, Carnevali I, Cortesi L, Tagliafico E, Tibiletti MG, Tommasi S, Ghilli M, Vivanet C, Galli A, Caligo MA. Detection of Germline Variants in 450 Breast/Ovarian Cancer Families with a Multi-Gene Panel Including Coding and Regulatory Regions. Int J Mol Sci 2021; 22:ijms22147693. [PMID: 34299313 PMCID: PMC8305371 DOI: 10.3390/ijms22147693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
With the progress of sequencing technologies, an ever-increasing number of variants of unknown functional and clinical significance (VUS) have been identified in both coding and non-coding regions of the main Breast Cancer (BC) predisposition genes. The aim of this study is to identify a mutational profile of coding and intron-exon junction regions of 12 moderate penetrance genes (ATM, BRIP1, CDH1, CHEK2, NBN, PALB2, PTEN, RAD50, RAD51C, RAD51D, STK11, TP53) in a cohort of 450 Italian patients with Hereditary Breast/Ovarian Cancer Syndrome, wild type for germline mutation in BRCA1/2 genes. The analysis was extended to 5′UTR and 3′UTR of all the genes listed above and to the BRCA1 and BRCA2 known regulatory regions in a subset of 120 patients. The screening was performed through NGS target resequencing on the Illumina platform MiSeq. 8.7% of the patients analyzed is carriers of class 5/4 coding variants in the ATM (3.6%), BRIP1 (1.6%), CHEK2 (1.8%), PALB2 (0.7%), RAD51C (0.4%), RAD51D (0.4%), and TP53 (0.2%) genes, while variants of uncertain pathological significance (VUSs)/class 3 were identified in 9.1% of the samples. In intron-exon junctions and in regulatory regions, variants were detected respectively in 5.1% and in 32.5% of the cases analyzed. The average age of disease onset of 44.4 in non-coding variant carriers is absolutely similar to the average age of disease onset in coding variant carriers for each proband’s group with the same cancer type. Furthermore, there is not a statistically significant difference in the proportion of cases with a tumor onset under age of 40 between the two groups, but the presence of multiple non-coding variants in the same patient may affect the aggressiveness of the tumor and it is worth underlining that 25% of patients with an aggressive tumor are carriers of a PTEN 3′UTR-variant. This data provides initial information on how important it might be to extend mutational screening to the regulatory regions in clinical practice.
Collapse
Affiliation(s)
- Chiara Guglielmi
- SOD Molecular Genetics, University Hospital of Pisa, 56126 Pisa, Italy; (C.G.); (E.C.); (M.T.); (E.F.); (C.C.)
| | - Rosa Scarpitta
- Division of Pathology, University of Pisa, 56126 Pisa, Italy;
| | - Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Eleonora Conti
- SOD Molecular Genetics, University Hospital of Pisa, 56126 Pisa, Italy; (C.G.); (E.C.); (M.T.); (E.F.); (C.C.)
| | - Francesca Bellè
- Functional Genetics and Genomics Laboratory, Institute of Clinical Physiology, IFC-CNR, 56127 Pisa, Italy; (F.B.); (T.C.)
| | - Mariella Tancredi
- SOD Molecular Genetics, University Hospital of Pisa, 56126 Pisa, Italy; (C.G.); (E.C.); (M.T.); (E.F.); (C.C.)
| | - Tiziana Cervelli
- Functional Genetics and Genomics Laboratory, Institute of Clinical Physiology, IFC-CNR, 56127 Pisa, Italy; (F.B.); (T.C.)
| | - Elisabetta Falaschi
- SOD Molecular Genetics, University Hospital of Pisa, 56126 Pisa, Italy; (C.G.); (E.C.); (M.T.); (E.F.); (C.C.)
| | - Cinzia Cosini
- SOD Molecular Genetics, University Hospital of Pisa, 56126 Pisa, Italy; (C.G.); (E.C.); (M.T.); (E.F.); (C.C.)
| | - Paolo Aretini
- Section of Oncological Genomics, Fondazione Pisana per la Scienza, 56017 Pisa, Italy;
| | - Caterina Congregati
- Division of Internal Medicine, University Hospital of Pisa, 56126 Pisa, Italy;
| | - Marco Marino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.M.); (E.T.); (E.T.)
| | - Margherita Patruno
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (M.P.); (B.P.); (S.T.)
| | - Brunella Pilato
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (M.P.); (B.P.); (S.T.)
| | - Francesca Spina
- SC Medical Genetics, ASSL Cagliari, 09126 Cagliari, Italy; (F.S.); (L.B.); (C.V.)
| | - Luisa Balestrino
- SC Medical Genetics, ASSL Cagliari, 09126 Cagliari, Italy; (F.S.); (L.B.); (C.V.)
| | - Elena Tenedini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.M.); (E.T.); (E.T.)
| | - Ileana Carnevali
- Ospedale di Circolo ASST Settelaghi, 21100 Varese, Italy; (I.C.); (M.G.T.)
| | - Laura Cortesi
- Department of Oncology, Haematology and Respiratory Diseases, University Hospital of Modena, 41124 Modena, Italy;
| | - Enrico Tagliafico
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.M.); (E.T.); (E.T.)
| | | | - Stefania Tommasi
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (M.P.); (B.P.); (S.T.)
| | - Matteo Ghilli
- Breast Cancer Center, University Hospital, 56126 Pisa, Italy;
| | - Caterina Vivanet
- SC Medical Genetics, ASSL Cagliari, 09126 Cagliari, Italy; (F.S.); (L.B.); (C.V.)
| | - Alvaro Galli
- Functional Genetics and Genomics Laboratory, Institute of Clinical Physiology, IFC-CNR, 56127 Pisa, Italy; (F.B.); (T.C.)
- Correspondence: (A.G.); (M.A.C.)
| | - Maria Adelaide Caligo
- SOD Molecular Genetics, University Hospital of Pisa, 56126 Pisa, Italy; (C.G.); (E.C.); (M.T.); (E.F.); (C.C.)
- Correspondence: (A.G.); (M.A.C.)
| |
Collapse
|
34
|
Saha K, Fernandez MM, Biswas T, Joseph S, Ghosh G. Discovery of a pre-mRNA structural scaffold as a contributor to the mammalian splicing code. Nucleic Acids Res 2021; 49:7103-7121. [PMID: 34161584 PMCID: PMC8266590 DOI: 10.1093/nar/gkab533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
The specific recognition of splice signals at or near exon-intron junctions is not explained by their weak conservation and instead is postulated to require a multitude of features embedded in the pre-mRNA strand. We explored the possibility of 3D structural scaffold of AdML-a model pre-mRNA substrate-guiding early spliceosomal components to the splice signal sequences. We find that mutations in the non-cognate splice signal sequences impede recruitment of early spliceosomal components due to disruption of the global structure of the pre-mRNA. We further find that the pre-mRNA segments potentially interacting with the early spliceosomal component U1 snRNP are distributed across the intron, that there is a spatial proximity of 5' and 3' splice sites within the pre-mRNA scaffold, and that an interplay exists between the structural scaffold and splicing regulatory elements in recruiting early spliceosomal components. These results suggest that early spliceosomal components can recognize a 3D structural scaffold beyond the short splice signal sequences, and that in our model pre-mRNA, this scaffold is formed across the intron involving the major splice signals. This provides a conceptual basis to analyze the contribution of recognizable 3D structural scaffolds to the splicing code across the mammalian transcriptome.
Collapse
Affiliation(s)
- Kaushik Saha
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA
| | - Mike Minh Fernandez
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA
| | - Tapan Biswas
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA
| |
Collapse
|
35
|
Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A, Mohapatra B. Functional analysis of novel genetic variants of NKX2-5 associated with nonsyndromic congenital heart disease. Am J Med Genet A 2021; 185:3644-3663. [PMID: 34214246 DOI: 10.1002/ajmg.a.62413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/26/2023]
Abstract
NKX2-5, a master cardiac regulatory transcription factor was the first known genetic cause of congenital heart diseases (CHDs). To further investigate its role in CHD pathogenesis, we performed mutational screening of 285 CHD probands and 200 healthy controls. Five coding sequence variants were identified in six CHD cases (2.1%), including three in the N-terminal region (p.A61G, p.R95L, and p.E131K) and one each in homeodomain (HD) (p.A148E) and tyrosine-rich domain (p.P247A). Variant-p.A148E showed tertiary structure changes and differential DNA binding affinity of mutant compared to wild type. Two N-terminal variants-p.A61G and p.E131K along with HD variant p.A148E demonstrated significantly reduced transcriptional activity of Nppa and Actc1 promoters in dual luciferase promoter assay supported by their reduced expression in qRT-PCR. Nonetheless, variant p.R95L affected the synergy of NKX2-5 with serum response factor and TBX5 leading to significantly decreased Actc1 promoter activity depicting a distinctive role of this region. The aberrant expression of other target genes-Irx4, Mef2c, Bmp10, Myh6, Myh7, and Myocd is also observed in response to NKX2-5 variants, possibly due to the defective gene regulatory network. Severely impaired downstream promoter activities and abnormal expression of target genes due to N-terminal variants supports the emerging role of this region during cardiac-developmental pathways.
Collapse
Affiliation(s)
- Ritu Dixit
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chitra Narasimhan
- Department of Pediatric Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, India
| | - Vijayalakshmi I Balekundri
- Super Speciality Hospital, Pradhan Mantri Swasthya Suraksha Yojana (PMSSY), Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Damyanti Agrawal
- Department of Cardiothoracic and Vascular Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
36
|
Riepe TV, Khan M, Roosing S, Cremers FPM, 't Hoen PAC. Benchmarking deep learning splice prediction tools using functional splice assays. Hum Mutat 2021; 42:799-810. [PMID: 33942434 PMCID: PMC8360004 DOI: 10.1002/humu.24212] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/16/2021] [Accepted: 04/17/2021] [Indexed: 12/21/2022]
Abstract
Hereditary disorders are frequently caused by genetic variants that affect pre-messenger RNA splicing. Though genetic variants in the canonical splice motifs are almost always disrupting splicing, the pathogenicity of variants in the noncanonical splice sites (NCSS) and deep intronic (DI) regions are difficult to predict. Multiple splice prediction tools have been developed for this purpose, with the latest tools employing deep learning algorithms. We benchmarked established and deep learning splice prediction tools on published gold standard sets of 71 NCSS and 81 DI variants in the ABCA4 gene and 61 NCSS variants in the MYBPC3 gene with functional assessment in midigene and minigene splice assays. The selection of splice prediction tools included CADD, DSSP, GeneSplicer, MaxEntScan, MMSplice, NNSPLICE, SPIDEX, SpliceAI, SpliceRover, and SpliceSiteFinder-like. The best-performing splice prediction tool for the different variants was SpliceRover for ABCA4 NCSS variants, SpliceAI for ABCA4 DI variants, and the Alamut 3/4 consensus approach (GeneSplicer, MaxEntScacn, NNSPLICE and SpliceSiteFinder-like) for NCSS variants in MYBPC3 based on the area under the receiver operator curve. Overall, the performance in a real-time clinical setting is much more modest than reported by the developers of the tools.
Collapse
Affiliation(s)
- Tabea V. Riepe
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
| | - Mubeen Khan
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
| | - Susanne Roosing
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
| | - Frans P. M. Cremers
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
| | - Peter A. C. 't Hoen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
37
|
Liang Q, Du X, Mao L, Wang G. Molecular characterization of colorectal cancer: A five-gene prognostic signature based on RNA-binding proteins. Saudi J Gastroenterol 2021; 27:223-233. [PMID: 34169901 PMCID: PMC8448017 DOI: 10.4103/sjg.sjg_530_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers worldwide. RNA-binding proteins (RBPs) regulate essential biological processes and play essential roles in a variety of cancers. The present study screened differentially expressed RBPs, analyzed their function and constructed a prognostic model to predict the overall survival of patients with CRC. METHODS We downloaded CRC RNA-sequencing data from the Cancer Genome Atlas (TCGA) portal and screened differentially expressed RBPs. Then, functional analyses of these genes were performed, and a risk model was established by multivariate Cox regression. RESULTS We obtained 132 differentially expressed RBPs, including 66 upregulated and 66 downregulated RBPs. Functional analysis revealed that these genes were significantly enriched in RNA processing, modification and binding, ribosome biogenesis, post-transcriptional regulation, ribonuclease and nuclease activity. Additionally, some RBPs were significantly related to interferon (IFN)-alpha and IFN-beta biosynthetic processes and the Toll-like receptor signaling pathway. A prognostic model was constructed and included insulin like growth factor 2 messenger ribonucleic acid binding protein 3 (IGF2BP3), poly (A) binding protein cytoplasmic 1 like (PABPC1L), peroxisome proliferator activated receptor gamma coactivator 1 alpha (PPARGC1A), peptidyl- transfer ribonucleic acid hydrolase 1 homolog (PTRH1) and tudor domain containing 7 (TDRD7). The model is an independent risk factor for clinicopathological characteristics. CONCLUSION Our study provided novel insights into the pathogenesis of CRC and constructed a prognostic gene model, which may be helpful for determining the prognosis of CRC.
Collapse
Affiliation(s)
- Qiankun Liang
- Gansu University of Chinese Medicine, Lanzhou, China,Address for correspondence: Dr. Qiankun Liang, Gansu University of Chinese Medicine, Lanzhou 730020, China. E-mail:
| | - Xiaojuan Du
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Lanfang Mao
- Gansu University of Chinese Medicine, Lanzhou, China,Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | | |
Collapse
|
38
|
Chen S, Wu P, Wu B, Lin C, Chen J, Chen L, Lv G. A Missense Mutation rs781536408 (c.2395G>A) of TYK2 Affects Splicing and Causes Skipping of Exon18 in vivo. Front Genet 2021; 12:679678. [PMID: 34234812 PMCID: PMC8255812 DOI: 10.3389/fgene.2021.679678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
TYK2 variants can impact disease onset or progression. In our previous study, we identified abnormal splicing that happened near rs781536408 in the TYK2 gene. The purpose of this research was to examine the effect of the mutation on alternative splicing in vivo and in vitro. Whole exome sequencing was performed to identify the mutations followed by bidirectional Sanger sequencing. Then the minigene analysis was carried out based on HeLa and HEK293T cell lines. The results showed that rs781536408 (c.2395G>A, p.G799R) was homozygous in the patient, but heterozygous in parents. PCR amplification confirmed the abnormal splicing in the somatic cells of the patients, but not in the parents. Sanger sequencing results showed that there was a skipping of exon18 near the mutation. For minigene analysis, there was no difference between the wild-type and the mutant type in the two minigene construction strategies, indicating that mutation c.2395G>A had no effect on splicing in vitro. Combining the results of in vivo, we speculated that the effect of the mutation on splicing was not absolute, but rather in degree.
Collapse
Affiliation(s)
- Suqing Chen
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Peilin Wu
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Bin Wu
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chenye Lin
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Junhong Chen
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lishengdan Chen
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ge Lv
- Chongqing Key Laboratory of Child Infectious and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
39
|
Putscher E, Hecker M, Fitzner B, Lorenz P, Zettl UK. Principles and Practical Considerations for the Analysis of Disease-Associated Alternative Splicing Events Using the Gateway Cloning-Based Minigene Vectors pDESTsplice and pSpliceExpress. Int J Mol Sci 2021; 22:5154. [PMID: 34068052 PMCID: PMC8152502 DOI: 10.3390/ijms22105154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022] Open
Abstract
Splicing is an important RNA processing step. Genetic variations can alter the splicing process and thereby contribute to the development of various diseases. Alterations of the splicing pattern can be examined by gene expression analyses, by computational tools for predicting the effects of genetic variants on splicing, and by splicing reporter minigene assays for studying alternative splicing events under defined conditions. The minigene assay is based on transient transfection of cells with a vector containing a genomic region of interest cloned between two constitutive exons. Cloning can be accomplished by the use of restriction enzymes or by site-specific recombination using Gateway cloning. The vectors pDESTsplice and pSpliceExpress represent two minigene systems based on Gateway cloning, which are available through the Addgene plasmid repository. In this review, we describe the features of these two splicing reporter minigene systems. Moreover, we provide an overview of studies in which determinants of alternative splicing were investigated by using pDESTsplice or pSpliceExpress. The studies were reviewed with regard to the investigated splicing regulatory events and the experimental strategy to construct and perform a splicing reporter minigene assay. We further elaborate on how analyses on the regulation of RNA splicing offer promising prospects for gaining important insights into disease mechanisms.
Collapse
Affiliation(s)
- Elena Putscher
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Street 20, 18147 Rostock, Germany; (E.P.); (B.F.); (U.K.Z.)
| | - Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Street 20, 18147 Rostock, Germany; (E.P.); (B.F.); (U.K.Z.)
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Street 20, 18147 Rostock, Germany; (E.P.); (B.F.); (U.K.Z.)
| | - Peter Lorenz
- Rostock University Medical Center, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany;
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Street 20, 18147 Rostock, Germany; (E.P.); (B.F.); (U.K.Z.)
| |
Collapse
|
40
|
Agiannitopoulos K, Pepe G, Papadopoulou E, Tsaousis GN, Kampouri S, Maravelaki S, Fassas A, Christodoulou C, Iosifidou R, Karageorgopoulou S, Markopoulos C, Natsiopoulos I, Papazisis K, Vasilaki-Antonatou M, Venizelos V, Ozmen V, Tansan S, Kaban K, Eniu DT, Chiorean A, Nasioulas G. Clinical Utility of Functional RNA Analysis for the Reclassification of Splicing Gene Variants in Hereditary Cancer. Cancer Genomics Proteomics 2021; 18:285-294. [PMID: 33893081 DOI: 10.21873/cgp.20259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Classification of splicing variants (SVs) in genes associated with hereditary cancer is often challenging. The aim of this study was to investigate the occurrence of SVs in hereditary cancer genes and the clinical utility of RNA analysis. MATERIAL AND METHODS 1518 individuals were tested for cancer predisposition, using a Next Generation Sequencing (NGS) panel of 36 genes. Splicing variant analysis was performed using RT-PCR and Sanger Sequencing. RESULTS In total, 34 different SVs were identified, 53% of which were classified as pathogenic or likely pathogenic. The remaining 16 variants were initially classified as Variant of Uncertain Significance (VUS). RNA analysis was performed for 3 novel variants. CONCLUSION The RNA analysis assisted in the reclassification of 20% of splicing variants from VUS to pathogenic. RNA analysis is essential in the case of uncharacterized splicing variants, for proper classification and personalized management of these patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Vahit Ozmen
- Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | | | - Dan Tudor Eniu
- Institutul Oncologic Prof. Dr. I. Chiricuta, Cluj, Romania
| | | | | |
Collapse
|
41
|
Kristan A, Gašperšič J, Režen T, Kunej T, Količ R, Vuga A, Fink M, Žula Š, Anžej Doma S, Preložnik Zupan I, Pajič T, Podgornik H, Debeljak N. Genetic analysis of 39 erythrocytosis and hereditary hemochromatosis-associated genes in the Slovenian family with idiopathic erythrocytosis. J Clin Lab Anal 2021; 35:e23715. [PMID: 33534944 PMCID: PMC8059723 DOI: 10.1002/jcla.23715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/10/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Erythrocytosis is a condition with an excessive number of erythrocytes, accompanied by an elevated haemoglobin and/or haematocrit value. Congenital erythrocytosis has a diverse genetic background with several genes involved in erythropoiesis. In clinical practice, nine genes are usually examined, but in approximately 70% of patients, no causative mutation can be identified. In this study, we screened 39 genes, aiming to identify potential disease-driving variants in the family with erythrocytosis of unknown cause. PATIENTS AND METHODS Two affected family members with elevated haemoglobin and/or haematocrit and negative for acquired causes and one healthy relative from the same family were selected for molecular-genetic analysis of 24 erythrocytosis and 15 hereditary haemochromatosis-associated genes with targeted NGS. The identified variants were further analysed for pathogenicity using various bioinformatic tools and review of the literature. RESULTS Of the 12 identified variants, two heterozygous variants, the missense variant c.471G>C (NM_022051.2) (p.(Gln157His)) in the EGLN1 gene and the intron variant c.2572-13A>G (NM_004972.3) in the JAK2 gene, were classified as low-frequency variants in European population. None of the two variants were present in a healthy family member. Variant c.2572-13A>G has potential impact on splicing by one prediction tool. CONCLUSION For the first time, we included 39 genes in the erythrocytosis clinical panel and identified two potential disease-driving variants in the Slovene family studied. Based on the reported functional in vitro studies combined with our bioinformatics analysis, we suggest further functional analysis of variant in the JAK2 gene and evaluation of a cumulative effect of both variants.
Collapse
Affiliation(s)
- Aleša Kristan
- Medical Centre for Molecular BiologyFaculty of MedicineInstitute of Biochemistry and Molecular GeneticsUniversity of LjubljanaLjubljanaSlovenia
| | - Jernej Gašperšič
- Medical Centre for Molecular BiologyFaculty of MedicineInstitute of Biochemistry and Molecular GeneticsUniversity of LjubljanaLjubljanaSlovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio‐ChipsFaculty of MedicineInstitute of Biochemistry and Molecular GeneticsUniversity of LjubljanaLjubljanaSlovenia
| | - Tanja Kunej
- Department of Animal ScienceBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Rok Količ
- Kemomed Research and DevelopmentKemomed LtdKranjSlovenia
| | - Andrej Vuga
- Kemomed Research and DevelopmentKemomed LtdKranjSlovenia
| | - Martina Fink
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Špela Žula
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Saša Anžej Doma
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Irena Preložnik Zupan
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Department of Internal MedicineFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Tadej Pajič
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Clinical Institute of Genomic MedicineUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Helena Podgornik
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Chair of Clinical BiochemistryFaculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Nataša Debeljak
- Medical Centre for Molecular BiologyFaculty of MedicineInstitute of Biochemistry and Molecular GeneticsUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
42
|
Morbidoni V, Baschiera E, Forzan M, Fumini V, Ali DS, Giorgi G, Buson L, Desbats MA, Cassina M, Clementi M, Salviati L, Trevisson E. Hybrid Minigene Assay: An Efficient Tool to Characterize mRNA Splicing Profiles of NF1 Variants. Cancers (Basel) 2021; 13:cancers13050999. [PMID: 33673681 PMCID: PMC7957615 DOI: 10.3390/cancers13050999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/08/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is caused by heterozygous loss of function mutations in the NF1 gene. Although patients are diagnosed according to clinical criteria and few genotype-phenotype correlations are known, molecular analysis remains important. NF1 displays allelic heterogeneity, with a high proportion of variants affecting splicing, including deep intronic alleles and changes outside the canonical splice sites, making validation problematic. Next Generation Sequencing (NGS) technologies integrated with multiplex ligation-dependent probe amplification (MLPA) have largely overcome RNA-based techniques but do not detect splicing defects. A rapid minigene-based system was set up to test the effects of NF1 variants on splicing. We investigated 29 intronic and exonic NF1 variants identified in patients during the diagnostic process. The minigene assay showed the coexistence of multiple mechanisms of splicing alterations for seven variants. A leaky effect on splicing was documented in one de novo substitution detected in a sporadic patient with a specific phenotype without neurofibromas. Our splicing assay proved to be a reliable and fast method to validate novel NF1 variants potentially affecting splicing and to detect hypomorphic effects that might have phenotypic consequences, avoiding the requirement of patient's RNA.
Collapse
Affiliation(s)
- Valeria Morbidoni
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Elisa Baschiera
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Monica Forzan
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Valentina Fumini
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Dario Seif Ali
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Gianpietro Giorgi
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Lisa Buson
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Maurizio Clementi
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
- Correspondence: ; Tel.: + 39-(04)-9821-1402
| |
Collapse
|
43
|
Wang J, Wang C, Li L, Yang L, Wang S, Ning X, Gao S, Ren L, Chaulagain A, Tang J, Wang T. Alternative splicing: An important regulatory mechanism in colorectal carcinoma. Mol Carcinog 2021; 60:279-293. [PMID: 33629774 DOI: 10.1002/mc.23291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/17/2022]
Abstract
Alternative splicing (AS) is a process that produces various mRNA splicing isoforms via different splicing patterns of mRNA precursors (pre-mRNAs). AS is the primary mechanism for increasing the types and quantities of proteins to improve biodiversity and influence multiple biological processes, including chromatin modification, signal transduction, and protein expression. It has been reported that AS is involved in the tumorigenesis and development of colorectal carcinoma (CRC). In this review, we delineate the concept, types, regulatory processes, and technical advances of AS and focus on the role of AS in CRC initiation, progression, treatment, and prognosis. This summary of the current knowledge about AS will contribute to our understanding of CRC initiation and development. This study will help in the discovery of novel biomarkers and therapeutic targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Jianyi Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Chuhan Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lirui Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuoshuo Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xuelian Ning
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuangshu Gao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lili Ren
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Anita Chaulagain
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
44
|
Zhong J, Xie Y, Dang Y, Zhang J, Song Y, Lan D. Use of RNA‑sequencing to detect abnormal transcription of the collagen α‑2 (VI) chain gene that can lead to Bethlem myopathy. Int J Mol Med 2021; 47:28. [PMID: 33537799 PMCID: PMC7895517 DOI: 10.3892/ijmm.2021.4861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Bethlem myopathy (BM) is an autosomal dominant or autosomal recessive disorder and is usually associated with mutations in the collagen VI genes. In the present study, the pathogenicity of a novel splice-site mutation was explored using RNA-sequencing in a family with suspected BM, and a myopathy panel was performed in the proband. The genetic status of all family members was confirmed using Sanger sequencing. Clinical data and magnetic resonance imaging (MRI) features were also documented. In silico analysis was performed to predict the effects of the splice mutation. RNA-sequencing and reverse transcription (RT)-PCR were used to assess aberrant splicing. Immunocytochemistry was conducted to measure collagen VI protein levels within the gastrocnemius and in cultured skin fibroblasts. The results revealed that three patients in the family shared a similar classic BM presentation. MRI revealed distinct patterns of fatty infiltration in the lower extremities. A novel splicing mutation c.736-1G>C in the collagen α-2 (VI) chain (COL6A2) gene was found in all three patients. In silico analysis predicted that the mutation would destroy the normal splice acceptor site. RNA-sequencing detected two abnormal splicing variants adjacent to the mutation site, and RT-PCR confirmed the RNA-sequencing findings. Furthermore, a defect in the collagen protein within cultured fibroblasts was detected using immunocytochemistry. The mutation c.736-1G>C in the COL6A2 gene caused aberrant splicing and led to premature termination of protein translation. In conclusion, these findings may improve our knowledge of mutations of the COL6A2 gene associated with BM and demonstrated that RNA-sequencing can be a powerful tool for finding the underlying mechanism of a disease-causing mutations at a splice site.
Collapse
Affiliation(s)
- Jingzi Zhong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yanshu Xie
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yiwu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiapeng Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yingru Song
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dan Lan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
45
|
Crespo C, Eiroa H, Otegui MI, Bonetto MC, Chertkoff L, Gravina LP. Molecular analysis of GALT gene in Argentinian population: Correlation with enzyme activity and characterization of a novel Duarte-like allele. Mol Genet Metab Rep 2020; 25:100695. [PMID: 33335841 PMCID: PMC7733017 DOI: 10.1016/j.ymgmr.2020.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 11/02/2022] Open
Abstract
Background Classical galactosemia is an autosomal recessive inherited metabolic disorder caused by mutations in the galactose-1-phosphate uridyltransferase (GALT) gene. GALT enzyme deficiency leads to the accumulation of galactose-1-phosphate in various organs, causing hepatic, renal and cerebral impairment. Over 300 mutations have been reported in the GALT gene. The aim of this study was to describe molecular characterization of GALT gene in Argentinian patients with decreased GALT activity, and to correlate molecular results with enzyme activity. Methods 37 patients with enzyme activity below 6.3 μmol/h/g Hb (35% of normal value) were included. GALT activity was measured on red blood cells. DNA was extracted from peripheral blood. p.Gln188Arg mutation was studied by PCR-RFLP and, on samples negative or heterozygous, GALT gene was sequenced. In vivo splicing analysis of the GALT gene was performed on RNA extracted from leukocytes of one patient. Results 14 different sequence variations were identified among 72 unrelated alleles. The two most common disease-causing mutations were p.Gln188Arg (24/72) and p.Lys285Asn (9/72). Three novel mutations were detected. One of them, c.688G>A, caused partial skipping of exon 9 of the GALT gene. Enzyme activity correlated with GALT genotype in 36 of the 37 patients. Conclusion This is the first report of sequence variations in the GALT gene in the Argentinian population. This study highlights the contribution of the molecular analysis to the diagnosis of Galactosemia and reveals c.688G>A as a novel Duarte-like variant, with a high prevalence in our population.
Collapse
Affiliation(s)
- Carolina Crespo
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Hernán Eiroa
- Servicio de Errores Congénitos del Metabolismo, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - María Inés Otegui
- Laboratorio de Errores Congénitos del Metabolismo, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Mara Cecilia Bonetto
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Lilien Chertkoff
- Área de Laboratorios de Especialidades, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Luis Pablo Gravina
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| |
Collapse
|
46
|
Di Matteo G, Finocchi A. Late diagnosis and advances in genetics of chronic granulomatous disease. Clin Exp Immunol 2020; 203:244-246. [PMID: 33314034 DOI: 10.1111/cei.13554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- G Di Matteo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Academic Department of Pediatrics, Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Finocchi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Academic Department of Pediatrics, Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
47
|
Rondelet A, Pozniakovsky A, Namboodiri D, Cardoso da Silva R, Singh D, Leuschner M, Poser I, Ssykor A, Berlitz J, Schmidt N, Röhder L, Vader G, Hyman AA, Bird AW. ESI mutagenesis: a one-step method for introducing mutations into bacterial artificial chromosomes. Life Sci Alliance 2020; 4:4/2/e202000836. [PMID: 33293335 PMCID: PMC7756954 DOI: 10.26508/lsa.202000836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 01/23/2023] Open
Abstract
A simple and efficient recombineering-based method for introducing point mutations into bacterial artificial chromosomes using an artificial intron cassette. Bacterial artificial chromosome (BAC)–based transgenes have emerged as a powerful tool for controlled and conditional interrogation of protein function in higher eukaryotes. Although homologous recombination-based recombineering methods have streamlined the efficient integration of protein tags onto BAC transgenes, generating precise point mutations has remained less efficient and time-consuming. Here, we present a simplified method for inserting point mutations into BAC transgenes requiring a single recombineering step followed by antibiotic selection. This technique, which we call exogenous/synthetic intronization (ESI) mutagenesis, relies on co-integration of a mutation of interest along with a selectable marker gene, the latter of which is harboured in an artificial intron adjacent to the mutation site. Cell lines generated from ESI-mutated BACs express the transgenes equivalently to the endogenous gene, and all cells efficiently splice out the synthetic intron. Thus, ESI mutagenesis provides a robust and effective single-step method with high precision and high efficiency for mutating BAC transgenes.
Collapse
Affiliation(s)
- Arnaud Rondelet
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andrei Pozniakovsky
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | - Divya Singh
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Marit Leuschner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrea Ssykor
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Julian Berlitz
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Nadine Schmidt
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Lea Röhder
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Gerben Vader
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
48
|
Le Tertre M, Ka C, Raud L, Berlivet I, Gourlaouen I, Richard G, Uguen K, Chen JM, Férec C, Fichou Y, Le Gac G. Splicing analysis of SLC40A1 missense variations and contribution to hemochromatosis type 4 phenotypes. Blood Cells Mol Dis 2020; 87:102527. [PMID: 33341511 DOI: 10.1016/j.bcmd.2020.102527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/09/2023]
Abstract
Hemochromatosis type 4, or ferroportin disease, is considered as the second leading cause of primary iron overload after HFE-related hemochromatosis. The disease, which is predominantly associated with missense variations in the SLC40A1 gene, is characterized by wide clinical heterogeneity. We tested the possibility that some of the reported missense mutations, despite their positions within exons, cause splicing defects. Fifty-eight genetic variants were selected from the literature based on two criteria: a precise description of the nucleotide change and individual evidence of iron overload. The selected variants were investigated by different in silico prediction tools and prioritized for midigene splicing assays. Of the 15 variations tested in vitro, only two were associated with splicing changes. We confirm that the c.1402G>A transition (p.Gly468Ser) disrupts the exon 7 donor site, leading to the use of an exonic cryptic splicing site and the generation of a truncated reading frame. We observed, for the first time, that the p.Gly468Ser substitution has no effect on the ferroportin iron export function. We demonstrate alternative splicing of exon 5 in different cell lines and show that the c.430A>G (p.Asn144Asp) variant promotes exon 5 inclusion. This could be part of a gain-of-function mechanism. We conclude that splicing mutations rarely contribute to hemochromatosis type 4 phenotypes. An in-depth investigation of exon 5 auxiliary splicing sequences may help to elucidate the mechanism by which splicing regulatory proteins regulate the production of the full length SLC40A1 transcript and to clarify its physiological importance.
Collapse
Affiliation(s)
- Marlène Le Tertre
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France
| | - Chandran Ka
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France
| | - Loann Raud
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; Association Gaétan Saleün, F-29200, France
| | | | - Isabelle Gourlaouen
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France
| | | | - Kévin Uguen
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France; Association Gaétan Saleün, F-29200, France
| | - Yann Fichou
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France
| | - Gérald Le Gac
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France.
| |
Collapse
|
49
|
Horn T, Ludwig M, Eickmeier O, Neerinex AH, Maitland-van der Zee AH, Smaczny C, Wagner TOF, Schubert R, Zielen S, Majoor C, Bos LD, Schmitt-Grohé S. Impact of a Gap Junction Protein Alpha 4 Variant on Clinical Disease Phenotype in F508del Homozygous Patients With Cystic Fibrosis. Front Genet 2020; 11:570403. [PMID: 33193670 PMCID: PMC7655539 DOI: 10.3389/fgene.2020.570403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/02/2020] [Indexed: 11/18/2022] Open
Abstract
Background Lung disease phenotype varies widely even in the F508del (homozygous) genotype. Leukocyte-driven inflammation is important for pulmonary disease pathogenesis in cystic fibrosis (CF). Blood cytokines correlate negatively with pulmonary function in F508del homozygous patients, and gap junction proteins (GJA) might be related to the influx of blood cells into the lung and influence disease course. We aimed to assess the relationship between GJA1/GJA4 genotypes and the clinical disease phenotype. Methods One-hundred-and-sixteen homozygous F508del patients (mean age 27 years, m/f 66/50) were recruited from the CF centers of Bonn, Frankfurt, and Amsterdam. Sequence analysis was performed for GJA1 and GJA4. The clinical disease course was assessed over 3 years using pulmonary function tests, body mass index, Pseudomonas aeruginosa colonization, diabetes mellitus, survival to end-stage lung disease, blood and sputum inflammatory markers. Results Sequence analysis revealed one clinically relevant single nucleotide polymorphism. In this GJA4 variant (rs41266431), homozygous G variant carriers (n = 84/116; 72.4%) had poorer pulmonary function (FVC% pred: mean 78/86, p < 0.040) and survival to end-stage lung disease was lower (p < 0.029). The frequency of P. aeruginosa colonization was not influenced by the genotype, but in those chronically colonized, those with the G/G genotype had reduced pulmonary function (FVC% pred: mean 67/80, p < 0.049). Serum interleukin-8 (median: 12.4/6.7 pg/ml, p < 0.052) and sputum leukocytes (2305/437.5 pg/ml, p < 0.025) were higher for the G/G genotype. Conclusions In carriers of the A allele (27.6%) the GJA4 variant is associated with significantly better protection against end-stage lung disease and superior pulmonary function test results in F508del homozygous patients. This SNP has the potential of a modifier gene for phenotyping severity of CF lung disease, in addition to the CFTR genotype. Clinical Trial Registration The study was registered with ClinicalTrials.gov, number NCT04242420, retrospectively on January 24th, 2020.
Collapse
Affiliation(s)
- Tabea Horn
- Abt. Allgemeine Pädiatrie, Zentrum für Kinderheilkunde des Universitätsklinikums Bonn, Bonn, Germany
| | - Michael Ludwig
- Institut für Klinische Chemie und Klinische Pharmakologie des Universitätsklinikums Bonn, Bonn, Germany
| | - Olaf Eickmeier
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt, Germany
| | - Anne H Neerinex
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Anke H Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Christina Smaczny
- Christiane-Herzog CF-Ambulanz, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Thomas O F Wagner
- Christiane-Herzog CF-Ambulanz, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Ralf Schubert
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt, Germany
| | - Stefan Zielen
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt, Germany
| | - Christof Majoor
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Lieuwe D Bos
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabina Schmitt-Grohé
- Abt. Allgemeine Pädiatrie, Zentrum für Kinderheilkunde des Universitätsklinikums Bonn, Bonn, Germany.,Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt, Germany
| |
Collapse
|
50
|
Zhou S, Li P. The novel function of miR-3195 for mutant PROK2 (c.223-4C>A) degradation. Cell Biol Int 2020; 45:404-410. [PMID: 33140874 DOI: 10.1002/cbin.11496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/31/2020] [Indexed: 11/07/2022]
Abstract
Kallmann syndrome (KS) is a rare human genetic disorder characterized by hypogonadotropic hypogonadism with the reduction or absence of olfactory sense. Mutations in multiple genes, including chemokine prokineticin-2 (PROK2), are considered to contribute to the abnormal migration of gonadotropin-releasing hormone neurons in the embryonic stage. However, the mechanisms of the different inheritance modes of KS have not been comprehensively determined. In this article, we present the case of one KS patient with the same mutation in PROK2 (c.223-4C>A) as his mother. RNA sequencing analysis of his leukocytes showed a new transcript of PROK2, which contained a partial intron (192 bp) compared to those of his parents. Furthermore, we observed that hsa-miR-3195 was expressed at low levels in his and his father's sera compared to his mother's. Unexpectedly, hsa-miR-3195 was also identified to specifically target the 192 bp intron of the aberrant PROK2 transcript of this patient. We determined that high expression of hsa-miR-3195 could efficiently target aberrant PROK2 and stabilize the normal function of PROK2 in vitro, which provided a probable explanation for the different phenotypes of the patient and his mother with the same genotype.
Collapse
Affiliation(s)
- Shasha Zhou
- Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Pin Li
- Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|