1
|
Wang Y, Liu J, Wang Z, Zhang M, Zhang Y. The Research Progress of Single-Molecule Sequencing and Its Significance in Nucleic Acid Metrology. BIOSENSORS 2024; 15:4. [PMID: 39852055 PMCID: PMC11763189 DOI: 10.3390/bios15010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
Single-molecule sequencing technology, a novel method for gene sequencing, utilizes nano-sized materials to detect electrical and fluorescent signals. Compared to traditional Sanger sequencing and next-generation sequencing technologies, it offers significant advantages, including ultra-long read lengths, rapid sequencing, and the absence of amplification steps, making it widely applicable across various fields. By examining the development and components of single-molecule sequencing technology, it becomes clear that its unique characteristics provide new opportunities for advancing metrological traceability. Notably, its direct detection capabilities offer a novel approach to nucleic acid metrology. This paper provides a detailed overview of library construction, signal generation and detection, and data analysis methods in single-molecule sequencing and discusses its implications for nucleic acid metrology.
Collapse
Affiliation(s)
- Yajun Wang
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China;
| | - Jingjing Liu
- College of Information and Control Engineering, China Northeast Electric Power University, Jilin 132011, China;
| | - Zhendong Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (Z.W.); (M.Z.)
| | - Mei Zhang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (Z.W.); (M.Z.)
| | - Yongzhuo Zhang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (Z.W.); (M.Z.)
| |
Collapse
|
2
|
Piątkowski J, Koźluk K, Golik P. Mitochondrial transcriptome of Candida albicans in flagranti - direct RNA sequencing reveals a new layer of information. BMC Genomics 2024; 25:860. [PMID: 39277734 PMCID: PMC11401289 DOI: 10.1186/s12864-024-10791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Organellar transcriptomes are relatively under-studied systems, with data related to full-length transcripts and posttranscriptional modifications remaining sparse. Direct RNA sequencing presents the possibility of accessing a previously unavailable layer of information pertaining to transcriptomic data, as well as circumventing the biases introduced by second-generation RNA-seq platforms. Direct long-read ONT sequencing allows for the isoform analysis of full-length transcripts and the detection of posttranscriptional modifications. However, there are still relatively few projects employing this method specifically for studying organellar transcriptomes. RESULTS Candida albicans is a promising model for investigating nucleo-mitochondrial interactions. This work comprises ONT sequencing of the Candida albicans mitochondrial transcriptome along with the development of a dedicated data analysis pipeline. This approach allowed for the detection of complete transcript isoforms and posttranslational RNA modifications, as well as an analysis of C. albicans deletion mutants in genes coding for the 5' and 3' mitochondrial RNA exonucleases CaPET127 and CaDSS1. It also enabled for corrections to previous studies in terms of 3' and 5' transcript ends. A number of intermediate splicing isoforms was also discovered, along with mature and unspliced transcripts and changes in their abundances resulting from disruption of both 5' and 3' exonucleolytic processing. Multiple putative posttranscriptional modification sites have also been detected. CONCLUSIONS This preliminary work demonstrates the suitability of direct RNA sequencing for studying yeast mitochondrial transcriptomes in general and provides new insights into the workings of the C. albicans mitochondrial transcriptome in particular. It also provides a general roadmap for analyzing mitochondrial transcriptomic data from other organisms.
Collapse
Affiliation(s)
- Jakub Piątkowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland.
| | - Kacper Koźluk
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Paweł Golik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| |
Collapse
|
3
|
Vahidi Emami H, Ghalyanchi Langeroudi A, Hosseini SM, Najafi H. Design and implementation of a TaqMan ® real-time PCR method for detection and quantification of bovine leukemia virus. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:417-423. [PMID: 39280856 PMCID: PMC11401136 DOI: 10.30466/vrf.2024.2016741.4084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 09/18/2024]
Abstract
The bovine leukemia virus (BLV) is an important infectious agent transmitted from cattle to humans. It is considered one of the oncogenic viruses in breast cancer, so an accurate detection of this virus is important. The study aimed to design a specific and sensitive method based on TaqMan® real-time polymerase chain reaction (RT-PCR) for BLV detection. Probes and primers were designed using bioinformatics software for a 108 pairs region of the BLV tax gene. Criteria employed for determining analytical sensitivity were prepared using in-vitro RNA transcriptions. The National Center for Biotechnology Information (NCBI), basic local alignment search tool (BLAST) databases various viral panels and genomic samples from healthy individuals (Qom Province, Iran in 2023) were used to verify analytical specificity and clinical specificity, respectively. This method can measure a minimum of 10 copies of DNA and RNA mL-1. Moreover, the assay is linear in the range of 100 - 109 copies mL-1. By testing negative specimens, the method specificity was 100%. The reproducibility results of the reaction were examined at the intra- and inter-assay comparison. In fact, 10 technical replicates of each concentration of the control sample were analyzed in each working reaction. Due to the locally made kit, exact sensitivity and specificity, rapid analysis, and relatively low cost, as compared to commercial kits of other countries, the method introduced in the present study could be suitable for accurate detection of the BLV. Also, the TaqMan® real-time PCR method could be detected in cattle and human and before malignant changes of breast cancer which could reduce infection and breast cancer.
Collapse
Affiliation(s)
- Hassan Vahidi Emami
- Department of Microbiology and Immunology, School of the Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Ghalyanchi Langeroudi
- Department of Microbiology and Immunology, School of the Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hamideh Najafi
- Department of Microbiology and Immunology, School of the Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Shen L, Zhang Z, Wang R, Wu S, Wang Y, Fu S. Metatranscriptomic data mining together with microfluidic card uncovered the potential pathogens and seasonal RNA viral ecology in a drinking water source. J Appl Microbiol 2024; 135:lxad310. [PMID: 38130237 DOI: 10.1093/jambio/lxad310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
AIMS Despite metatranscriptomics becoming an emerging tool for pathogen surveillance, very little is known about the feasibility of this approach for understanding the fate of human-derived pathogens in drinking water sources. METHODS AND RESULTS We conducted multiplexed microfluidic cards and metatranscriptomic sequencing of the drinking water source in a border city of North Korea in four seasons. Microfluidic card detected norovirus, hepatitis B virus (HBV), enterovirus, and Vibrio cholerae in the water. Phylogenetic analyses showed that environmental-derived sequences from norovirus GII.17, genotype C of HBV, and coxsackievirus A6 (CA6) were genetically related to the local clinical isolates. Meanwhile, metatranscriptomic assembly suggested that several bacterial pathogens, including Acinetobacter johnsonii and V. cholerae might be prevalent in the studied region. Metatranscriptomic analysis recovered 349 species-level groups with substantial viral diversity without detection of norovirus, HBV, and CA6. Seasonally distinct virus communities were also found. Specifically, 126, 73, 126, and 457 types of viruses were identified in spring, summer, autumn, and winter, respectively. The viromes were dominated by the Pisuviricota phylum, including members from Marnaviridae, Dicistroviridae, Luteoviridae, Potyviridae, Picornaviridae, Astroviridae, and Picobirnaviridae families. Further phylogenetic analyses of RNA (Ribonucleic Acid)-dependent RNA polymerase (RdRp) sequences showed a diverse set of picorna-like viruses associated with shellfish, of which several novel picorna-like viruses were also identified. Additionally, potential animal pathogens, including infectious bronchitis virus, Bat dicibavirus, Bat nodavirus, Bat picornavirus 2, infectious bursal disease virus, and Macrobrachium rosenbergii nodavirus were also identified. CONCLUSIONS Our data illustrate the divergence between microfluidic cards and metatranscriptomics, highlighting that the combination of both methods facilitates the source tracking of human viruses in challenging settings without sufficient clinical surveillance.
Collapse
Affiliation(s)
- Lixin Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Department of Microbiology, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ziqiang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Department of Microbiology, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Rui Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China
| | - Shuang Wu
- College of Food Technology and Sciences, Shanghai Ocean University, Shanghai 200093, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yongjie Wang
- College of Food Technology and Sciences, Shanghai Ocean University, Shanghai 200093, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 200093, China
| | - Songzhe Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Department of Microbiology, College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
5
|
Hamim I, Sekine KT, Komatsu K. How do emerging long-read sequencing technologies function in transforming the plant pathology research landscape? PLANT MOLECULAR BIOLOGY 2022; 110:469-484. [PMID: 35962900 DOI: 10.1007/s11103-022-01305-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Long-read sequencing technologies are revolutionizing the sequencing and analysis of plant and pathogen genomes and transcriptomes, as well as contributing to emerging areas of interest in plant-pathogen interactions, disease management techniques, and the introduction of new plant varieties or cultivars. Long-read sequencing (LRS) technologies are progressively being implemented to study plants and pathogens of agricultural importance, which have substantial economic effects. The variability and complexity of the genome and transcriptome affect plant growth, development and pathogen responses. Overcoming the limitations of second-generation sequencing, LRS technology has significantly increased the length of a single contiguous read from a few hundred to millions of base pairs. Because of the longer read lengths, new analysis methods and tools have been developed for plant and pathogen genomics and transcriptomics. LRS technologies enable faster, more efficient, and high-throughput ultralong reads, allowing direct sequencing of genomes that would be impossible or difficult to investigate using short-read sequencing approaches. These benefits include genome assembly in repetitive areas, creating more comprehensive and exact genome determinations, assembling full-length transcripts, and detecting DNA and RNA alterations. Furthermore, these technologies allow for the identification of transcriptome diversity, significant structural variation analysis, and direct epigenetic mark detection in plant and pathogen genomic regions. LRS in plant pathology is found efficient for identifying and characterization of effectors in plants as well as known and unknown plant pathogens. In this review, we investigate how these technologies are transforming the landscape of determination and characterization of plant and pathogen genomes and transcriptomes efficiently and accurately. Moreover, we highlight potential areas of interest offered by LRS technologies for future study into plant-pathogen interactions, disease control strategies, and the development of new plant varieties or cultivars.
Collapse
Affiliation(s)
- Islam Hamim
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- International Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ken-Taro Sekine
- Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan.
| |
Collapse
|
6
|
Davies P, Jones M, Liu J, Hebenstreit D. Anti-bias training for (sc)RNA-seq: experimental and computational approaches to improve precision. Brief Bioinform 2021; 22:6265204. [PMID: 33959753 PMCID: PMC8574610 DOI: 10.1093/bib/bbab148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/10/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022] Open
Abstract
RNA-seq, including single cell RNA-seq (scRNA-seq), is plagued by insufficient sensitivity and lack of precision. As a result, the full potential of (sc)RNA-seq is limited. Major factors in this respect are the presence of global bias in most datasets, which affects detection and quantitation of RNA in a length-dependent fashion. In particular, scRNA-seq is affected by technical noise and a high rate of dropouts, where the vast majority of original transcripts is not converted into sequencing reads. We discuss these biases origins and implications, bioinformatics approaches to correct for them, and how biases can be exploited to infer characteristics of the sample preparation process, which in turn can be used to improve library preparation.
Collapse
Affiliation(s)
- Philip Davies
- Daniel Hebenstreit's Research Group University of Warwick, CV4 7AL Coventry, UK
| | - Matt Jones
- Daniel Hebenstreit's Research Group University of Warwick, CV4 7AL Coventry, UK
| | - Juntai Liu
- Physics Department, University of Warwick, CV4 7AL Coventry, UK
| | | |
Collapse
|
7
|
Bhattacharya N, Ganguli-Indra G, Indra AK. Transcriptional control and transcriptomic analysis of lipid metabolism in skin barrier formation and atopic dermatitis (AD). Expert Rev Proteomics 2019; 16:627-645. [PMID: 31322970 DOI: 10.1080/14789450.2019.1646128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Atopic dermatitis (AD) is a multifactorial ailment associated with barrier breach and intense systemic inflammation. Several studies over the years have shown the complex interplay of a large number of factors in governing the progression and outcome of AD. In addition to the diverse types of AD resulting due to variation in the intrinsic mechanisms giving rise to AD such as single nucleotide polymorphisms (SNPs), epigenetic alterations or transcriptional changes, extrinsic factors such as age, ancestry, ethnicity, immunological background of the subject, the interactions of the subject with environmental stimuli and existing microbiome in the periphery surrounding the subject account for further heterogeneity in the clinical manifestations of the disease. Areas covered: Here we have selectively discussed transcriptional regulation of genes associated with skin lipid metabolism in the context of AD. Transcriptional control and transcriptomic changes are just one face of this multifaceted disease known to affect humans and a detailed study concerning those will enable us to develop targeted therapies to deal with the disease. Expert opinion: Large-scale integration of different omics approaches (genomics, epigenomics, transcriptomics, lipidomics, proteomics, metabolomics, effect of exposome) will help identify the potential candidate gene(s) associated with the development of various endotypes of AD.
Collapse
Affiliation(s)
- Nilika Bhattacharya
- Department of Pharmaceutical Sciences, College of Pharmacy, OSU , Corvallis , OR , USA
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, OSU , Corvallis , OR , USA.,Knight Cancer Institute, Oregon Health & Science University (OHSU) , Portland , OR , USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, OSU , Corvallis , OR , USA.,Knight Cancer Institute, Oregon Health & Science University (OHSU) , Portland , OR , USA.,Department of Biochemistry and Biophysics, OSU , Corvallis , OR , USA.,Linus Pauling Science Center, Oregon State University (OSU) , Corvallis , OR , USA.,Department of Dermatology, Oregon Health & Science University (OHSU) , Portland , OR , USA
| |
Collapse
|
8
|
Abstract
Biomarkers are increasingly used in patients with serious infections in the critical care setting to complement clinical judgment and interpretation of other diagnostic and prognostic tests. The main purposes of such blood markers are (1) to improve infection diagnosis (i.e., differentiation between bacterial vs. viral vs. fungal vs. noninfectious), (2) to help in the early risk stratification and thus provide prognostic information regarding the risk for mortality and other adverse outcomes, and (3) to optimize antibiotic tailoring to individual needs of patients ("antibiotic stewardship").Especially in critically ill patients, in whom sepsis is a major cause of morbidity and mortality, rapid diagnosis is desirable to start timely and specific treatment.Besides some biomarkers, such as procalcitonin, which is well established and has shown positive effects in regard to utilization of antimicrobials and clinical outcomes, there is a growing number of novel markers from different pathophysiological pathways, where the final proof of an added value to clinical judgment and ultimately clinical benefit to patients is still lacking.Without a doubt, the addition of blood biomarkers to clinical medicine has had a strong impact on the way we care for patients today. Recent trials show that as an adjunct to other clinical and laboratory parameters these markers provide important information about risks for bacterial infection and resolution of infection. Moreover, biomarkers can help to optimize management of patients with serious illness in the intensive care unit, thereby offering more individualized treatment courses with overall improvements in clinical outcomes.
Collapse
Affiliation(s)
- Eva Heilmann
- Medical University Department of Internal Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Claudia Gregoriano
- Medical University Department of Internal Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Philipp Schuetz
- Medical University Department of Internal Medicine, Kantonsspital Aarau, Aarau, Switzerland
- Faculty of Medicine, University of Basel, Switzerland
| |
Collapse
|
9
|
Smith AM, Jain M, Mulroney L, Garalde DR, Akeson M. Reading canonical and modified nucleobases in 16S ribosomal RNA using nanopore native RNA sequencing. PLoS One 2019; 14:e0216709. [PMID: 31095620 PMCID: PMC6522004 DOI: 10.1371/journal.pone.0216709] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/27/2019] [Indexed: 11/19/2022] Open
Abstract
The ribosome small subunit is expressed in all living cells. It performs numerous essential functions during translation, including formation of the initiation complex and proofreading of base-pairs between mRNA codons and tRNA anticodons. The core constituent of the small ribosomal subunit is a ~1.5 kb RNA strand in prokaryotes (16S rRNA) and a homologous ~1.8 kb RNA strand in eukaryotes (18S rRNA). Traditional sequencing-by-synthesis (SBS) of rRNA genes or rRNA cDNA copies has achieved wide use as a 'molecular chronometer' for phylogenetic studies, and as a tool for identifying infectious organisms in the clinic. However, epigenetic modifications on rRNA are erased by SBS methods. Here we describe direct MinION nanopore sequencing of individual, full-length 16S rRNA absent reverse transcription or amplification. As little as 5 picograms (~10 attomole) of purified E. coli 16S rRNA was detected in 4.5 micrograms of total human RNA. Nanopore ionic current traces that deviated from canonical patterns revealed conserved E. coli 16S rRNA 7-methylguanosine and pseudouridine modifications, and a 7-methylguanosine modification that confers aminoglycoside resistance to some pathological E. coli strains.
Collapse
Affiliation(s)
- Andrew M. Smith
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Miten Jain
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Logan Mulroney
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | | | - Mark Akeson
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
10
|
Single-Molecule Sequencing: Towards Clinical Applications. Trends Biotechnol 2019; 37:72-85. [DOI: 10.1016/j.tibtech.2018.07.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022]
|
11
|
Huo Y, Xv R, Ma H, Zhou J, Xi X, Wu Q, Duan J, Zhou M, Chen T. Identification of <10 KD peptides in the water extraction of Venenum Bufonis from Bufo gargarizans using Nano LC–MS/MS and De novo sequencing. J Pharm Biomed Anal 2018; 157:156-164. [DOI: 10.1016/j.jpba.2018.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022]
|
12
|
Chen Z, Chen L, Zhang W. Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level. Front Microbiol 2017; 8:1831. [PMID: 28979258 PMCID: PMC5611438 DOI: 10.3389/fmicb.2017.01831] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022] Open
Abstract
Microbiologists traditionally study population rather than individual cells, as it is generally assumed that the status of individual cells will be similar to that observed in the population. However, the recent studies have shown that the individual behavior of each single cell could be quite different from that of the whole population, suggesting the importance of extending traditional microbiology studies to single-cell level. With recent technological advances, such as flow cytometry, next-generation sequencing (NGS), and microspectroscopy, single-cell microbiology has greatly enhanced the understanding of individuality and heterogeneity of microbes in many biological systems. Notably, the application of multiple ‘omics’ in single-cell analysis has shed light on how individual cells perceive, respond, and adapt to the environment, how heterogeneity arises under external stress and finally determines the fate of the whole population, and how microbes survive under natural conditions. As single-cell analysis involves no axenic cultivation of target microorganism, it has also been demonstrated as a valuable tool for dissecting the microbial ‘dark matter.’ In this review, current state-of-the-art tools and methods for genomic and transcriptomic analysis of microbes at single-cell level were critically summarized, including single-cell isolation methods and experimental strategies of single-cell analysis with NGS. In addition, perspectives on the future trends of technology development in the field of single-cell analysis was also presented.
Collapse
Affiliation(s)
- Zixi Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China.,Center for Biosafety Research and Strategy, Tianjin UniversityTianjin, China
| |
Collapse
|
13
|
Borràs DM, Vossen RHAM, Liem M, Buermans HPJ, Dauwerse H, van Heusden D, Gansevoort RT, den Dunnen JT, Janssen B, Peters DJM, Losekoot M, Anvar SY. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. Hum Mutat 2017; 38:870-879. [PMID: 28378423 PMCID: PMC5488171 DOI: 10.1002/humu.23223] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 01/23/2023]
Abstract
A genetic diagnosis of autosomal-dominant polycystic kidney disease (ADPKD) is challenging due to allelic heterogeneity, high GC content, and homology of the PKD1 gene with six pseudogenes. Short-read next-generation sequencing approaches, such as whole-genome sequencing and whole-exome sequencing, often fail at reliably characterizing complex regions such as PKD1. However, long-read single-molecule sequencing has been shown to be an alternative strategy that could overcome PKD1 complexities and discriminate between homologous regions of PKD1 and its pseudogenes. In this study, we present the increased power of resolution for complex regions using long-read sequencing to characterize a cohort of 19 patients with ADPKD. Our approach provided high sensitivity in identifying PKD1 pathogenic variants, diagnosing 94.7% of the patients. We show that reliable screening of ADPKD patients in a single test without interference of PKD1 homologous sequences, commonly introduced by residual amplification of PKD1 pseudogenes, by direct long-read sequencing is now possible. This strategy can be implemented in diagnostics and is highly suitable to sequence and resolve complex genomic regions that are of clinical relevance.
Collapse
Affiliation(s)
- Daniel M Borràs
- GenomeScan B.V, Leiden, The Netherlands.,Institut National de la Santé et de la Recherche Médicale (INSERM), Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Rolf H A M Vossen
- Leiden Genome Technology Center (LGTC), Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Michael Liem
- Leiden Genome Technology Center (LGTC), Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Henk P J Buermans
- Leiden Genome Technology Center (LGTC), Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Hans Dauwerse
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Dave van Heusden
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ron T Gansevoort
- Department of Nephrology, University Hospital Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan T den Dunnen
- Leiden Genome Technology Center (LGTC), Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Seyed Yahya Anvar
- Leiden Genome Technology Center (LGTC), Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
14
|
Archer N, Walsh MD, Shahrezaei V, Hebenstreit D. Modeling Enzyme Processivity Reveals that RNA-Seq Libraries Are Biased in Characteristic and Correctable Ways. Cell Syst 2016; 3:467-479.e12. [PMID: 27840077 PMCID: PMC5167349 DOI: 10.1016/j.cels.2016.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/28/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022]
Abstract
Experimental procedures for preparing RNA-seq and single-cell (sc) RNA-seq libraries are based on assumptions regarding their underlying enzymatic reactions. Here, we show that the fairness of these assumptions varies within libraries: coverage by sequencing reads along and between transcripts exhibits characteristic, protocol-dependent biases. To understand the mechanistic basis of this bias, we present an integrated modeling framework that infers the relationship between enzyme reactions during library preparation and the characteristic coverage patterns observed for different protocols. Analysis of new and existing (sc)RNA-seq data from six different library preparation protocols reveals that polymerase processivity is the mechanistic origin of coverage biases. We apply our framework to demonstrate that lowering incubation temperature increases processivity, yield, and (sc)RNA-seq sensitivity in all protocols. We also provide correction factors based on our model for increasing accuracy of transcript quantification in existing samples prepared at standard temperatures. In total, our findings improve our ability to accurately reflect in vivo transcript abundances in (sc)RNA-seq libraries. Characterization of global RNA-seq biases specific to library preparation protocols Mathematical framework to reverse engineer enzyme reactions that cause bias Insights from reverse engineering allow optimization of RNA-seq protocols Lowered incubation temperatures during library preparation improve sensitivity
Collapse
Affiliation(s)
- Nathan Archer
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Mark D Walsh
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College, London SW7 2AZ, UK.
| | | |
Collapse
|
15
|
Kim T, Lim CS, Kaang BK. Cell type-specific gene expression profiling in brain tissue: comparison between TRAP, LCM and RNA-seq. BMB Rep 2016; 48:388-94. [PMID: 25603796 PMCID: PMC4577288 DOI: 10.5483/bmbrep.2015.48.7.218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 01/18/2023] Open
Abstract
The brain is an organ that consists of various cell types. As our knowledge of the structure and function of the brain progresses, cell type-specific research is gaining importance. Together with advances in sequencing technology and bioinformatics, cell type-specific transcriptome studies are providing important insights into brain cell function. In this review, we discuss 3 different cell type-specific transcriptome analyses i.e., Laser Capture Microdissection (LCM), Translating Ribosome Affinity Purification (TRAP)/RiboTag, and single cell RNA-Seq, that are widely used in the field of neuroscience.
Collapse
Affiliation(s)
- TaeHyun Kim
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Chae-Seok Lim
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
16
|
Lei Q, Li C, Zuo Z, Huang C, Cheng H, Zhou R. Evolutionary Insights into RNA trans-Splicing in Vertebrates. Genome Biol Evol 2016; 8:562-77. [PMID: 26966239 PMCID: PMC4824033 DOI: 10.1093/gbe/evw025] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pre-RNA splicing is an essential step in generating mature mRNA. RNA trans-splicing combines two separate pre-mRNA molecules to form a chimeric non-co-linear RNA, which may exert a function distinct from its original molecules. Trans-spliced RNAs may encode novel proteins or serve as noncoding or regulatory RNAs. These novel RNAs not only increase the complexity of the proteome but also provide new regulatory mechanisms for gene expression. An increasing amount of evidence indicates that trans-splicing occurs frequently in both physiological and pathological processes. In addition, mRNA reprogramming based on trans-splicing has been successfully applied in RNA-based therapies for human genetic diseases. Nevertheless, clarifying the extent and evolution of trans-splicing in vertebrates and developing detection methods for trans-splicing remain challenging. In this review, we summarize previous research, highlight recent advances in trans-splicing, and discuss possible splicing mechanisms and functions from an evolutionary viewpoint.
Collapse
Affiliation(s)
- Quan Lei
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Cong Li
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Zhixiang Zuo
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Chunhua Huang
- Department of Cell Biology, College of Life Sciences, Wuhan University, P.R. China
| | - Hanhua Cheng
- Department of Cell Biology, College of Life Sciences, Wuhan University, P.R. China
| | - Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| |
Collapse
|
17
|
Yu J. Precision Medicine: What Do We Expect in the Scope of Basic Biomedical Sciences? GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:1-3. [PMID: 26883672 PMCID: PMC4792840 DOI: 10.1016/j.gpb.2016.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
18
|
Velmeshev D, Lally P, Magistri M, Faghihi MA. CANEapp: a user-friendly application for automated next generation transcriptomic data analysis. BMC Genomics 2016; 17:49. [PMID: 26758513 PMCID: PMC4710974 DOI: 10.1186/s12864-015-2346-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/22/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Next generation sequencing (NGS) technologies are indispensable for molecular biology research, but data analysis represents the bottleneck in their application. Users need to be familiar with computer terminal commands, the Linux environment, and various software tools and scripts. Analysis workflows have to be optimized and experimentally validated to extract biologically meaningful data. Moreover, as larger datasets are being generated, their analysis requires use of high-performance servers. RESULTS To address these needs, we developed CANEapp (application for Comprehensive automated Analysis of Next-generation sequencing Experiments), a unique suite that combines a Graphical User Interface (GUI) and an automated server-side analysis pipeline that is platform-independent, making it suitable for any server architecture. The GUI runs on a PC or Mac and seamlessly connects to the server to provide full GUI control of RNA-sequencing (RNA-seq) project analysis. The server-side analysis pipeline contains a framework that is implemented on a Linux server through completely automated installation of software components and reference files. Analysis with CANEapp is also fully automated and performs differential gene expression analysis and novel noncoding RNA discovery through alternative workflows (Cuffdiff and R packages edgeR and DESeq2). We compared CANEapp to other similar tools, and it significantly improves on previous developments. We experimentally validated CANEapp's performance by applying it to data derived from different experimental paradigms and confirming the results with quantitative real-time PCR (qRT-PCR). CANEapp adapts to any server architecture by effectively using available resources and thus handles large amounts of data efficiently. CANEapp performance has been experimentally validated on various biological datasets. CANEapp is available free of charge at http://psychiatry.med.miami.edu/research/laboratory-of-translational-rna-genomics/CANE-app . CONCLUSIONS We believe that CANEapp will serve both biologists with no computational experience and bioinformaticians as a simple, timesaving but accurate and powerful tool to analyze large RNA-seq datasets and will provide foundations for future development of integrated and automated high-throughput genomics data analysis tools. Due to its inherently standardized pipeline and combination of automated analysis and platform-independence, CANEapp is an ideal for large-scale collaborative RNA-seq projects between different institutions and research groups.
Collapse
Affiliation(s)
- Dmitry Velmeshev
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. .,Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Patrick Lally
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. .,Department of Biomedical Engineering, University of Miami, Coral Gables, FL, 33146, USA.
| | - Marco Magistri
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Mohammad Ali Faghihi
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
19
|
Park SJ, Saito-Adachi M, Komiyama Y, Nakai K. Advances, practice, and clinical perspectives in high-throughput sequencing. Oral Dis 2016; 22:353-64. [DOI: 10.1111/odi.12403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 01/06/2023]
Affiliation(s)
- S-J Park
- Human Genome Center; The Institute of Medical Science; The University of Tokyo; Tokyo Japan
| | - M Saito-Adachi
- Division of Cancer Genomics; National Cancer Center Research Institute; Tokyo Japan
| | - Y Komiyama
- Human Genome Center; The Institute of Medical Science; The University of Tokyo; Tokyo Japan
| | - K Nakai
- Human Genome Center; The Institute of Medical Science; The University of Tokyo; Tokyo Japan
| |
Collapse
|
20
|
Bikel S, Valdez-Lara A, Cornejo-Granados F, Rico K, Canizales-Quinteros S, Soberón X, Del Pozo-Yauner L, Ochoa-Leyva A. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput Struct Biotechnol J 2015; 13:390-401. [PMID: 26137199 PMCID: PMC4484546 DOI: 10.1016/j.csbj.2015.06.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023] Open
Abstract
The advances in experimental methods and the development of high performance bioinformatic tools have substantially improved our understanding of microbial communities associated with human niches. Many studies have documented that changes in microbial abundance and composition of the human microbiome is associated with human health and diseased state. The majority of research on human microbiome is typically focused in the analysis of one level of biological information, i.e., metagenomics or metatranscriptomics. In this review, we describe some of the different experimental and bioinformatic strategies applied to analyze the 16S rRNA gene profiling and shotgun sequencing data of the human microbiome. We also discuss how some of the recent insights in the combination of metagenomics, metatranscriptomics and viromics can provide more detailed description on the interactions between microorganisms and viruses in oral and gut microbiomes. Recent studies on viromics have begun to gain importance due to the potential involvement of viruses in microbial dysbiosis. In addition, metatranscriptomic combined with metagenomic analysis have shown that a substantial fraction of microbial transcripts can be differentially regulated relative to their microbial genomic abundances. Thus, understanding the molecular interactions in the microbiome using the combination of metagenomics, metatranscriptomics and viromics is one of the main challenges towards a system level understanding of human microbiome.
Collapse
Affiliation(s)
- Shirley Bikel
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| | - Alejandra Valdez-Lara
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| | - Fernanda Cornejo-Granados
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| | - Karina Rico
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico
| | - Xavier Soberón
- Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., Mexico
| | | | - Adrián Ochoa-Leyva
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| |
Collapse
|
21
|
Clevenger J, Chavarro C, Pearl SA, Ozias-Akins P, Jackson SA. Single Nucleotide Polymorphism Identification in Polyploids: A Review, Example, and Recommendations. MOLECULAR PLANT 2015; 8:831-46. [PMID: 25676455 DOI: 10.1016/j.molp.2015.02.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/21/2015] [Accepted: 02/01/2015] [Indexed: 05/23/2023]
Abstract
Understanding the relationship between genotype and phenotype is a major biological question and being able to predict phenotypes based on molecular genotypes is integral to molecular breeding. Whole-genome duplications have shaped the history of all flowering plants and present challenges to elucidating the relationship between genotype and phenotype, especially in neopolyploid species. Although single nucleotide polymorphisms (SNPs) have become popular tools for genetic mapping, discovery and application of SNPs in polyploids has been difficult. Here, we summarize common experimental approaches to SNP calling, highlighting recent polyploid successes. To examine the impact of software choice on these analyses, we called SNPs among five peanut genotypes using different alignment programs (BWA-mem and Bowtie 2) and variant callers (SAMtools, GATK, and Freebayes). Alignments produced by Bowtie 2 and BWA-mem and analyzed in SAMtools shared 24.5% concordant SNPs, and SAMtools, GATK, and Freebayes shared 1.4% concordant SNPs. A subsequent analysis of simulated Brassica napus chromosome 1A and 1C genotypes demonstrated that, of the three software programs, SAMtools performed with the highest sensitivity and specificity on Bowtie 2 alignments. These results, however, are likely to vary among species, and we therefore propose a series of best practices for SNP calling in polyploids.
Collapse
Affiliation(s)
- Josh Clevenger
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Tifton, GA 31793, USA
| | - Carolina Chavarro
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Stephanie A Pearl
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Peggy Ozias-Akins
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Tifton, GA 31793, USA.
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
22
|
Peng Z, Yuan C, Zellmer L, Liu S, Xu N, Liao DJ. Hypothesis: Artifacts, Including Spurious Chimeric RNAs with a Short Homologous Sequence, Caused by Consecutive Reverse Transcriptions and Endogenous Random Primers. J Cancer 2015; 6:555-67. [PMID: 26000048 PMCID: PMC4439942 DOI: 10.7150/jca.11997] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022] Open
Abstract
Recent RNA-sequencing technology and associated bioinformatics have led to identification of tens of thousands of putative human chimeric RNAs, i.e. RNAs containing sequences from two different genes, most of which are derived from neighboring genes on the same chromosome. In this essay, we redefine "two neighboring genes" as those producing individual transcripts, and point out two known mechanisms for chimeric RNA formation, i.e. transcription from a fusion gene or trans-splicing of two RNAs. By our definition, most putative RNA chimeras derived from canonically-defined neighboring genes may either be technical artifacts or be cis-splicing products of 5'- or 3'-extended RNA of either partner that is redefined herein as an unannotated gene, whereas trans-splicing events are rare in human cells. Therefore, most authentic chimeric RNAs result from fusion genes, about 1,000 of which have been identified hitherto. We propose a hypothesis of "consecutive reverse transcriptions (RTs)", i.e. another RT reaction following the previous one, for how most spurious chimeric RNAs, especially those containing a short homologous sequence, may be generated during RT, especially in RNA-sequencing wherein RNAs are fragmented. We also point out that RNA samples contain numerous RNA and DNA shreds that can serve as endogenous random primers for RT and ensuing polymerase chain reactions (PCR), creating artifacts in RT-PCR.
Collapse
Affiliation(s)
- Zhiyu Peng
- 1. Beijing Genomics Institute at Shenzhen, Building No.11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, P. R. China
| | - Chengfu Yuan
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lucas Zellmer
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Siqi Liu
- 3. CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Ningzhi Xu
- 4. Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Science, Beijing 100021, P. R. China
| | - D Joshua Liao
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
23
|
Oppenheim SJ, Baker RH, Simon S, DeSalle R. We can't all be supermodels: the value of comparative transcriptomics to the study of non-model insects. INSECT MOLECULAR BIOLOGY 2015; 24:139-54. [PMID: 25524309 PMCID: PMC4383654 DOI: 10.1111/imb.12154] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Insects are the most diverse group of organisms on the planet. Variation in gene expression lies at the heart of this biodiversity and recent advances in sequencing technology have spawned a revolution in researchers' ability to survey tissue-specific transcriptional complexity across a wide range of insect taxa. Increasingly, studies are using a comparative approach (across species, sexes and life stages) that examines the transcriptional basis of phenotypic diversity within an evolutionary context. In the present review, we summarize much of this research, focusing in particular on three critical aspects of insect biology: morphological development and plasticity; physiological response to the environment; and sexual dimorphism. A common feature that is emerging from these investigations concerns the dynamic nature of transcriptome evolution as indicated by rapid changes in the overall pattern of gene expression, the differential expression of numerous genes with unknown function, and the incorporation of novel, lineage-specific genes into the transcriptional profile.
Collapse
Affiliation(s)
- Sara J Oppenheim
- Department of Entomology, Division of Invertebrates, Sackler Institute for Comparative Genomics, American Museum of Natural HistoryNew York, NY, USA
| | - Richard H Baker
- Department of Entomology, Division of Invertebrates, Sackler Institute for Comparative Genomics, American Museum of Natural HistoryNew York, NY, USA
| | - Sabrina Simon
- Biosystematics Group, Wageningen UniversityWageningen, The Netherlands
| | - Rob DeSalle
- Department of Entomology, Division of Invertebrates, Sackler Institute for Comparative Genomics, American Museum of Natural HistoryNew York, NY, USA
- Correspondence: Dr. Robert DeSalle, Sackler Institute for Comparative Genomics, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA. Tel.: 212-769-5670; e-mail:
| |
Collapse
|
24
|
Schurch NJ, Cole C, Sherstnev A, Song J, Duc C, Storey KG, McLean WHI, Brown SJ, Simpson GG, Barton GJ. Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-Seq and ESTs. PLoS One 2014; 9:e94270. [PMID: 24722185 PMCID: PMC3983147 DOI: 10.1371/journal.pone.0094270] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/13/2014] [Indexed: 11/23/2022] Open
Abstract
The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome. Correct and complete annotation in addition to the underlying genomic sequence is particularly important when interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system under study. Until recently, the genome-wide annotation of 3′ untranslated regions received less attention than coding regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A. thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which locates 3′ polyadenylation sites to within +/− 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are illustrated where this combination of data allowed: (1) gene and 3′ UTR re-annotation (including extension of one 3′ UTR by 5.9 kb); (2) disentangling of gene expression in complex regions; (3) clearer interpretation of small RNA expression and (4) identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes and those seeking to interpret existing publically available annotations in the context of their own experimental data.
Collapse
Affiliation(s)
- Nicholas J. Schurch
- Division of Computational Biology, University of Dundee, Dundee, United Kingdom
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Christian Cole
- Division of Computational Biology, University of Dundee, Dundee, United Kingdom
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Alexander Sherstnev
- Division of Computational Biology, University of Dundee, Dundee, United Kingdom
| | - Junfang Song
- Division of Cell and Developmental Biology, University of Dundee, Dundee, United Kingdom
| | - Céline Duc
- Division of Plant Sciences, University of Dundee, Dundee, United Kingdom
| | - Kate G. Storey
- Division of Cell and Developmental Biology, University of Dundee, Dundee, United Kingdom
| | - W. H. Irwin McLean
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, United Kingdom
| | - Sara J. Brown
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, United Kingdom
| | - Gordon G. Simpson
- Division of Plant Sciences, University of Dundee, Dundee, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Geoffrey J. Barton
- Division of Computational Biology, University of Dundee, Dundee, United Kingdom
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Quantitative polyadenylation site mapping with single-molecule direct RNA sequencing. Methods Mol Biol 2014; 1125:145-55. [PMID: 24590787 DOI: 10.1007/978-1-62703-971-0_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The known regulatory role of 3' untranslated regions (3'UTRs) and poly(A) tails in RNA localization, stability, and translation, and polyadenylation regulation defects leading to human diseases such as oculopharyngeal muscular dystrophy, thalassemias, thrombophilia, and IPEX syndrome underline the need to fully characterize genome-wide polyadenylation states and mechanisms across normal physiological and disease states. This chapter outlines the quantitative polyadenylation site mapping and analysis strategies developed with the single-molecule direct RNA sequencing technology.
Collapse
|
26
|
Qian X, Ba Y, Zhuang Q, Zhong G. RNA-Seq technology and its application in fish transcriptomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 18:98-110. [PMID: 24380445 DOI: 10.1089/omi.2013.0110] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-throughput sequencing technologies, also known as next-generation sequencing (NGS) technologies, have revolutionized the way that genomic research is advancing. In addition to the static genome, these state-of-art technologies have been recently exploited to analyze the dynamic transcriptome, and the resulting technology is termed RNA sequencing (RNA-seq). RNA-seq is free from many limitations of other transcriptomic approaches, such as microarray and tag-based sequencing method. Although RNA-seq has only been available for a short time, studies using this method have completely changed our perspective of the breadth and depth of eukaryotic transcriptomes. In terms of the transcriptomics of teleost fishes, both model and non-model species have benefited from the RNA-seq approach and have undergone tremendous advances in the past several years. RNA-seq has helped not only in mapping and annotating fish transcriptome but also in our understanding of many biological processes in fish, such as development, adaptive evolution, host immune response, and stress response. In this review, we first provide an overview of each step of RNA-seq from library construction to the bioinformatic analysis of the data. We then summarize and discuss the recent biological insights obtained from the RNA-seq studies in a variety of fish species.
Collapse
Affiliation(s)
- Xi Qian
- 1 Department of Animal Science, University of Vermont , Burlington, Vermont
| | | | | | | |
Collapse
|
27
|
Wei L, Xiao M, Hayward A, Fu D. Applications and challenges of next-generation sequencing in Brassica species. PLANTA 2013; 238:1005-24. [PMID: 24062086 DOI: 10.1007/s00425-013-1961-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 05/09/2023]
Abstract
Next-generation sequencing (NGS) produces numerous (often millions) short DNA sequence reads, typically varying between 25 and 400 bp in length, at a relatively low cost and in a short time. This revolutionary technology is being increasingly applied in whole-genome, transcriptome, epigenome and small RNA sequencing, molecular marker and gene discovery, comparative and evolutionary genomics, and association studies. The Brassica genus comprises some of the most agro-economically important crops, providing abundant vegetables, condiments, fodder, oil and medicinal products. Many Brassica species have undergone the process of polyploidization, which makes their genomes exceptionally complex and can create difficulties in genomics research. NGS injects new vigor into Brassica research, yet also faces specific challenges in the analysis of complex crop genomes and traits. In this article, we review the advantages and limitations of different NGS technologies and their applications and challenges, using Brassica as an advanced model system for agronomically important, polyploid crops. Specifically, we focus on the use of NGS for genome resequencing, transcriptome sequencing, development of single-nucleotide polymorphism markers, and identification of novel microRNAs and their targets. We present trends and advances in NGS technology in relation to Brassica crop improvement, with wide application for sophisticated genomics research into agronomically important polyploid crops.
Collapse
Affiliation(s)
- Lijuan Wei
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Meili Xiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Alice Hayward
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, 4072, Australia
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
28
|
Peng L, Guo C, Wang T, Li B, Gu L, Wang Z. Methodological limitations in determining astrocytic gene expression. Front Endocrinol (Lausanne) 2013; 4:176. [PMID: 24324456 PMCID: PMC3839565 DOI: 10.3389/fendo.2013.00176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/31/2013] [Indexed: 01/15/2023] Open
Abstract
Traditionally, astrocytic mRNA and protein expression are studied by in situ hybridization (ISH) and immunohistochemically. This led to the concept that astrocytes lack aralar, a component of the malate-aspartate-shuttle. At least similar aralar mRNA and protein expression in astrocytes and neurons isolated by fluorescence-assisted cell sorting (FACS) reversed this opinion. Demonstration of expression of other astrocytic genes may also be erroneous. Literature data based on morphological methods were therefore compared with mRNA expression in cells obtained by recently developed methods for determination of cell-specific gene expression. All Na,K-ATPase-α subunits were demonstrated by immunohistochemistry (IHC), but there are problems with the cotransporter NKCC1. Glutamate and GABA transporter gene expression was well determined immunohistochemically. The same applies to expression of many genes of glucose metabolism, whereas a single study based on findings in bacterial artificial chromosome (BAC) transgenic animals showed very low astrocytic expression of hexokinase. Gene expression of the equilibrative nucleoside transporters ENT1 and ENT2 was recognized by ISH, but ENT3 was not. The same applies to the concentrative transporters CNT2 and CNT3. All were clearly expressed in FACS-isolated cells, followed by biochemical analysis. ENT3 was enriched in astrocytes. Expression of many nucleoside transporter genes were shown by microarray analysis, whereas other important genes were not. Results in cultured astrocytes resembled those obtained by FACS. These findings call for reappraisal of cellular nucleoside transporter expression. FACS cell yield is small. Further development of cell separation methods to render methods more easily available and less animal and cost consuming and parallel studies of astrocytic mRNA and protein expression by ISH/IHC and other methods are necessary, but new methods also need to be thoroughly checked.
Collapse
Affiliation(s)
- Liang Peng
- Department of Clinical Pharmacology, China Medical University, Shenyang, China
- *Correspondence: Liang Peng, College of Basic Medical Sciences, China Medical University, No. 92 Beier Road, Heping District, Shenyang 110001, China e-mail:
| | - Chuang Guo
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tao Wang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Baoman Li
- Department of Clinical Pharmacology, China Medical University, Shenyang, China
| | - Li Gu
- Department of Clinical Pharmacology, China Medical University, Shenyang, China
| | - Zhanyou Wang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
29
|
Baird PN, Chakrabarti S. How genetic studies have advanced our understanding of age-related macular degeneration and their impact on patient care: a review. Clin Exp Ophthalmol 2013; 42:53-64. [DOI: 10.1111/ceo.12235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/15/2013] [Indexed: 01/20/2023]
Affiliation(s)
- Paul N Baird
- Centre for Eye Research Australia; University of Melbourne; Melbourne Victoria Australia
| | | |
Collapse
|
30
|
|
31
|
Mannello F, Ligi D, Magnani M. Deciphering the single-cell omic: innovative application for translational medicine. Expert Rev Proteomics 2013; 9:635-48. [PMID: 23256674 DOI: 10.1586/epr.12.61] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Traditional technologies to investigate system biology are limited by the detection of parameters resulting from the averages of large populations of cells, missing cells produced in small numbers, and attempting to uniform the heterogeneity. The advent of proteomics and genomics at a single-cell level has set the basis for an outstanding improvement in analytical technology and data acquisition. It has been well demonstrated that cellular heterogeneity is closely related to numerous stochastic transcriptional events leading to variations in patterns of expression among single genetically identical cells. The new-generation technology of single-cell analysis is able to better characterize a cell's population, identifying and differentiating outlier cells, in order to provide both a single-cell experiment and a corresponding bulk measurement, through the identification, quantification and characterization of all system biology aspects (genomics, transcriptomics, proteomics, metabolomics, degradomics and fluxomics). The movement of omics into single-cell analysis represents a significant and outstanding shift.
Collapse
Affiliation(s)
- Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology, University Carlo Bo, Via O Ubaldini 7, 61029 Urbino (PU), Italy.
| | | | | |
Collapse
|
32
|
Zhang Z, Theurkauf WE, Weng Z, Zamore PD. Strand-specific libraries for high throughput RNA sequencing (RNA-Seq) prepared without poly(A) selection. SILENCE 2012; 3:9. [PMID: 23273270 PMCID: PMC3552703 DOI: 10.1186/1758-907x-3-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/03/2012] [Indexed: 01/01/2023]
Abstract
UNLABELLED BACKGROUND High throughput DNA sequencing technology has enabled quantification of all the RNAs in a cell or tissue, a method widely known as RNA sequencing (RNA-Seq). However, non-coding RNAs such as rRNA are highly abundant and can consume >70% of sequencing reads. A common approach is to extract only polyadenylated mRNA; however, such approaches are blind to RNAs with short or no poly(A) tails, leading to an incomplete view of the transcriptome. Another challenge of preparing RNA-Seq libraries is to preserve the strand information of the RNAs. DESIGN Here, we describe a procedure for preparing RNA-Seq libraries from 1 to 4 μg total RNA without poly(A) selection. Our method combines the deoxyuridine triphosphate (dUTP)/uracil-DNA glycosylase (UDG) strategy to achieve strand specificity with AMPure XP magnetic beads to perform size selection. Together, these steps eliminate gel purification, allowing a library to be made in less than two days. We barcode each library during the final PCR amplification step, allowing several samples to be sequenced in a single lane without sacrificing read length. Libraries prepared using this protocol are compatible with Illumina GAII, GAIIx and HiSeq 2000 platforms. DISCUSSION The RNA-Seq protocol described here yields strand-specific transcriptome libraries without poly(A) selection, which provide approximately 90% mappable sequences. Typically, more than 85% of mapped reads correspond to protein-coding genes and only 6% derive from non-coding RNAs. The protocol has been used to measure RNA transcript identity and abundance in tissues from flies, mice, rats, chickens, and frogs, demonstrating its general applicability.
Collapse
Affiliation(s)
- Zhao Zhang
- Biochemistry and Molecular Pharmacology, and Howard Hughes Medical Institute, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| | | | | | | |
Collapse
|
33
|
Mitsuma SF, Mansour MK, Dekker JP, Kim J, Rahman MZ, Tweed-Kent A, Schuetz P. Promising new assays and technologies for the diagnosis and management of infectious diseases. Clin Infect Dis 2012; 56:996-1002. [PMID: 23223587 DOI: 10.1093/cid/cis1014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the first decade of the 21st century, we have seen the completion of the human genome project and marked progress in the human microbiome project. The vast amount of data generated from these efforts combined with advances in molecular and biomedical technologies have led to the development of a multitude of assays and technologies that may be useful in the diagnosis and management of infectious diseases. Here, we identify several new assays and technologies that have recently come into clinical use or have potential for clinical use in the near future. The scope of this review is broad and includes topics such as the serum marker procalcitonin, gene expression profiling, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and nucleic acid aptamers. Principles that underlie each assay or technology, their clinical applications, and potential strengths and limitations are addressed.
Collapse
Affiliation(s)
- S F Mitsuma
- Divisions of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Genomic sequencing has provided critical insights into the etiology of both simple and complex diseases. The enormous reductions in cost for whole genome sequencing have allowed this technology to gain increasing use. Whole genome analysis has impacted research of complex diseases including cancer by allowing the systematic analysis of entire genomes in a single experiment, thereby facilitating the discovery of somatic and germline mutations, and identification of the insertions, deletions, and structural rearrangements, including translocations and inversions, in novel disease genes. Whole-genome sequencing can be used to provide the most comprehensive characterization of the cancer genome, the complexity of which we are only beginning to understand. Hence in this review, we focus on whole-genome sequencing in cancer.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | |
Collapse
|
35
|
Hebenstreit D. Methods, Challenges and Potentials of Single Cell RNA-seq. BIOLOGY 2012; 1:658-67. [PMID: 24832513 PMCID: PMC4009822 DOI: 10.3390/biology1030658] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 10/24/2012] [Accepted: 11/07/2012] [Indexed: 01/24/2023]
Abstract
RNA-sequencing (RNA-seq) has become the tool of choice for transcriptomics. Several recent studies demonstrate its successful adaption to single cell analysis. This allows new biological insights into cell differentiation, cell-to-cell variation and gene regulation, and how these aspects depend on each other. Here, I review the current single cell RNA-seq (scRNA-seq) efforts and discuss experimental protocols, challenges and potentials.
Collapse
Affiliation(s)
- Daniel Hebenstreit
- The University of Warwick, School of Life Sciences, Coventry CV4 7AL, UK.
| |
Collapse
|
36
|
Carvalhais LC, Dennis PG, Tyson GW, Schenk PM. Application of metatranscriptomics to soil environments. J Microbiol Methods 2012; 91:246-51. [PMID: 22963791 DOI: 10.1016/j.mimet.2012.08.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/10/2012] [Accepted: 08/22/2012] [Indexed: 01/24/2023]
Abstract
The activities of soil microbial communities are of critical importance to terrestrial ecosystem functioning. The mechanisms that determine the interactions between soil microorganisms, their environment and neighbouring organisms, however, are poorly understood. Due to advances in sequencing technologies, an increasing number of metagenomics studies are being conducted on samples from diverse environments including soils. This information has not only increased our awareness of the functional potential of soil microbial communities, but also constitutes powerful reference material for soil metatranscriptomics studies. Metatranscriptomics provides a snapshot of transcriptional profiles that correspond to discrete populations within a microbial community at the time of sampling. This information can indicate the potential activities of complex microbial communities and the mechanisms that regulate them. Here we summarise the technical challenges for metatranscriptomics applied to soil environments and discuss approaches for gaining biologically meaningful insight into these datasets.
Collapse
Affiliation(s)
- Lilia C Carvalhais
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
37
|
Korlach J, Turner SW. Going beyond five bases in DNA sequencing. Curr Opin Struct Biol 2012; 22:251-61. [PMID: 22575758 DOI: 10.1016/j.sbi.2012.04.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 12/01/2022]
Abstract
DNA sequencing has provided a wealth of information about biological systems, but thus far has focused on the four canonical bases, and 5-methylcytosine through comparison of the genomic DNA sequence to a transformed four-base sequence obtained after treatment with bisulfite. However, numerous other chemical modifications to the nucleotides are known to control fundamental life functions, influence virulence of pathogens, and are associated with many diseases. These modifications cannot be accessed with traditional sequencing methods. In this opinion, we highlight several emerging single-molecule sequencing techniques that have the potential to directly detect many types of DNA modifications as an integral part of the sequencing protocol.
Collapse
Affiliation(s)
- Jonas Korlach
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, United States.
| | | |
Collapse
|