1
|
Menezes AT, Nagasse HY, Lopes HR, Coltri PP. Design of a GFP reporter for splicing analysis in mammalian cells. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 46:e00887. [PMID: 40212027 PMCID: PMC11982954 DOI: 10.1016/j.btre.2025.e00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 04/13/2025]
Abstract
Eukaryotic genes are formed by exons and introns. Pre-mRNA splicing promotes exon ligation and intron removal and is performed by a specialized macromolecular machinery named spliceosome, composed of five small ribonucleoprotein particles (snRNPs) and more than one hundred proteins. The activity of this complex is highly accurate due to the coordinated activity of its components. Altered splicing has been related to the development of several diseases, including neurodegenerative disorders, such as amyotrophic lateral sclerosis, and different types of cancer. Detailed understanding of splicing regulation in eukaryotic cells can be achieved using splicing reporter systems. We designed a reporter plasmid suitable for splicing analysis in cultured mammalian cells. Our reporter is based on GFP expression, and the splicing outcome can be easily visualized by fluorescence microscopy. We quantified splicing activity in two human cell lines, HEK-293T and MDA-MB-231, confirming its suitability for use in live cells in culture.
Collapse
Affiliation(s)
- Arthur T. Menezes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Helder Y. Nagasse
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Hilan R. M. Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Patricia P. Coltri
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| |
Collapse
|
2
|
Palacios-Pérez M, José MV. A Proposal for the RNAome at the Dawn of the Last Universal Common Ancestor. Genes (Basel) 2024; 15:1195. [PMID: 39336786 PMCID: PMC11431127 DOI: 10.3390/genes15091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
From the most ancient RNAs, which followed an RNY pattern and folded into small hairpins, modern RNA molecules evolved by two different pathways, dubbed Extended Genetic Code 1 and 2, finally conforming to the current standard genetic code. Herein, we describe the evolutionary path of the RNAome based on these evolutionary routes. In general, all the RNA molecules analysed contain portions encoded by both genetic codes, but crucial features seem to be better recovered by Extended 2 triplets. In particular, the whole Peptidyl Transferase Centre, anti-Shine-Dalgarno motif, and a characteristic quadruplet of the RNA moiety of RNAse-P are clearly unveiled. Differences between bacteria and archaea are also detected; in most cases, the biological sequences are more stable than their controls. We then describe an evolutionary trajectory of the RNAome formation, based on two complementary evolutionary routes: one leading to the formation of essentials, while the other complemented the molecules, with the cooperative assembly of their constituents giving rise to modern RNAs.
Collapse
Affiliation(s)
- Miryam Palacios-Pérez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Marco V. José
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
3
|
YADOLLAHVANDMIANDOAB REZA, JALALIZADEH MEHRSA, DIONATO FRANCIELEAPARECIDAVECHIA, BUOSI KEINI, LEME PATRÍCIAAF, COL LUCIANASBDAL, GIACOMELLI CRISTIANEF, ASSIS ALEXDIAS, BASHIRICHELKASARI NASIM, REIS LEONARDOOLIVEIRA. Clinical implications of single cell sequencing for bladder cancer. Oncol Res 2024; 32:597-605. [PMID: 38560564 PMCID: PMC10972735 DOI: 10.32604/or.2024.045442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/08/2024] [Indexed: 04/04/2024] Open
Abstract
Bladder cancer (BC) is the 10th most common cancer worldwide, with about 0.5 million reported new cases and about 0.2 million deaths per year. In this scoping review, we summarize the current evidence regarding the clinical implications of single-cell sequencing for bladder cancer based on PRISMA guidelines. We searched PubMed, CENTRAL, Embase, and supplemented with manual searches through the Scopus, and Web of Science for published studies until February 2023. We included original studies that used at least one single-cell technology to study bladder cancer. Forty-one publications were included in the review. Twenty-nine studies showed that this technology can identify cell subtypes in the tumor microenvironment that may predict prognosis or response to immune checkpoint inhibition therapy. Two studies were able to diagnose BC by identifying neoplastic cells through single-cell sequencing urine samples. The remaining studies were mainly a preclinical exploration of tumor microenvironment at single cell level. Single-cell sequencing technology can discriminate heterogeneity in bladder tumor cells and determine the key molecular properties that can lead to the discovery of novel perspectives on cancer management. This nascent tool can advance the early diagnosis, prognosis judgment, and targeted therapy of bladder cancer.
Collapse
Affiliation(s)
- REZA YADOLLAHVANDMIANDOAB
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - MEHRSA JALALIZADEH
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | | | - KEINI BUOSI
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - PATRÍCIA A. F. LEME
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - LUCIANA S. B. DAL COL
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - CRISTIANE F. GIACOMELLI
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - ALEX DIAS ASSIS
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - NASIM BASHIRICHELKASARI
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - LEONARDO OLIVEIRA REIS
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
- ImmunOncology, Pontifical Catholic University of Campinas, PUC-Campinas, Campinas, Sao Paulo, 13087-571, Brazil
| |
Collapse
|
4
|
Calvo-Roitberg E, Carroll CL, Venev SV, Kim G, Mick ST, Dekker J, Fiszbein A, Pai AA. mRNA initiation and termination are spatially coordinated. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574404. [PMID: 38260419 PMCID: PMC10802295 DOI: 10.1101/2024.01.05.574404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The expression of a precise mRNA transcriptome is crucial for establishing cell identity and function, with dozens of alternative isoforms produced for a single gene sequence. The regulation of mRNA isoform usage occurs by the coordination of co-transcriptional mRNA processing mechanisms across a gene. Decisions involved in mRNA initiation and termination underlie the largest extent of mRNA isoform diversity, but little is known about any relationships between decisions at both ends of mRNA molecules. Here, we systematically profile the joint usage of mRNA transcription start sites (TSSs) and polyadenylation sites (PASs) across tissues and species. Using both short and long read RNA-seq data, we observe that mRNAs preferentially using upstream TSSs also tend to use upstream PASs, and congruently, the usage of downstream sites is similarly paired. This observation suggests that mRNA 5' end choice may directly influence mRNA 3' ends. Our results suggest a novel "Positional Initiation-Termination Axis" (PITA), in which the usage of alternative terminal sites are coupled based on the order in which they appear in the genome. PITA isoforms are more likely to encode alternative protein domains and use conserved sites. PITA is strongly associated with the length of genomic features, such that PITA is enriched in longer genes with more area devoted to regions that regulate alternative 5' or 3' ends. Strikingly, we found that PITA genes are more likely than non-PITA genes to have multiple, overlapping chromatin structural domains related to pairing of ordinally coupled start and end sites. In turn, PITA coupling is also associated with fast RNA Polymerase II (RNAPII) trafficking across these long gene regions. Our findings indicate that a combination of spatial and kinetic mechanisms couple transcription initiation and mRNA 3' end decisions based on ordinal position to define the expression mRNA isoforms.
Collapse
Affiliation(s)
| | | | - Sergey V. Venev
- Department of Systems Biology, University Massachusetts Chan Medical School, Worcester, MA
| | - GyeungYun Kim
- Department of Biology, Boston University, Boston, MA
| | | | - Job Dekker
- Department of Systems Biology, University Massachusetts Chan Medical School, Worcester, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Ana Fiszbein
- Department of Biology, Boston University, Boston, MA
- Center for Computing & Data Sciences, Boston University, Boston, MA
| | - Athma A. Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
5
|
Karagac MS, Ceylan H. Neuroprotective Potential of Tannic Acid Against Neurotoxic Outputs of Monosodium Glutamate in Rat Cerebral Cortex. Neurotox Res 2023; 41:670-680. [PMID: 37713032 DOI: 10.1007/s12640-023-00667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Glutamate in monosodium glutamate (MSG), which is widely used in the food industry, has an important role in major brain functions such as memory, learning, synapse formation, and stabilization. However, extensive use of MSG has been linked with neurotoxicity. Therefore, in addition to clarifying the underlying mechanisms of MSG-induced neurotoxicity, it is also important to determine safe agents that can diminish the damage caused by MSG. Tannic acid (TA) is a naturally occurring plant polyphenol that exhibits versatile physiological effects such as anti-inflammatory, anti-carcinogenic, antioxidant, and radical scavenging. This study was conducted to assess the neurotoxic and neuroprotective effects of these two dietary components in the rat cerebral cortex. Twenty-four Sprague Dawley rats were divided into 4 equal groups and were treated with MSG (2 g/kg) and TA (50 mg/kg) alone and in combination for 3 weeks. Alterations in oxidative stress indicators (MDA and GSH) were measured in the cortex tissues. In addition, changes in enzymatic activities and gene expression patterns of antioxidant system components (GST, GPx, CAT, and SOD) were investigated. Furthermore, mRNA expressions of FoxO transcription factors (Foxo1 and Foxo3) and apoptotic markers (Casp3 and Casp9) were assessed. Results revealed that dietary TA intake significantly rehabilitated MSG-induced dysregulation in cortical tissue by regulating redox balance, cellular homeostasis, and apoptosis. The present study proposes that MSG-induced detrimental effects on cortical tissue are potentially mitigated by TA via modulation of oxidative stress, cell metabolism, and programmed cell death.
Collapse
Affiliation(s)
- Medine Sibel Karagac
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Hamid Ceylan
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
6
|
Christmas MJ, Kaplow IM, Genereux DP, Dong MX, Hughes GM, Li X, Sullivan PF, Hindle AG, Andrews G, Armstrong JC, Bianchi M, Breit AM, Diekhans M, Fanter C, Foley NM, Goodman DB, Goodman L, Keough KC, Kirilenko B, Kowalczyk A, Lawless C, Lind AL, Meadows JRS, Moreira LR, Redlich RW, Ryan L, Swofford R, Valenzuela A, Wagner F, Wallerman O, Brown AR, Damas J, Fan K, Gatesy J, Grimshaw J, Johnson J, Kozyrev SV, Lawler AJ, Marinescu VD, Morrill KM, Osmanski A, Paulat NS, Phan BN, Reilly SK, Schäffer DE, Steiner C, Supple MA, Wilder AP, Wirthlin ME, Xue JR, Birren BW, Gazal S, Hubley RM, Koepfli KP, Marques-Bonet T, Meyer WK, Nweeia M, Sabeti PC, Shapiro B, Smit AFA, Springer MS, Teeling EC, Weng Z, Hiller M, Levesque DL, Lewin HA, Murphy WJ, Navarro A, Paten B, Pollard KS, Ray DA, Ruf I, Ryder OA, Pfenning AR, Lindblad-Toh K, Karlsson EK. Evolutionary constraint and innovation across hundreds of placental mammals. Science 2023; 380:eabn3943. [PMID: 37104599 PMCID: PMC10250106 DOI: 10.1126/science.abn3943] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/16/2022] [Indexed: 04/29/2023]
Abstract
Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.
Collapse
Affiliation(s)
- Matthew J. Christmas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Irene M. Kaplow
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Michael X. Dong
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Graham M. Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Xue Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Patrick F. Sullivan
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Allyson G. Hindle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Gregory Andrews
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Joel C. Armstrong
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Matteo Bianchi
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Ana M. Breit
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Mark Diekhans
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Cornelia Fanter
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Nicole M. Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Daniel B. Goodman
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Kathleen C. Keough
- Fauna Bio, Inc., Emeryville, CA 94608, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Bogdan Kirilenko
- Faculty of Biosciences, Goethe-University, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Amanda Kowalczyk
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Colleen Lawless
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Abigail L. Lind
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Lucas R. Moreira
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ruby W. Redlich
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Louise Ryan
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Alejandro Valenzuela
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Franziska Wagner
- Museum of Zoology, Senckenberg Natural History Collections Dresden, 01109 Dresden, Germany
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Ashley R. Brown
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Joana Damas
- The Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Kaili Fan
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Jenna Grimshaw
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Sergey V. Kozyrev
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Voichita D. Marinescu
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Kathleen M. Morrill
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Austin Osmanski
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Nicole S. Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - BaDoi N. Phan
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Steven K. Reilly
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel E. Schäffer
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cynthia Steiner
- Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Megan A. Supple
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Aryn P. Wilder
- Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Morgan E. Wirthlin
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - James R. Xue
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Bruce W. Birren
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Steven Gazal
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
- Computer Technologies Laboratory, ITMO University, St. Petersburg 197101, Russia
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630, USA
| | - Tomas Marques-Bonet
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Martin Nweeia
- Department of Comprehensive Care, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Vertebrate Zoology, Canadian Museum of Nature, Ottawa, Ontario K2P 2R1, Canada
- Department of Vertebrate Zoology, Smithsonian Institution, Washington, DC 20002, USA
- Narwhal Genome Initiative, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Mark S. Springer
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Emma C. Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael Hiller
- Faculty of Biosciences, Goethe-University, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | | | - Harris A. Lewin
- The Genome Center, University of California Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
- John Muir Institute for the Environment, University of California Davis, Davis, CA 95616, USA
| | - William J. Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Arcadi Navarro
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08003 Barcelona, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
- CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Benedict Paten
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Katherine S. Pollard
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Irina Ruf
- Division of Messel Research and Mammalogy, Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt am Main, Germany
| | - Oliver A. Ryder
- Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
- Department of Evolution, Behavior and Ecology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92039, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
7
|
Altered genome-wide hippocampal gene expression profiles following early life lead exposure and their potential for reversal by environmental enrichment. Sci Rep 2022; 12:11937. [PMID: 35879375 PMCID: PMC9314447 DOI: 10.1038/s41598-022-15861-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Early life lead (Pb) exposure is detrimental to neurobehavioral development. The quality of the environment can modify negative influences from Pb exposure, impacting the developmental trajectory following Pb exposure. Little is known about the molecular underpinnings in the brain of the interaction between Pb and the quality of the environment. We examined relationships between early life Pb exposure and living in an enriched versus a non-enriched postnatal environment on genome-wide transcription profiles in hippocampus CA1. RNA-seq identified differences in the transcriptome of enriched vs. non-enriched Pb-exposed animals. Most of the gene expression changes associated with Pb exposure were reversed by enrichment. This was also true for changes in upstream regulators, splicing events and long noncoding RNAs. Non-enriched rats also had memory impairments; enriched rats had no deficits. The results demonstrate that an enriched environment has a profound impact on behavior and the Pb-modified CA1 transcriptome. These findings show the potential for interactions between Pb exposure and the environment to result in significant transcriptional changes in the brain and, to the extent that this may occur in Pb-exposed children, could influence neuropsychological/educational outcomes, underscoring the importance for early intervention and environmental enrichment for Pb-exposed children.
Collapse
|
8
|
Edwards HE, Gorelick DA. The evolution and structure/function of bHLH-PAS transcription factor family. Biochem Soc Trans 2022; 50:1227-1243. [PMID: 35695677 PMCID: PMC10584024 DOI: 10.1042/bst20211225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023]
Abstract
Proteins that contain basic helix-loop-helix (bHLH) and Per-Arnt-Sim motifs (PAS) function as transcription factors. bHLH-PAS proteins exhibit essential and diverse functions throughout the body, from cell specification and differentiation in embryonic development to the proper function of organs like the brain and liver in adulthood. bHLH-PAS proteins are divided into two classes, which form heterodimers to regulate transcription. Class I bHLH-PAS proteins are typically activated in response to specific stimuli, while class II proteins are expressed more ubiquitously. Here, we discuss the general structure and functions of bHLH-PAS proteins throughout the animal kingdom, including family members that do not fit neatly into the class I-class II organization. We review heterodimerization between class I and class II bHLH-PAS proteins, binding partner selectivity and functional redundancy. Finally, we discuss the evolution of bHLH-PAS proteins, and why a class I protein essential for cardiovascular development in vertebrates like chicken and fish is absent from mammals.
Collapse
Affiliation(s)
- Hailey E Edwards
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, U.S.A
| | - Daniel A Gorelick
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, U.S.A
| |
Collapse
|
9
|
Vijayakumar A, Park A, Steitz JA. Modulation of mRNA 3'-End Processing and Transcription Termination in Virus-Infected Cells. Front Immunol 2022; 13:828665. [PMID: 35222412 PMCID: PMC8866245 DOI: 10.3389/fimmu.2022.828665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic mRNA 3´-end processing is a multi-step process beginning with pre-mRNA transcript cleavage followed by poly(A) tail addition. Closely coupled to transcription termination, 3´-end processing is a critical step in the regulation of gene expression, and disruption of 3´-end processing is known to affect mature mRNA levels. Various viral proteins interfere with the 3´-end processing machinery, causing read-through transcription and altered levels of mature transcripts through inhibition of cleavage and polyadenylation. Thus, disruption of 3´-end processing contributes to widespread host shutoff, including suppression of the antiviral response. Additionally, observed features of read-through transcripts such as decreased polyadenylation, nuclear retention, and decreased translation suggest that viruses may utilize these mechanisms to modulate host protein production and dominate cellular machinery. The degree to which the effects of read-through transcript production are harnessed by viruses and host cells remains unclear, but existing research highlights the importance of host 3´-end processing modulation during viral infection.
Collapse
Affiliation(s)
- Aarthi Vijayakumar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Annsea Park
- Department of Immunobiology, Yale University, New Haven, CT, United States
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
10
|
Song J, Austin JD, Yang H. Comparative Transcriptomics of the Northern Quahog Mercenaria mercenaria and Southern Quahog Mercenaria campechiensis in Response to Chronic Heat Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:276-292. [PMID: 35357634 DOI: 10.1007/s10126-022-10101-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The northern quahog (Mercenaria mercenaria) supports lucrative aquaculture industries in the USA. In the southeastern USA, aquacultured M. mercenaria faces increasing risks of summer die-offs from prolonged heat waves. We used a comparative transcriptomic approach to investigate the molecular responses of M. mercenaria and its southern congener, Mercenaria campechiensis, to controlled incremental heat stress over a 4-week period. Mercenaria were exposed to temperatures from 24 to 34 °C with 2.5 °C/week, after which, gill transcriptomes were de novo assembled and annotated. During the 4 weeks of chronic heat exposure, both species had the same survival rate (96%); M. mercenaria experienced body weight gain/loss depending on the originated hatcheries while M. campechiensis experienced an average net weight loss. The upregulated genes in both species included those in chaperone-mediated protein folding and regulation of cell death pathways, while the downregulated genes in both species involved in mRNA processing and splicing pathways. Compared to M. mercenaria, M. campechiensis appears to be more sensitive to prolonged heat stress as indicated by upregulating significantly more genes in coping with oxidative stress and in the protein degradation pathways, while downregulating some inhibitors of apoptosis. We discussed this finding within their ecological and evolutionary context. Our findings highlighted the potential vulnerability of the two quahogs, especially the southern quahog, to continued ocean warming.
Collapse
Affiliation(s)
- Jingwei Song
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, 7922 NW 71st Street, Gainesville, FL, 32653, USA
| | - James D Austin
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, 7922 NW 71st Street, Gainesville, FL, 32653, USA
- Department of Wildlife Ecology and Conservation, Institute of Food and Agricultural Sciences, University of Florida, 110 Newins Ziegler Hall, Gainesville, FL, 32611, USA
| | - Huiping Yang
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, 7922 NW 71st Street, Gainesville, FL, 32653, USA.
| |
Collapse
|
11
|
A Quality Control Mechanism of Splice Site Selection Abrogated under Stress and in Cancer. Cancers (Basel) 2022; 14:cancers14071750. [PMID: 35406522 PMCID: PMC8996931 DOI: 10.3390/cancers14071750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Splicing and alternative splicing play a major role in regulating gene expression, and mis-regulation of splicing can lead to several diseases, including cancer. The aim of this review is to summarize the current knowledge of a quality control mechanism of splice site selection termed Suppression of Splicing (SOS), proposed to protect cells from splicing at the numerous intronic unused 5′ splice sites, and emphasize its relevance to cancer. This relevance stems from the finding that SOS is abrogated under stress and in cancer resulting in the expression of thousands of aberrant nonsense mRNAs that may be toxic to cells. These findings highlight the unexplored potential of such aberrant isoforms as novel targets for cancer diagnosis and therapies. Abstract Latent 5’ splice sites, highly abundant in human introns, are not normally used. This led to the proposal of a quality control mechanism, Suppression of Splicing (SOS), which protects cells from splicing at the numerous intronic latent sites, and whose activation can generate nonsense mRNAs. SOS was shown to be independent of Nonsense-Mediated mRNA Decay (NMD). Efforts to decipher the SOS mechanism revealed a pivotal role for initiator-tRNA, independent of protein translation. Recently, nucleolin (a multifunctional protein) was found to directly and specifically bind the initiator-tRNA in the nucleus and was shown to be a protein component of SOS, enabling an updated model of the SOS mechanism. Importantly, SOS is abrogated under stress and in cancer (e.g., in breast cancer cells and gliomas), generating thousands of nonsense mRNAs due to activation of latent splicing. The resulting affected human genes cover a variety of functional groups, including genes involved in cell proliferation and differentiation. Furthermore, in oligodendroglioma, the extent of activation of latent splicing increases with the severity of the cancer. Interesting examples are genes expressing aberrant nonsense mRNAs in both breast cancer and glioma, due to latent splicing activation. These findings highlight the unexplored potential of such aberrant isoforms as novel targets for cancer diagnosis and therapies.
Collapse
|
12
|
Fiszbein A, McGurk M, Calvo-Roitberg E, Kim G, Burge CB, Pai AA. Widespread occurrence of hybrid internal-terminal exons in human transcriptomes. SCIENCE ADVANCES 2022; 8:eabk1752. [PMID: 35044812 PMCID: PMC8769537 DOI: 10.1126/sciadv.abk1752] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/23/2021] [Indexed: 06/12/2023]
Abstract
Messenger RNA isoform differences are predominantly driven by alternative first, internal, and last exons. Despite the importance of classifying exons to understand isoform structure, few tools examine isoform-specific exon usage. We recently observed that alternative transcription start sites often arise near internal exons, often creating “hybrid” first/internal exons. To systematically detect hybrid exons, we built the hybrid-internal-terminal (HIT) pipeline to classify exons depending on their isoform-specific usage. On the basis of splice junction reads in RNA sequencing data and probabilistic modeling, the HIT index identified thousands of previously misclassified hybrid first-internal and internal-last exons. Hybrid exons are enriched in long genes and genes involved in RNA splicing and have longer flanking introns and strong splice sites. Their usage varies considerably across human tissues. By developing the first method to classify exons according to isoform contexts, our findings document the occurrence of hybrid exons, a common quirk of the human transcriptome.
Collapse
Affiliation(s)
- Ana Fiszbein
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Michael McGurk
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - GyeungYun Kim
- Department of Biology, Boston University, Boston, MA, USA
| | - Christopher B. Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Athma A. Pai
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
13
|
Findley AS, Monziani A, Richards AL, Rhodes K, Ward MC, Kalita CA, Alazizi A, Pazokitoroudi A, Sankararaman S, Wen X, Lanfear DE, Pique-Regi R, Gilad Y, Luca F. Functional dynamic genetic effects on gene regulation are specific to particular cell types and environmental conditions. eLife 2021; 10:e67077. [PMID: 33988505 PMCID: PMC8248987 DOI: 10.7554/elife.67077] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
Genetic effects on gene expression and splicing can be modulated by cellular and environmental factors; yet interactions between genotypes, cell type, and treatment have not been comprehensively studied together. We used an induced pluripotent stem cell system to study multiple cell types derived from the same individuals and exposed them to a large panel of treatments. Cellular responses involved different genes and pathways for gene expression and splicing and were highly variable across contexts. For thousands of genes, we identified variable allelic expression across contexts and characterized different types of gene-environment interactions, many of which are associated with complex traits. Promoter functional and evolutionary features distinguished genes with elevated allelic imbalance mean and variance. On average, half of the genes with dynamic regulatory interactions were missed by large eQTL mapping studies, indicating the importance of exploring multiple treatments to reveal previously unrecognized regulatory loci that may be important for disease.
Collapse
Affiliation(s)
- Anthony S Findley
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Alan Monziani
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Allison L Richards
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Katherine Rhodes
- Department of Human Genetics, University of ChicagoChicagoUnited States
| | - Michelle C Ward
- Department of Medicine, University of ChicagoChicagoUnited States
| | - Cynthia A Kalita
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | | | - Sriram Sankararaman
- Department of Computer Science, UCLALos AngelesUnited States
- Department of Human Genetics, UCLALos AngelesUnited States
- Department of Computational Medicine, UCLALos AngelesUnited States
| | - Xiaoquan Wen
- Department of Biostatistics, University of MichiganAnn ArborUnited States
| | - David E Lanfear
- Center for Individualized and Genomic Medicine Research, Henry Ford HospitalDetroitUnited States
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State UniversityDetroitUnited States
| | - Yoav Gilad
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Department of Medicine, University of ChicagoChicagoUnited States
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State UniversityDetroitUnited States
| |
Collapse
|
14
|
Decio P, Ustaoglu P, Derecka K, Hardy ICW, Roat TC, Malaspina O, Mongan N, Stöger R, Soller M. Thiamethoxam exposure deregulates short ORF gene expression in the honey bee and compromises immune response to bacteria. Sci Rep 2021; 11:1489. [PMID: 33452318 PMCID: PMC7811001 DOI: 10.1038/s41598-020-80620-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 12/23/2020] [Indexed: 01/29/2023] Open
Abstract
Maximizing crop yields relies on the use of agrochemicals to control insect pests. One of the most widely used classes of insecticides are neonicotinoids that interfere with signalling of the neurotransmitter acetylcholine, but these can also disrupt crop-pollination services provided by bees. Here, we analysed whether chronic low dose long-term exposure to the neonicotinoid thiamethoxam alters gene expression and alternative splicing in brains of Africanized honey bees, Apis mellifera, as adaptation to altered neuronal signalling. We find differentially regulated genes that show concentration-dependent responses to thiamethoxam, but no changes in alternative splicing. Most differentially expressed genes have no annotated function but encode short Open Reading Frames, a characteristic feature of anti-microbial peptides. As this suggested that immune responses may be compromised by thiamethoxam exposure, we tested the impact of thiamethoxam on bee immunity by injecting bacteria. We show that intrinsically sub-lethal thiamethoxam exposure makes bees more vulnerable to normally non-pathogenic bacteria. Our findings imply a synergistic mechanism for the observed bee population declines that concern agriculturists, conservation ecologists and the public.
Collapse
Affiliation(s)
- Pâmela Decio
- grid.410543.70000 0001 2188 478XInstitute of Biosciences, São Paulo State University (Unesp), Rio Claro, Brazil
| | - Pinar Ustaoglu
- grid.6572.60000 0004 1936 7486School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Kamila Derecka
- grid.4563.40000 0004 1936 8868School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Ian C. W. Hardy
- grid.4563.40000 0004 1936 8868School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Thaisa C. Roat
- grid.410543.70000 0001 2188 478XInstitute of Biosciences, São Paulo State University (Unesp), Rio Claro, Brazil
| | - Osmar Malaspina
- grid.410543.70000 0001 2188 478XInstitute of Biosciences, São Paulo State University (Unesp), Rio Claro, Brazil
| | - Nigel Mongan
- grid.4563.40000 0004 1936 8868School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Reinhard Stöger
- grid.4563.40000 0004 1936 8868School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Matthias Soller
- grid.6572.60000 0004 1936 7486School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
15
|
Reimer KA, Mimoso CA, Adelman K, Neugebauer KM. Co-transcriptional splicing regulates 3' end cleavage during mammalian erythropoiesis. Mol Cell 2021; 81:998-1012.e7. [PMID: 33440169 DOI: 10.1016/j.molcel.2020.12.018] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Pre-mRNA processing steps are tightly coordinated with transcription in many organisms. To determine how co-transcriptional splicing is integrated with transcription elongation and 3' end formation in mammalian cells, we performed long-read sequencing of individual nascent RNAs and precision run-on sequencing (PRO-seq) during mouse erythropoiesis. Splicing was not accompanied by transcriptional pausing and was detected when RNA polymerase II (Pol II) was within 75-300 nucleotides of 3' splice sites (3'SSs), often during transcription of the downstream exon. Interestingly, several hundred introns displayed abundant splicing intermediates, suggesting that splicing delays can take place between the two catalytic steps. Overall, splicing efficiencies were correlated among introns within the same transcript, and intron retention was associated with inefficient 3' end cleavage. Remarkably, a thalassemia patient-derived mutation introducing a cryptic 3'SS improved both splicing and 3' end cleavage of individual β-globin transcripts, demonstrating functional coupling between the two co-transcriptional processes as a determinant of productive gene output.
Collapse
Affiliation(s)
- Kirsten A Reimer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
16
|
Xu SY, Weng J. Climate change shapes the future evolution of plant metabolism. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10022. [PMID: 36619247 PMCID: PMC9744464 DOI: 10.1002/ggn2.10022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 01/11/2023]
Abstract
Planet Earth has experienced many dramatic atmospheric and climatic changes throughout its 4.5-billion-year history that have profoundly impacted the evolution of life as we know it. Photosynthetic organisms, and specifically plants, have played a paramount role in shaping the Earth's atmosphere through oxygen production and carbon sequestration. In turn, the diversity of plants has been shaped by historical atmospheric and climatic changes: plants rose to this challenge by evolving new developmental and metabolic traits. These adaptive traits help plants to thrive in diverse growth conditions, while benefiting humanity through the production of food, raw materials, and medicines. However, the current rapid rate of climate change caused by human activities presents unprecedented new challenges to the future of plants. Here, we discuss the potential effects of modern climate change on plants, with specific attention to plant specialized metabolism. We explore potential avenues of future scientific investigations, powered by cutting-edge methods such as synthetic biology and genome engineering, to better understand and mitigate the consequences of rapid climate change on plant fitness and plant usage by humans.
Collapse
Affiliation(s)
- Sophia Y. Xu
- Whitehead Institute for Biomedical ResearchCambridgeMassachusettsUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jing‐Ke Weng
- Whitehead Institute for Biomedical ResearchCambridgeMassachusettsUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
17
|
Barbieri E, Hill C, Quesnel-Vallières M, Zucco AJ, Barash Y, Gardini A. Rapid and Scalable Profiling of Nascent RNA with fastGRO. Cell Rep 2020; 33:108373. [PMID: 33176136 PMCID: PMC7702699 DOI: 10.1016/j.celrep.2020.108373] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Genome-wide profiling of nascent RNA has become a fundamental tool to study transcription regulation. Unlike steady-state RNA-sequencing (RNA-seq), nascent RNA profiling mirrors real-time activity of RNA polymerases and provides an accurate readout of transcriptome-wide variations. Some species of nuclear RNAs (i.e., large intergenic noncoding RNAs [lincRNAs] and eRNAs) have a short half-life and can only be accurately gauged by nascent RNA techniques. Furthermore, nascent RNA-seq detects post-cleavage RNA at termination sites and promoter-associated antisense RNAs, providing insights into RNA polymerase II (RNAPII) dynamics and processivity. Here, we present a run-on assay with 4-thio ribonucleotide (4-S-UTP) labeling, followed by reversible biotinylation and affinity purification via streptavidin. Our protocol allows streamlined sample preparation within less than 3 days. We named the technique fastGRO (fast Global Run-On). We show that fastGRO is highly reproducible and yields a more complete and extensive coverage of nascent RNA than comparable techniques can. Importantly, we demonstrate that fastGRO is scalable and can be performed with as few as 0.5 × 106 cells. Barbieri et al. developed fastGRO, a nascent RNA-sequencing technique based on nuclear run-on. Using a streamlined, under-3-days protocol, fastGRO tracks the activity of RNA polymerase for differential gene expression analysis, polymerase kinetic studies, and profiling of lowly expressed and unstable RNA species. A low-input fastGRO protocol profiles nascent RNA in as little as 0.5 × 106 cells.
Collapse
Affiliation(s)
- Elisa Barbieri
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Connor Hill
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Mathieu Quesnel-Vallières
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Avery J Zucco
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Alessandro Gardini
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Shao W, Ding Z, Zheng ZZ, Shen JJ, Shen YX, Pu J, Fan YJ, Query CC, Xu YZ. Prp5-Spt8/Spt3 interaction mediates a reciprocal coupling between splicing and transcription. Nucleic Acids Res 2020; 48:5799-5813. [PMID: 32399566 PMCID: PMC7293005 DOI: 10.1093/nar/gkaa311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 04/08/2020] [Accepted: 05/03/2020] [Indexed: 01/23/2023] Open
Abstract
Transcription and pre-mRNA splicing are coupled to promote gene expression and regulation. However, mechanisms by which transcription and splicing influence each other are still under investigation. The ATPase Prp5p is required for pre-spliceosome assembly and splicing proofreading at the branch-point region. From an open UV mutagenesis screen for genetic suppressors of prp5 defects and subsequent targeted testing, we identify components of the TBP-binding module of the Spt–Ada–Gcn5 Acetyltransferase (SAGA) complex, Spt8p and Spt3p. Spt8Δ and spt3Δ rescue the cold-sensitivity of prp5-GAR allele, and prp5 mutants restore growth of spt8Δ and spt3Δ strains on 6-azauracil. By chromatin immunoprecipitation (ChIP), we find that prp5 alleles decrease recruitment of RNA polymerase II (Pol II) to an intron-containing gene, which is rescued by spt8Δ. Further ChIP-seq reveals that global effects on Pol II-binding are mutually rescued by prp5-GAR and spt8Δ. Inhibited splicing caused by prp5-GAR is also restored by spt8Δ. In vitro assays indicate that Prp5p directly interacts with Spt8p, but not Spt3p. We demonstrate that Prp5p's splicing proofreading is modulated by Spt8p and Spt3p. Therefore, this study reveals that interactions between the TBP-binding module of SAGA and the spliceosomal ATPase Prp5p mediate a balance between transcription initiation/elongation and pre-spliceosome assembly.
Collapse
Affiliation(s)
- Wei Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhan Ding
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zeng-Zhang Zheng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ji-Jia Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jia Pu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Jie Fan
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Charles C Query
- Department of Cell Biology, Albert Einstein College of Medicine, NY 10461, USA
| | - Yong-Zhen Xu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
19
|
Gong Z, Yang S, Dong X, Yang QF, Zhu YL, Xiao Y, Tang C. Hierarchical Conformational Dynamics Confers Thermal Adaptability to preQ 1 RNA Riboswitches. J Mol Biol 2020; 432:4523-4543. [PMID: 32522558 DOI: 10.1016/j.jmb.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 11/26/2022]
Abstract
Single-stranded noncoding regulatory RNAs, as exemplified by bacterial riboswitches, are highly dynamic. The conformational dynamics allow the riboswitch to reach maximum switching efficiency under appropriate conditions. Here we characterize the conformational dynamics of preQ1 riboswitches from mesophilic and thermophilic bacterial species at various temperatures. With the integrative use of small-angle X-ray scattering, NMR, and molecular dynamics simulations, we model the ensemble-structures of the preQ1 riboswitch aptamers without or with a ligand bound. We show that the preQ1 riboswitch is sufficiently dynamic and fluctuating among multiple folding intermediates only near the physiological temperature of the microorganism. The hierarchical folding dynamics of the RNA involves the docking of 3'-tail to form a second RNA helix and the helical stacking to form an H-type pseudoknot structure. Further, we show that RNA secondary and tertiary dynamics can be modulated by temperature and by the length of an internal loop. The coupled equilibria between RNA folding intermediates are essential for preQ1 binding, and a four-state exchange model can account for the change of ligand-triggered switching efficiency with temperature. Together, we have established a relationship between the hierarchical dynamics and riboswitch function, and illustrated how the RNA adapts to high temperature.
Collapse
Affiliation(s)
- Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China.
| | - Shuai Yang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Qing-Fen Yang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Yue-Ling Zhu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China.
| |
Collapse
|
20
|
Keller M, Schleiff E, Simm S. miRNAs involved in transcriptome remodeling during pollen development and heat stress response in Solanum lycopersicum. Sci Rep 2020; 10:10694. [PMID: 32612181 PMCID: PMC7329895 DOI: 10.1038/s41598-020-67833-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 06/10/2020] [Indexed: 01/11/2023] Open
Abstract
Cellular transitions during development and stress response depend on coordinated transcriptomic and proteomic alterations. Pollen is particular because its development is a complex process that includes meiotic and mitotic divisions which causes a high heat sensitivity of these cells. Development and stress response are accompanied by a reprogramming of the transcriptome, e.g. by post-transcriptional regulation via miRNAs. We identified known and potentially novel miRNAs in the transcriptome of developing and heat-stressed pollen of Solanum lycopersicum (tomato). The prediction of target mRNAs yielded an equal number of predicted target-sites in CDS and 3'UTR regions of target mRNAs. The result enabled the postulation of a possible link between miRNAs and a fine-tuning of transcription factor abundance during pollen development. miRNAs seem to play a role in the pollen heat stress response as well. We identified several heat stress transcription factors and heat shock proteins as putative targets of miRNAs in response to heat stress, thereby placing these miRNAs as important elements of thermotolerance. Moreover, for members of the AP2, SBP and ARF family members we could predict a miRNA-mediated regulation during development via the miR172, mir156 and mir160-family strengthening the current concept of a cross-connection between development and stress response in plants.
Collapse
Affiliation(s)
- Mario Keller
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt am Main, Germany.
- Frankfurt Institute of Advanced Studies, 60438, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438, Frankfurt am Main, Germany.
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies, 60438, Frankfurt am Main, Germany
- Institute of Bioinformatics, University Medicine Greifswald, 17475, Greifswald, Germany
| |
Collapse
|
21
|
Lee BP, Smith M, Buffenstein R, Harries LW. Negligible senescence in naked mole rats may be a consequence of well-maintained splicing regulation. GeroScience 2020; 42:633-651. [PMID: 31927681 PMCID: PMC7205774 DOI: 10.1007/s11357-019-00150-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Naked mole-rats (NMRs) have amongst the longest lifespans relative to body size of any known, non-volant mammalian species. They also display an enhanced stress resistance phenotype, negligible senescence and very rarely are they burdened with chronic age-related diseases. Alternative splicing (AS) dysregulation is emerging as a potential driver of senescence and ageing. We hypothesised that the expression of splicing factors, important regulators of patterns of AS, may differ in NMRs when compared to other species with relatively shorter lifespans. We designed assays specific to NMR splicing regulatory factors and also to a panel of pre-selected brain-expressed genes known to demonstrate senescence-related alterations in AS in other species, and measured age-related changes in the transcript expression levels of these using embryonic and neonatal developmental stages through to extreme old age in NMR brain samples. We also compared splicing factor expression in both young mouse and NMR spleen and brain samples. Both NMR tissues showed approximately double the expression levels observed in tissues from similarly sized mice. Furthermore, contrary to observations in other species, following a brief period of labile expression in early life stages, adult NMR splicing factors and patterns of AS for functionally relevant brain genes remained remarkably stable for at least two decades. These findings are consistent with a model whereby the conservation of splicing regulation and stable patterns of AS may contribute to better molecular stress responses and the avoidance of senescence in NMRs, contributing to their exceptional lifespan and prolonged healthspan.
Collapse
Affiliation(s)
- B P Lee
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK
| | - M Smith
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, CA, 94080, USA
| | - R Buffenstein
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, CA, 94080, USA.
| | - L W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
22
|
Kober KM, Lee MC, Olshen A, Conley YP, Sirota M, Keiser M, Hammer MJ, Abrams G, Schumacher M, Levine JD, Miaskowski C. Differential methylation and expression of genes in the hypoxia-inducible factor 1 signaling pathway are associated with paclitaxel-induced peripheral neuropathy in breast cancer survivors and with preclinical models of chemotherapy-induced neuropathic pain. Mol Pain 2020; 16:1744806920936502. [PMID: 32586194 PMCID: PMC7322824 DOI: 10.1177/1744806920936502] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Paclitaxel is an important chemotherapeutic agent for the treatment of breast cancer. Paclitaxel-induced peripheral neuropathy (PIPN) is a major dose-limiting toxicity that can persist into survivorship. While not all survivors develop PIPN, for those who do, it has a substantial negative impact on their functional status and quality of life. No interventions are available to treat PIPN. In our previous studies, we identified that the HIF-1 signaling pathway (H1SP) was perturbed between breast cancer survivors with and without PIPN. Preclinical studies suggest that the H1SP is involved in the development of bortezomib-induced and diabetic peripheral neuropathy, and sciatic nerve injury. The purpose of this study was to identify H1SP genes that have both differential methylation and differential gene expression between breast cancer survivors with and without PIPN. METHODS A multi-staged integrated analysis was performed. In peripheral blood, methylation was assayed using microarray and gene expression was assayed using RNA-seq. Candidate genes in the H1SP having both differentially methylation and differential expression were identified between survivors who received paclitaxel and did (n = 25) and did not (n = 25) develop PIPN. Then, candidate genes were evaluated for differential methylation and differential expression in public data sets of preclinical models of PIPN and sciatic nerve injury. RESULTS Eight candidate genes were identified as both differential methylation and differential expression in survivors. Of the eight homologs identified, one was found to be differential expression in both PIPN and "normal" mice dorsal root ganglia; three were differential methylation in sciatic nerve injury versus sham rats in both pre-frontal cortex and T-cells; and two were differential methylation in sciatic nerve injury versus sham rats in the pre-frontal cortex. CONCLUSIONS This study is the first to evaluate for methylation in cancer survivors with chronic PIPN. The findings provide evidence that the expression of H1SP genes associated with chronic PIPN in cancer survivors may be regulated by epigenetic mechanisms and suggests genes for validation as potential therapeutic targets.
Collapse
Affiliation(s)
- Kord M Kober
- School of Nursing, University of
California, San Francisco, CA, USA
- Helen Diller Family Comprehensive
Cancer Center, University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences
Institute, University of California, San Francisco, CA, USA
| | - Man-Cheung Lee
- School of Medicine, University of
California, San Francisco, CA, USA
| | - Adam Olshen
- Helen Diller Family Comprehensive
Cancer Center, University of California, San Francisco, CA, USA
- Department of Epidemiology and
Biostatistics, University of California, San Francisco, CA, USA
| | - Yvette P Conley
- School of Nursing,
University
of Pittsburgh, Pittsburgh, PA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences
Institute, University of California, San Francisco, CA, USA
- School of Medicine, University of
California, San Francisco, CA, USA
| | - Michael Keiser
- Bakar Computational Health Sciences
Institute, University of California, San Francisco, CA, USA
- School of Medicine, University of
California, San Francisco, CA, USA
- Institute for Neurodegenerative
Diseases, University of California, San Francisco, CA, USA
| | - Marilyn J Hammer
- Phyllis F. Cantor Center,
Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gary Abrams
- School of Medicine, University of
California, San Francisco, CA, USA
| | - Mark Schumacher
- School of Medicine, University of
California, San Francisco, CA, USA
| | - Jon D Levine
- School of Medicine, University of
California, San Francisco, CA, USA
| | - Christine Miaskowski
- School of Nursing, University of
California, San Francisco, CA, USA
- Helen Diller Family Comprehensive
Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
23
|
Decio P, Ustaoglu P, Roat TC, Malaspina O, Devaud JM, Stöger R, Soller M. Acute thiamethoxam toxicity in honeybees is not enhanced by common fungicide and herbicide and lacks stress-induced changes in mRNA splicing. Sci Rep 2019; 9:19196. [PMID: 31844097 PMCID: PMC6915785 DOI: 10.1038/s41598-019-55534-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
Securing food supply for a growing population is a major challenge and heavily relies on the use of agrochemicals to maximize crop yield. It is increasingly recognized, that some neonicotinoid insecticides have a negative impact on non-target organisms, including important pollinators such as the European honeybee Apis mellifera. Toxicity of neonicotinoids may be enhanced through simultaneous exposure with additional pesticides, which could help explain, in part, the global decline of honeybee colonies. Here we examined whether exposure effects of the neonicotinoid thiamethoxam on bee viability are enhanced by the commonly used fungicide carbendazim and the herbicide glyphosate. We also analysed alternative splicing changes upon pesticide exposure in the honeybee. In particular, we examined transcripts of three genes: (i) the stress sensor gene X box binding protein-1 (Xbp1), (ii) the Down Syndrome Cell Adhesion Molecule (Dscam) gene and iii) the embryonic lethal/abnormal visual system (elav) gene, which are important for neuronal function. Our results showed that acute thiamethoxam exposure is not enhanced by carbendazim, nor glyphosate. Toxicity of the compounds did not trigger stress-induced, alternative splicing in the analysed mRNAs, thereby leaving dormant a cellular response pathway to these man-made environmental perturbations.
Collapse
Affiliation(s)
- Pâmela Decio
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Centro de Estudos de Insetos Sociais, Rio Claro, São Paulo, Brazil
| | - Pinar Ustaoglu
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, and Department of Life Sciences, Imperial College London, Ground Floor, Flowers Building, South Kensington Campus, London, SW7 2AZ, UK
| | - Thaisa C Roat
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Centro de Estudos de Insetos Sociais, Rio Claro, São Paulo, Brazil
| | - Osmar Malaspina
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Centro de Estudos de Insetos Sociais, Rio Claro, São Paulo, Brazil
| | - Jean-Marc Devaud
- Research Center on Animal Cognition, Center for Integrative Biology, Toulouse University, CNRS, UPS, Toulouse, France
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, LE12 5RD, Nottingham/Sutton Bonington Campus, United Kingdom.
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
24
|
Rodrigues-Peres RM, de S Carvalho B, Anurag M, Lei JT, Conz L, Gonçalves R, Cardoso Filho C, Ramalho S, de Paiva GR, Derchain SFM, Lopes-Cendes I, Ellis MJ, Sarian LO. Copy number alterations associated with clinical features in an underrepresented population with breast cancer. Mol Genet Genomic Med 2019; 7:e00750. [PMID: 31099189 PMCID: PMC6625096 DOI: 10.1002/mgg3.750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022] Open
Abstract
Background As the most incident tumor among women worldwide, breast cancer is a heterogeneous disease. Tremendous efforts have been made to understand how tumor characteristics as histological type, molecular subtype, and tumor microenvironment collectively influence disease diagnosis to treatment, which impact outcomes. Differences between populations and environmental and cultural factors have impacts on the origin and evolution of the disease, as well as the therapeutic challenges that arise due to these factors. We, then, compared copy number variations (CNVs) in mucinous and nonmucinous luminal breast tumors from a Brazilian cohort to investigate major CNV imbalances in mucinous tumors versus non‐mucinous luminal tumors, taking into account their clinical and pathological features. Methods 48 breast tumor samples and 48 matched control blood samples from Brazilian women were assessed for CNVs by chromosome microarray. Logistic regression and random forest models were used in order to assess CNVs in chromosomal regions from tumors. Results CNVs that were identified in chromosomes 1, 5, 8, 17, 19, and 21 classify tumors according to their histological type, ethnicity, disease stage, and familial history. Conclusion Copy number alterations described in this study provide a better understanding of the landscape of genomic aberrations in mucinous breast cancers that are associated with clinical features.
Collapse
Affiliation(s)
- Raquel M Rodrigues-Peres
- Faculty of Medical Sciences, Department of Obstetrics and Gynecology, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Benilton de S Carvalho
- Department of Statistics, Institute of Mathematics, Statistics and Scientific Computing, State University of Campinas-UNICAMP, Campinas, Brazil.,The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Meenakshi Anurag
- Department of Medicine, Baylor College of Medicine, Houston, TX.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX
| | - Jonathan T Lei
- Department of Medicine, Baylor College of Medicine, Houston, TX.,Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
| | - Livia Conz
- Faculty of Medical Sciences, Department of Obstetrics and Gynecology, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Rodrigo Gonçalves
- Department of Mastology, Hospital das Clínicas, Discipline of Gynecology, Department of Obstetrics and Gynecology, Faculty of Medicine, University of São Paulo, Brazil
| | - Cássio Cardoso Filho
- Faculty of Medical Sciences, Department of Obstetrics and Gynecology, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Susana Ramalho
- Faculty of Medical Sciences, Department of Obstetrics and Gynecology, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Geisilene R de Paiva
- Faculty of Medical Sciences, Department of Obstetrics and Gynecology, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Sophie F M Derchain
- Faculty of Medical Sciences, Department of Obstetrics and Gynecology, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Iscia Lopes-Cendes
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil.,Department of Medical Genetics, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Matthew J Ellis
- Department of Medicine, Baylor College of Medicine, Houston, TX.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX.,Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Luis O Sarian
- Faculty of Medical Sciences, Department of Obstetrics and Gynecology, State University of Campinas-UNICAMP, Campinas, Brazil
| |
Collapse
|
25
|
Rotavirus Infection Alters Splicing of the Stress-Related Transcription Factor XBP1. J Virol 2019; 93:JVI.01739-18. [PMID: 30541862 DOI: 10.1128/jvi.01739-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/05/2018] [Indexed: 11/20/2022] Open
Abstract
XBP1 is a stress-regulated transcription factor also involved in mammalian host defenses and innate immune response. Our investigation of XBP1 RNA splicing during rotavirus infection revealed that an additional XBP1 RNA (XBP1es) that corresponded to exon skipping in the XBP1 pre-RNA is induced depending on the rotavirus strain used. We show that the translation product of XBP1es (XBP1es) has trans-activation properties similar to those of XBP1 on ER stress response element (ERSE) containing promoters. Using monoreassortant between ES+ ("skipping") and ES- ("nonskipping") strains of rotavirus, we show that gene 7 encoding the viral translation enhancer NSP3 is involved in this phenomenon and that exon skipping parallels the nuclear relocalization of cytoplasmic PABP. We further show, using recombinant rotaviruses carrying chimeric gene 7, that the ES+ phenotype is linked to the eIF4G-binding domain of NSP3. Because the XBP1 transcription factor is involved in stress and immunological responses, our results suggest an alternative way to activate XBP1 upon viral infection or nuclear localization of PABP.IMPORTANCE Rotavirus is one of the most important pathogens causing severe gastroenteritis in young children worldwide. Here we show that infection with several rotavirus strains induces an alternative splicing of the RNA encoding the stressed-induced transcription factor XBP1. The genetic determinant of XBP1 splicing is the viral RNA translation enhancer NSP3. Since XBP1 is involved in cellular stress and immune responses and since the XBP1 protein made from the alternatively spliced RNA is an active transcription factor, our observations raise the question of whether alternative splicing is a cellular response to rotavirus infection.
Collapse
|