1
|
Teitelbaum CS, Masto NM, Sullivan JD, Keever AC, Poulson RL, Carter DL, Blake-Bradshaw AG, Highway CJ, Feddersen JC, Hagy HM, Gerhold RW, Cohen BS, Prosser DJ. North American wintering mallards infected with highly pathogenic avian influenza show few signs of altered local or migratory movements. Sci Rep 2023; 13:14473. [PMID: 37660131 PMCID: PMC10475108 DOI: 10.1038/s41598-023-40921-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
Avian influenza viruses pose a threat to wildlife and livestock health. The emergence of highly pathogenic avian influenza (HPAI) in wild birds and poultry in North America in late 2021 was the first such outbreak since 2015 and the largest outbreak in North America to date. Despite its prominence and economic impacts, we know relatively little about how HPAI spreads in wild bird populations. In January 2022, we captured 43 mallards (Anas platyrhynchos) in Tennessee, USA, 11 of which were actively infected with HPAI. These were the first confirmed detections of HPAI H5N1 clade 2.3.4.4b in the Mississippi Flyway. We compared movement patterns of infected and uninfected birds and found no clear differences; infected birds moved just as much during winter, migrated slightly earlier, and migrated similar distances as uninfected birds. Infected mallards also contacted and shared space with uninfected birds while on their wintering grounds, suggesting ongoing transmission of the virus. We found no differences in body condition or survival rates between infected and uninfected birds. Together, these results show that HPAI H5N1 clade 2.3.4.4b infection was unrelated to body condition or movement behavior in mallards infected at this location during winter; if these results are confirmed in other seasons and as HPAI H5N1 continues to evolve, they suggest that these birds could contribute to the maintenance and dispersal of HPAI in North America. Further research on more species across larger geographic areas and multiple seasons would help clarify potential impacts of HPAI on waterfowl and how this emerging disease spreads at continental scales, across species, and potentially between wildlife and domestic animals.
Collapse
Affiliation(s)
- Claire S Teitelbaum
- Akima Systems Engineering, Herndon, VA, USA.
- Contractor to U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA.
- Bay Area Environmental Research Institute and NASA Ames Research Center, Moffett Field, CA, USA.
| | - Nicholas M Masto
- College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, USA
| | - Jeffery D Sullivan
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA
| | - Allison C Keever
- College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, USA
| | - Rebecca L Poulson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Deborah L Carter
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Cory J Highway
- College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, USA
| | | | - Heath M Hagy
- U.S. Fish and Wildlife Service, National Wildlife Refuge System, Stanton, TN, USA
| | - Richard W Gerhold
- University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | - Bradley S Cohen
- College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, USA
| | - Diann J Prosser
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA
| |
Collapse
|
2
|
Mott R, Prowse TAA, Jackson MV, Rogers DJ, O'Connor JA, Brookes JD, Cassey P. Measuring habitat quality for waterbirds: A review. Ecol Evol 2023; 13:e9905. [PMID: 37038530 PMCID: PMC10082184 DOI: 10.1002/ece3.9905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Quantifying habitat quality is dependent on measuring a site's relative contribution to population growth rate. This is challenging for studies of waterbirds, whose high mobility can decouple demographic rates from local habitat conditions and make sustained monitoring of individuals near-impossible. To overcome these challenges, biologists have used many direct and indirect proxies of waterbird habitat quality. However, consensus on what methods are most appropriate for a given scenario is lacking. We undertook a structured literature review of the methods used to quantify waterbird habitat quality, and provide a synthesis of the context-dependent strengths and limitations of those methods. Our search of the Web of Science and Scopus databases returned a sample of 666 studies, upon which our review was based. The reviewed studies assessed habitat quality by either measuring habitat attributes (e.g., food abundance, water quality, vegetation structure), or measuring attributes of the waterbirds themselves (e.g., demographic parameters, body condition, behavior, distribution). Measuring habitat attributes, although they are only indirectly related to demographic rates, has the advantage of being unaffected by waterbird behavioral stochasticity. Conversely, waterbird-derived measures (e.g., body condition, peck rates) may be more directly related to demographic rates than habitat variables, but may be subject to greater stochastic variation (e.g., behavioral change due to presence of conspecifics). Therefore, caution is needed to ensure that the measured variable does influence waterbird demographic rates. This assumption was usually based on ecological theory rather than empirical evidence. Our review highlighted that there is no single best, universally applicable method to quantify waterbird habitat quality. Individual project specifics (e.g., time frame, spatial scale, funding) will influence the choice of variables measured. Where possible, practitioners should measure variables most directly related to demographic rates. Generally, measuring multiple variables yields a better chance of accurately capturing the relationship between habitat characteristics and demographic rates.
Collapse
Affiliation(s)
- Rowan Mott
- School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Thomas A. A. Prowse
- School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Micha V. Jackson
- School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Daniel J. Rogers
- School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
- Department for Environment and WaterAdelaideSouth AustraliaAustralia
| | - Jody A. O'Connor
- Department for Environment and WaterAdelaideSouth AustraliaAustralia
| | - Justin D. Brookes
- School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Phillip Cassey
- School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
3
|
Peck LE, English MD, Robertson GJ, Craik SR, Mallory ML. Migration chronology and movements of adult American black ducks
Anas rubripes
wintering in Nova Scotia, Canada. WILDLIFE BIOLOGY 2021. [DOI: 10.1002/wlb3.01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Matthew D. English
- Environment and Climate Change Canada – Canadian Wildlife Service, Atlantic Region Dartmouth NS Canada
| | - Gregory J. Robertson
- Environment and Climate Change Canada – Science and Technology Mt. Pearl NF Canada
| | - Shawn R. Craik
- Dépt des Sciences, Univ. Sainte‐Anne Church Point NS Canada
| | | |
Collapse
|