1
|
Caicedo-Montoya C, Patiño LF, Ríos-Estepa R. Identification of Small RNAs in Streptomyces clavuligerus Using High-Resolution Transcriptomics and Expression Profiling During Clavulanic Acid Production. Int J Mol Sci 2024; 25:13472. [PMID: 39769236 PMCID: PMC11678152 DOI: 10.3390/ijms252413472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Small non-coding RNAs play a pivotal role in regulating various metabolic processes in both prokaryotic and eukaryotic organisms. However, knowledge about small RNAs (sRNAs) in Streptomyces clavuligerus (S. clavuligerus) is scarce. This study aimed to use cutting-edge bioinformatics tools and a compendium of RNA-seq data to predict the potential coding of sRNAs that might be present in the genome of S. clavuligerus ATCC 27064. In the genome of S. clavuligerus, 606 intergenic regions (IGRs) are conserved, and 272 possess a highly thermodynamically stable and conserved secondary structure, indicating the presence of non-coding RNA in these regions. The transcriptome assembly of S. clavuligerus showed that the genome is completely functional, as all the annotated genes are expressed under the conditions analyzed. From this assembly, transcripts originating from IGRs were labeled as putative sRNAs, and their differential expression during the growth curve of S. clavuligerus for clavulanic acid (CA) production was established. The interactome of these differentially expressed (DE) RNAs displayed the sRNAs as global regulators, as they can have multiple mRNA targets. The functional annotation of the target genes of DE sRNAs demonstrated that they are directly involved in secondary metabolite production. Specifically, two sRNA have the genes of the biosynthetic gene cluster of CA as targets. Thus, these molecules add an additional layer to the regulatory cascade for CA biosynthesis, and we propose them as targets for metabolic engineering to increase CA production.
Collapse
Affiliation(s)
- Carlos Caicedo-Montoya
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia; (C.C.-M.); (L.F.P.)
| | - Luisa F. Patiño
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia; (C.C.-M.); (L.F.P.)
| | - Rigoberto Ríos-Estepa
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia, Medellín 050010, Colombia
| |
Collapse
|
2
|
Shine M, Gordon J, Schärfen L, Zigackova D, Herzel L, Neugebauer KM. Co-transcriptional gene regulation in eukaryotes and prokaryotes. Nat Rev Mol Cell Biol 2024; 25:534-554. [PMID: 38509203 PMCID: PMC11199108 DOI: 10.1038/s41580-024-00706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/22/2024]
Abstract
Many steps of RNA processing occur during transcription by RNA polymerases. Co-transcriptional activities are deemed commonplace in prokaryotes, in which the lack of membrane barriers allows mixing of all gene expression steps, from transcription to translation. In the past decade, an extraordinary level of coordination between transcription and RNA processing has emerged in eukaryotes. In this Review, we discuss recent developments in our understanding of co-transcriptional gene regulation in both eukaryotes and prokaryotes, comparing methodologies and mechanisms, and highlight striking parallels in how RNA polymerases interact with the machineries that act on nascent RNA. The development of RNA sequencing and imaging techniques that detect transient transcription and RNA processing intermediates has facilitated discoveries of transcription coordination with splicing, 3'-end cleavage and dynamic RNA folding and revealed physical contacts between processing machineries and RNA polymerases. Such studies indicate that intron retention in a given nascent transcript can prevent 3'-end cleavage and cause transcriptional readthrough, which is a hallmark of eukaryotic cellular stress responses. We also discuss how coordination between nascent RNA biogenesis and transcription drives fundamental aspects of gene expression in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Morgan Shine
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jackson Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dagmar Zigackova
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Lydia Herzel
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Shao X, Zhang H, Zhu Z, Ji F, He Z, Yang Z, Xia Y, Cai Z. DpCoA tagSeq: Barcoding dpCoA-Capped RNA for Direct Nanopore Sequencing via Maleimide-Thiol Reaction. Anal Chem 2023; 95:11124-11131. [PMID: 37439785 PMCID: PMC10372868 DOI: 10.1021/acs.analchem.3c02063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Recent discoveries of noncanonical RNA caps, such as nicotinamide adenine dinucleotide (NAD+) and 3'-dephospho-coenzyme A (dpCoA), have expanded our knowledge of RNA caps. Although dpCoA has been known to cap RNAs in various species, the identities of its capped RNAs (dpCoA-RNAs) remained unknown. To fill this gap, we developed a method called dpCoA tagSeq, which utilized a thiol-reactive maleimide group to label dpCoA cap with a tag RNA serving as the 5' barcode. The barcoded RNAs were isolated using a complementary DNA strand of the tag RNA prior to direct sequencing by nanopore technology. Our validation experiments with model RNAs showed that dpCoA-RNA was efficiently tagged and captured using this protocol. To confirm that the tagged RNAs are capped by dpCoA and no other thiol-containing molecules, we used a pyrophosphatase NudC to degrade the dpCoA cap to adenosine monophosphate (AMP) moiety before performing the tagSeq protocol. We identified 44 genes that transcribe dpCoA-RNAs in mouse liver, demonstrating the method's effectiveness in identifying and characterizing the capped RNAs. This strategy provides a viable approach to identifying dpCoA-RNAs that allows for further functional investigations of the cap.
Collapse
Affiliation(s)
- Xiaojian Shao
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hailei Zhang
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhou Zhu
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Fenfen Ji
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhao He
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhu Yang
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yiji Xia
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
4
|
Leiva LE, Zegarra V, Bange G, Ibba M. At the Crossroad of Nucleotide Dynamics and Protein Synthesis in Bacteria. Microbiol Mol Biol Rev 2023; 87:e0004422. [PMID: 36853029 PMCID: PMC10029340 DOI: 10.1128/mmbr.00044-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Nucleotides are at the heart of the most essential biological processes in the cell, be it as key protagonists in the dogma of molecular biology or by regulating multiple metabolic pathways. The dynamic nature of nucleotides, the cross talk between them, and their constant feedback to and from the cell's metabolic state position them as a hallmark of adaption toward environmental and growth challenges. It has become increasingly clear how the activity of RNA polymerase, the synthesis and maintenance of tRNAs, mRNA translation at all stages, and the biogenesis and assembly of ribosomes are fine-tuned by the pools of intracellular nucleotides. With all aspects composing protein synthesis involved, the ribosome emerges as the molecular hub in which many of these nucleotides encounter each other and regulate the state of the cell. In this review, we aim to highlight intracellular nucleotides in bacteria as dynamic characters permanently cross talking with each other and ultimately regulating protein synthesis at various stages in which the ribosome is mainly the principal character.
Collapse
Affiliation(s)
- Lorenzo Eugenio Leiva
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Victor Zegarra
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Michael Ibba
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| |
Collapse
|
5
|
Ma P, Amemiya HM, He LL, Gandhi SJ, Nicol R, Bhattacharyya RP, Smillie CS, Hung DT. Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states. Cell 2023; 186:877-891.e14. [PMID: 36708705 PMCID: PMC10014032 DOI: 10.1016/j.cell.2023.01.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/15/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023]
Abstract
We introduce BacDrop, a highly scalable technology for bacterial single-cell RNA sequencing that has overcome many challenges hindering the development of scRNA-seq in bacteria. BacDrop can be applied to thousands to millions of cells from both gram-negative and gram-positive species. It features universal ribosomal RNA depletion and combinatorial barcodes that enable multiplexing and massively parallel sequencing. We applied BacDrop to study Klebsiella pneumoniae clinical isolates and to elucidate their heterogeneous responses to antibiotic stress. In an unperturbed population presumed to be homogeneous, we found within-population heterogeneity largely driven by the expression of mobile genetic elements that promote the evolution of antibiotic resistance. Under antibiotic perturbation, BacDrop revealed transcriptionally distinct subpopulations associated with different phenotypic outcomes including antibiotic persistence. BacDrop thus can capture cellular states that cannot be detected by bulk RNA-seq, which will unlock new microbiological insights into bacterial responses to perturbations and larger bacterial communities such as the microbiome.
Collapse
Affiliation(s)
- Peijun Ma
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Haley M Amemiya
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lorrie L He
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shivam J Gandhi
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Robert Nicol
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Roby P Bhattacharyya
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher S Smillie
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Deborah T Hung
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Roberts LA, Shell SS. A research program-linked, course-based undergraduate research experience that allows undergraduates to participate in current research on mycobacterial gene regulation. Front Microbiol 2023; 13:1025250. [PMID: 36687599 PMCID: PMC9853274 DOI: 10.3389/fmicb.2022.1025250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Undergraduate instructional biology laboratories are typically taught within two paradigms. Some labs focus on protocols and techniques delivered in "cookbook" format with defined experimental outcomes. There is increasing momentum to alternatively employ student-driven, open-ended, and discovery-based strategies, often via course-based undergraduate research experiences (CUREs) using crowd-sourcing initiatives. A fraction of students also participate in funded research in faculty research labs, where they have opportunities to work on projects designed to expand the frontiers of human knowledge. These experiences are widely recognized as valuable but are not scalable, as most institutions have many more undergraduates than research lab positions. We sought to address this gap through our department's curriculum by creating an opportunity for students to participate in the real-world research process within a laboratory course. We conceived, developed, and delivered an authentic, guided research experience to students in an upper-level molecular biology laboratory course. We refer to this model as a "research program-linked CURE." The research questions come directly from a faculty member's research lab and evolve along with that research program. Students study post-transcriptional regulation in mycobacteria. We use current molecular biology methodologies to test hypotheses like "UTRs affect RNA and protein expression levels," "there is functional redundancy among RNA helicases," and "carbon starvation alters mRNA 5' end chemistries." We conducted standard assessments and developed a customized "Skills and Concepts Inventory" survey to gauge how well the course met our student learning outcomes. We report the results of our assessments and describe challenges addressed during development and execution of the course, including organizing activities to fit within an instructional lab, balancing breadth with depth, and maintaining authenticity while giving students the experience of obtaining interpretable and novel results. Our data suggest student learning was enhanced through this truly authentic research approach. Further, students were able to perceive they were participants and contributors within an active research paradigm. Students reported increases in their self-identification as scientists, and a positive impact on their career trajectories. An additional benefit was reciprocation back to the funded research laboratory, by funneling course alumni, results, materials, and protocols.
Collapse
Affiliation(s)
- Louis Anthony Roberts
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States,*Correspondence: Louis Anthony Roberts,
| | - Scarlet S. Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States,Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
7
|
Bonar CD, Han J, Wang R, Panchapakesan SSS, Unrau PJ. E. coli 6S RNA complexed to RNA polymerase maintains product RNA synthesis at low cellular ATP levels by initiation with noncanonical initiator nucleotides. RNA (NEW YORK, N.Y.) 2022; 28:1643-1658. [PMID: 36198425 PMCID: PMC9670815 DOI: 10.1261/rna.079356.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The E. coli 6S RNA is an RNA polymerase (RNAP) inhibitor that competes with σ70-dependent DNA promoters for binding to RNAP holoenzyme (RNAP:σ70). The 6S RNA when bound is then used as a template to synthesize a short product RNA (pRNA; usually 13-nt-long). This pRNA changes the 6S RNA structure, triggering the 6S RNA:pRNA complex to release and allowing DNA-dependent housekeeping gene expression to resume. In high nutrient conditions, 6S RNA turnover is extremely rapid but becomes very slow in low nutrient environments. This leads to a large accumulation of inhibited RNAP:σ70 in stationary phase. As pRNA initiates synthesis with ATP, we and others have proposed that the 6S RNA release rate strongly depends on ATP levels as a proxy for sensing the cellular metabolic state. By purifying endogenous 6S RNA:pRNA complexes using RNA Mango and using reverse transcriptase to generate pRNA-cDNA chimeras, we demonstrate that 6S RNA:pRNA formation can be simultaneous with 6S RNA 5' maturation. More importantly, we find a dramatic accumulation of capped pRNAs during stationary phase. This indicates that ATP levels in stationary phase are low enough for noncanonical initiator nucleotides (NCINs) such as NAD+ and NADH to initiate pRNA synthesis. In vitro, mutation of the conserved 6S RNA template sequence immediately upstream of the pRNA transcriptional start site can increase or decrease the pRNA capping efficiency, suggesting that evolution has tuned the biological 6S RNA sequence for an optimal capping rate. NCIN-initiated pRNA synthesis may therefore be essential for cell viability in low nutrient conditions.
Collapse
Affiliation(s)
- Christopher D Bonar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jonathan Han
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Robert Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Shanker Shyam Sundhar Panchapakesan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
| |
Collapse
|
8
|
Doamekpor SK, Sharma S, Kiledjian M, Tong L. Recent insights into noncanonical 5' capping and decapping of RNA. J Biol Chem 2022; 298:102171. [PMID: 35750211 PMCID: PMC9283932 DOI: 10.1016/j.jbc.2022.102171] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
The 5' N7-methylguanosine cap is a critical modification for mRNAs and many other RNAs in eukaryotic cells. Recent studies have uncovered an RNA 5' capping quality surveillance mechanism, with DXO/Rai1 decapping enzymes removing incomplete caps and enabling the degradation of the RNAs, in a process we also refer to as "no-cap decay." It has also been discovered recently that RNAs in eukaryotes, bacteria, and archaea can have noncanonical caps (NCCs), which are mostly derived from metabolites and cofactors such as NAD, FAD, dephospho-CoA, UDP-glucose, UDP-N-acetylglucosamine, and dinucleotide polyphosphates. These NCCs can affect RNA stability, mitochondrial functions, and possibly mRNA translation. The DXO/Rai1 enzymes and selected Nudix (nucleotide diphosphate linked to X) hydrolases have been shown to remove NCCs from RNAs through their deNADding, deFADding, deCoAping, and related activities, permitting the degradation of the RNAs. In this review, we summarize the recent discoveries made in this exciting new area of RNA biology.
Collapse
Affiliation(s)
- Selom K. Doamekpor
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Sunny Sharma
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York, USA.
| |
Collapse
|
9
|
Mohanty BK, Kushner SR. Regulation of mRNA decay in E. coli. Crit Rev Biochem Mol Biol 2022; 57:48-72. [PMID: 34547957 PMCID: PMC9973670 DOI: 10.1080/10409238.2021.1968784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Detailed studies of the Gram-negative model bacterium, Escherichia coli, have demonstrated that post-transcriptional events exert important and possibly greater control over gene regulation than transcription initiation or effective translation. Thus, over the past 30 years, considerable effort has been invested in understanding the pathways of mRNA turnover in E. coli. Although it is assumed that most of the ribonucleases and accessory proteins involved in mRNA decay have been identified, our understanding of the regulation of mRNA decay is still incomplete. Furthermore, the vast majority of the studies on mRNA decay have been conducted on exponentially growing cells. Thus, the mechanism of mRNA decay as currently outlined may not accurately reflect what happens when cells find themselves under a variety of stress conditions, such as, nutrient starvation, changes in pH and temperature, as well as a host of others. While the cellular machinery for degradation is relatively constant over a wide range of conditions, intracellular levels of specific ribonucleases can vary depending on the growth conditions. Substrate competition will also modulate ribonucleolytic activity. Post-transcriptional modifications of transcripts by polyadenylating enzymes may favor a specific ribonuclease activity. Interactions with small regulatory RNAs and RNA binding proteins add additional complexities to mRNA functionality and stability. Since many of the ribonucleases are found at the inner membrane, the physical location of a transcript may help determine its half-life. Here we discuss the properties and role of the enzymes involved in mRNA decay as well as the multiple factors that may affect mRNA decay under various in vivo conditions.
Collapse
Affiliation(s)
| | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens GA 30602
- Department of Microbiology, University of Georgia, Athens GA 30602
| |
Collapse
|
10
|
Wiedermannová J, Julius C, Yuzenkova Y. The expanding field of non-canonical RNA capping: new enzymes and mechanisms. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201979. [PMID: 34017598 PMCID: PMC8131947 DOI: 10.1098/rsos.201979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recent years witnessed the discovery of ubiquitous and diverse 5'-end RNA cap-like modifications in prokaryotes as well as in eukaryotes. These non-canonical caps include metabolic cofactors, such as NAD+/NADH, FAD, cell wall precursors UDP-GlcNAc, alarmones, e.g. dinucleotides polyphosphates, ADP-ribose and potentially other nucleoside derivatives. They are installed at the 5' position of RNA via template-dependent incorporation of nucleotide analogues as an initiation substrate by RNA polymerases. However, the discovery of NAD-capped processed RNAs in human cells suggests the existence of alternative post-transcriptional NC capping pathways. In this review, we compiled growing evidence for a number of these other mechanisms which produce various non-canonically capped RNAs and a growing repertoire of capping small molecules. Enzymes shown to be involved are ADP-ribose polymerases, glycohydrolases and tRNA synthetases, and may potentially include RNA 3'-phosphate cyclases, tRNA guanylyl transferases, RNA ligases and ribozymes. An emerging rich variety of capping molecules and enzymes suggests an unrecognized level of complexity of RNA metabolism.
Collapse
Affiliation(s)
| | | | - Yulia Yuzenkova
- Medical School, NUBI, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Cheng MY, Tao WB, Yuan BF, Feng YQ. Methods for isolation of messenger RNA from biological samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:289-298. [PMID: 33300893 DOI: 10.1039/d0ay01912g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
RNA molecules contain many chemical modifications that can regulate a variety of biological processes. Messenger RNA (mRNA) molecules are critical components in the central dogma of molecular biology. The discovery of reversible chemical modifications in eukaryotic mRNA brings forward a new research field in RNA modification-mediated regulation of gene expression. The modifications in mRNA generally exist in low abundance. The use of highly pure mRNA is critical for the confident identification of new modifications as well as for the accurate quantification of existing modifications in mRNA. In addition, isolation of highly pure mRNA is the first step in many biological research studies. Therefore, the methods for isolating highly pure mRNA are important for mRNA-based downstream studies. A variety of methods for isolating mRNA have been developed in the past few decades and new methods continuously emerge. This review focuses on the methodologies and protocols for isolating mRNA populations. In addition, we discuss the advantages and limitations of these methods. We hope this paper will provide a general view of mRNA isolation strategies and facilitate studies that involve mRNA modifications and functions.
Collapse
Affiliation(s)
- Ming-Yu Cheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | | | | | | |
Collapse
|
12
|
Adams PP, Storz G. Prevalence of small base-pairing RNAs derived from diverse genomic loci. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194524. [PMID: 32147527 DOI: 10.1016/j.bbagrm.2020.194524] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Small RNAs (sRNAs) that act by base-pairing have been shown to play important roles in fine-tuning the levels and translation of their target transcripts across a variety of model and pathogenic organisms. Work from many different groups in a wide range of bacterial species has provided evidence for the importance and complexity of sRNA regulatory networks, which allow bacteria to quickly respond to changes in their environment. However, despite the expansive literature, much remains to be learned about all aspects of sRNA-mediated regulation, particularly in bacteria beyond the well-characterized Escherichia coli and Salmonella enterica species. Here we discuss what is known, and what remains to be learned, about the identification of regulatory base-pairing RNAs produced from diverse genomic loci including how their expression is regulated. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892-6200, USA.
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| |
Collapse
|
13
|
Bird JG, Basu U, Kuster D, Ramachandran A, Grudzien-Nogalska E, Towheed A, Wallace DC, Kiledjian M, Temiakov D, Patel SS, Ebright RH, Nickels BE. Highly efficient 5' capping of mitochondrial RNA with NAD + and NADH by yeast and human mitochondrial RNA polymerase. eLife 2018; 7:42179. [PMID: 30526856 PMCID: PMC6298784 DOI: 10.7554/elife.42179] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Bacterial and eukaryotic nuclear RNA polymerases (RNAPs) cap RNA with the oxidized and reduced forms of the metabolic effector nicotinamide adenine dinucleotide, NAD+ and NADH, using NAD+ and NADH as non-canonical initiating nucleotides for transcription initiation. Here, we show that mitochondrial RNAPs (mtRNAPs) cap RNA with NAD+ and NADH, and do so more efficiently than nuclear RNAPs. Direct quantitation of NAD+- and NADH-capped RNA demonstrates remarkably high levels of capping in vivo: up to ~60% NAD+ and NADH capping of yeast mitochondrial transcripts, and up to ~15% NAD+ capping of human mitochondrial transcripts. The capping efficiency is determined by promoter sequence at, and upstream of, the transcription start site and, in yeast and human cells, by intracellular NAD+ and NADH levels. Our findings indicate mtRNAPs serve as both sensors and actuators in coupling cellular metabolism to mitochondrial transcriptional outputs, sensing NAD+ and NADH levels and adjusting transcriptional outputs accordingly.
Collapse
Affiliation(s)
- Jeremy G Bird
- Department of Genetics and Waksman Institute, Rutgers University, United States.,Department of Chemistry and Waksman Institute, Rutgers University, United States
| | - Urmimala Basu
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, United States.,Biochemistry PhD Program, School of Graduate Studies, Rutgers University, United States
| | - David Kuster
- Department of Genetics and Waksman Institute, Rutgers University, United States.,Department of Chemistry and Waksman Institute, Rutgers University, United States.,Biochemistry Center Heidelberg, Heidelberg University, Germany
| | - Aparna Ramachandran
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, United States
| | | | - Atif Towheed
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, United States
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, United States.,Department of Pediatrics, Division of Human Genetics, The Children's Hospital of Philadelphia, Perelman School of Medicine, United States
| | | | - Dmitry Temiakov
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, United States
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, United States
| | - Richard H Ebright
- Department of Chemistry and Waksman Institute, Rutgers University, United States
| | - Bryce E Nickels
- Department of Genetics and Waksman Institute, Rutgers University, United States
| |
Collapse
|
14
|
Gagliardi D, Dziembowski A. 5' and 3' modifications controlling RNA degradation: from safeguards to executioners. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0160. [PMID: 30397097 DOI: 10.1098/rstb.2018.0160] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
RNA degradation is a key process in the regulation of gene expression. In all organisms, RNA degradation participates in controlling coding and non-coding RNA levels in response to developmental and environmental cues. RNA degradation is also crucial for the elimination of defective RNAs. Those defective RNAs are mostly produced by 'mistakes' made by the RNA processing machinery during the maturation of functional transcripts from their precursors. The constant control of RNA quality prevents potential deleterious effects caused by the accumulation of aberrant non-coding transcripts or by the translation of defective messenger RNAs (mRNAs). Prokaryotic and eukaryotic organisms are also under the constant threat of attacks from pathogens, mostly viruses, and one common line of defence involves the ribonucleolytic digestion of the invader's RNA. Finally, mutations in components involved in RNA degradation are associated with numerous diseases in humans, and this together with the multiplicity of its roles illustrates the biological importance of RNA degradation. RNA degradation is mostly viewed as a default pathway: any functional RNA (including a successful pathogenic RNA) must be protected from the scavenging RNA degradation machinery. Yet, this protection must be temporary, and it will be overcome at one point because the ultimate fate of any cellular RNA is to be eliminated. This special issue focuses on modifications deposited at the 5' or the 3' extremities of RNA, and how these modifications control RNA stability or degradation.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Dominique Gagliardi
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland .,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|