1
|
Lu Q, Ling H, Lao Y, Liu J, Su W, Huang Z. Immune-mediated mechanisms in acute osteofascial compartment syndrome: insights from multi-omics analysis. Eur J Med Res 2025; 30:79. [PMID: 39910406 DOI: 10.1186/s40001-025-02285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Acute Osteofascial Compartment Syndrome (AOCS) stands as a critical surgical emergency, often secondary to various diseases. Its clinical manifestation arises from increased pressure within the fascial compartment, resulting in diminished tissue perfusion and consequential ischemic damage. Presently, clinical diagnostics lack effective biological markers, and patients face a grim prognosis, experiencing muscle contractures, necrosis, amputations, renal failure, and even mortality. The primary treatment, fasciotomy, poses infection risks and potential nerve damage. Hence, there is an urgent need for research elucidating AOCS's pathogenic mechanism and exploring novel treatments. METHODS To address this, we established a rat model of AOCS, extracting toe flexor muscles from both experimental and control groups. Employing second-generation high-throughput sequencing, we obtained comprehensive mRNA, lncRNA, circRNA, and miRNA data. Comparative analysis of expression differences between AOCS and control groups, followed by in-depth examination, allowed us to unravel the intricacies of AOCS occurrence from a multi-omics perspective. RESULTS Our research findings indicate that AOCS is an immune-mediated inflammatory disease, primarily involving immune cells, especially neutrophils. In addition, genes associated with ferroptosis, a form of regulated cell death, are found to be upregulated in the rat model, with non-coding RNAs playing a role in regulatory interactions. CONCLUSIONS These results suggest that neutrophils may undergo ferroptosis, thereby enhancing inflammation and immune responses in the fascial compartment, which promotes disease progression. Furthermore, these findings reveal the interactions between immune molecules and pathways in AOCS, which are significant for a deeper understanding of the pathogenesis of the disease and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Qinzhen Lu
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China
| | - He Ling
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China
| | - Yonghui Lao
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China
| | - Junjie Liu
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China
| | - Wei Su
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China
| | - Zhao Huang
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China.
| |
Collapse
|
2
|
Kaushal A. A central role of stimulator of interferon genes' adaptor protein in defensive immune response. Immunol Res 2025; 73:39. [PMID: 39836303 DOI: 10.1007/s12026-024-09587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Cytotoxic DNAs, methylation, histones and histones binding proteins are speculated to induce DNA sensors. Under stressed condition, the antigenic patterns, PAMPs and DAMPs, trigger the hyperactive innate response through DNA, DNA-RNA hybrids, oligonucleotides, histones and mtDNA to initiate cGAMP-STING-IFN I cascade. HSV -1&2, HIV, Varicella- Zoster virus, Polyomavirus, Cytomegalovirus, and KSHV negatively regulate the STING-MAVS-TBK-1/1KKE pathway. Implications in STING-PKR-ER regulation often run into causing senescence and organ fibrosis. Post-translational modifications such as, phosphorylation, ubiquitination, SUMOylation, hydrolysis etc. downstream the processing of cGAS-STING that determine the fate of disease prognosis. Self-DNA under normal circumstances is removed through DNase III action; however, its deficiency is the great cause of RA diseases. Regular STING activation in chronic diseases could lead to exacerbate the neurodegenerative disorders due to constant mtDNA leakage. 2' 3' cGAMP or CDN or its associates are being explored as STING agonist therapeutics to treat solid/metastatic tumors to help infiltrate the immune cells, cytokines and chemokines to regulate the protective response. Liposomes, polymer nanoparticles, and cell-derived nanoparticles are also meant to increase the drug efficiency and stability for desired immune response to enhance the IFN I production. This review highlights the implications of cGAMP-STING- IFN I cascade and related pathways involved in the disease prognosis, therapeutics and considering the gaps on different aspects to utilize its greater potential in disease control.
Collapse
|
3
|
Revol-Cavalier J, Quaranta A, Newman JW, Brash AR, Hamberg M, Wheelock CE. The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi. Chem Rev 2025; 125:1-90. [PMID: 39680864 PMCID: PMC11719350 DOI: 10.1021/acs.chemrev.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The octadecanoids are a broad class of lipids consisting of the oxygenated products of 18-carbon fatty acids. Originally referring to production of the phytohormone jasmonic acid, the octadecanoid pathway has been expanded to include products of all 18-carbon fatty acids. Octadecanoids are formed biosynthetically in mammals via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) activity, as well as nonenzymatically by photo- and autoxidation mechanisms. While octadecanoids are well-known mediators in plants, their role in the regulation of mammalian biological processes has been generally neglected. However, there have been significant advancements in recognizing the importance of these compounds in mammals and their involvement in the mediation of inflammation, nociception, and cell proliferation, as well as in immuno- and tissue modulation, coagulation processes, hormone regulation, and skin barrier formation. More recently, the gut microbiome has been shown to be a significant source of octadecanoid biosynthesis, providing additional biosynthetic routes including hydratase activity (e.g., CLA-HY, FA-HY1, FA-HY2). In this review, we summarize the current field of octadecanoids, propose standardized nomenclature, provide details of octadecanoid preparation and measurement, summarize the phase-I metabolic pathway of octadecanoid formation in mammals, bacteria, and fungi, and describe their biological activity in relation to mammalian pathophysiology as well as their potential use as biomarkers of health and disease.
Collapse
Affiliation(s)
- Johanna Revol-Cavalier
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Alessandro Quaranta
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - John W. Newman
- Western
Human Nutrition Research Center, Agricultural
Research Service, USDA, Davis, California 95616, United States
- Department
of Nutrition, University of California, Davis, Davis, California 95616, United States
- West
Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alan R. Brash
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mats Hamberg
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Craig E. Wheelock
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
4
|
Shirokova O, Vasilchikov P, Kozliaeva E, Korotchenko S, Mukhina I. Biological Sex Determines Differences in Gene Expression During Replicative Aging of Glia in Vitro. 2024 SIXTH INTERNATIONAL CONFERENCE NEUROTECHNOLOGIES AND NEUROINTERFACES (CNN) 2024:212-215. [DOI: 10.1109/cnn63506.2024.10705843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
| | - Petr Vasilchikov
- Center of Photonics, Lobachevsky State University of Nizhny Novgorod,Nizhny Novgorod,Russia
| | | | | | - Irina Mukhina
- CRL IFM, FSBEI HE PRMU MOH Russia,Nizhny Novgorod,Russia
| |
Collapse
|
5
|
Wang J, Yao N, Chen Y, Li X, Jiang Z. Research progress of cGAS-STING signaling pathway in intestinal diseases. Int Immunopharmacol 2024; 135:112271. [PMID: 38762923 DOI: 10.1016/j.intimp.2024.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signal has drawn much consideration due to its sensitivity to DNA in innate immune mechanisms. Activation of the cGAS-STIN signaling pathway induces the production of interferon and inflammatory cytokines, resulting in immune responses, or inflammatory diseases. The intestinal tract is a vital organ for the body's nutrition absorption, recent studies have had various points of view on the job of cGAS-STING pathway in various intestinal sicknesses. Therefore, understanding its role and mechanism in the intestinal environment can help to develop new strategies for the treatment of intestinal diseases. This article examines the mechanism of the cGAS-STING pathway and its function in inflammatory bowel disease, intestinal cancer, and long-injury ischemia-reperfusion, lists the current medications that target it for the treatment of intestinal diseases, and discusses the impact of intestinal flora on this signaling pathway, to offer a theoretical and scientific foundation for upcoming targeted therapies for intestinal disorders via the cGAS-STING pathway.
Collapse
Affiliation(s)
- Jiamin Wang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China
| | - Naiqi Yao
- Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Yonghu Chen
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China
| | - Xuezheng Li
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China; Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Zhe Jiang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China; Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133000, China.
| |
Collapse
|
6
|
Kumar V, Stewart JH. cGLRs Join Their Cousins of Pattern Recognition Receptor Family to Regulate Immune Homeostasis. Int J Mol Sci 2024; 25:1828. [PMID: 38339107 PMCID: PMC10855445 DOI: 10.3390/ijms25031828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Pattern recognition receptors (PRRs) recognize danger signals such as PAMPs/MAMPs and DAMPs to initiate a protective immune response. TLRs, NLRs, CLRs, and RLRs are well-characterized PRRs of the host immune system. cGLRs have been recently identified as PRRs. In humans, the cGAS/STING signaling pathway is a part of cGLRs. cGAS recognizes cytosolic dsDNA as a PAMP or DAMP to initiate the STING-dependent immune response comprising type 1 IFN release, NF-κB activation, autophagy, and cellular senescence. The present article discusses the emergence of cGLRs as critical PRRs and how they regulate immune responses. We examined the role of cGAS/STING signaling, a well-studied cGLR system, in the activation of the immune system. The following sections discuss the role of cGAS/STING dysregulation in disease and how immune cross-talk with other PRRs maintains immune homeostasis. This understanding will lead to the design of better vaccines and immunotherapeutics for various diseases, including infections, autoimmunity, and cancers.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Tumor Immunology and Immunotherapy, Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | | |
Collapse
|
7
|
Xiong Y, Leng Y, Tian H, Deng X, Li W, Li W, Xia Z. Decreased MFN2 activates the cGAS-STING pathway in diabetic myocardial ischaemia-reperfusion by triggering the release of mitochondrial DNA. Cell Commun Signal 2023; 21:192. [PMID: 37537600 PMCID: PMC10398939 DOI: 10.1186/s12964-023-01216-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The cause of aggravation of diabetic myocardial damage is yet to be elucidated; damage to mitochondrial function has been a longstanding focus of research. During diabetic myocardial ischaemia-reperfusion (MI/R), it remains unclear whether reduced mitochondrial fusion exacerbates myocardial injury by generating free damaged mitochondrial DNA (mitoDNA) and activating the cGAS-STING pathway. METHODS In this study, a mouse model of diabetes was established (by feeding mice a high-fat diet (HFD) plus a low dose of streptozotocin (STZ)), a MI/R model was established by cardiac ischaemia for 2 h and reperfusion for 30 min, and a cellular model of glycolipid toxicity induced by high glucose (HG) and palmitic acid (PA) was established in H9C2 cells. RESULTS We observed that altered mitochondrial dynamics during diabetic MI/R led to increased mitoDNA in the cytosol, activation of the cGAS-STING pathway, and phosphorylation of the downstream targets TBK1 and IRF3. In the cellular model we found that cytosolic mitoDNA was the result of reduced mitochondrial fusion induced by HG and PA, which also resulted in cGAS-STING signalling and activation of downstream targets. Moreover, inhibition of STING by H-151 significantly ameliorated myocardial injury induced by MFN2 knockdown in both the cell and mouse models. The use of a fat-soluble antioxidant CoQ10 improved cardiac function in the mouse models. CONCLUSIONS Our study elucidated the critical role of cGAS-STING activation, triggered by increased cytosolic mitoDNA due to decreased mitochondrial fusion, in the pathogenesis of diabetic MI/R injury. This provides preclinical insights for the treatment of diabetic MI/R injury. Video Abstract.
Collapse
Affiliation(s)
- Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinqi Deng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Lee H, Hyun Jeong J, Lee T, Chong Y, Choo H, Lee S. Identification of (-)-Epigallocateshin Gallate Derivatives promoting innate immune activation via 2' 3'-cyclic GMP-AMP-stimulator of interferon genes pathway. Bioorg Med Chem Lett 2023; 90:129325. [PMID: 37182610 DOI: 10.1016/j.bmcl.2023.129325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
(-)-Epigallocatehin-3-gallate (EGCG) is a catechin derived from green tea, which has been widely studied for its anti-oxidant and anti-tumor properties. Although EGCG plays important roles in various biological processes, the its effect on the immune system is not fully understood. In this study, we investigated the potential of EGCG as an activator of the stimulator of interferon genes (STING) pathway in the immune system. The cyclic GMP-AMP synthase (cGAS)-2'-3'-cyclic GMP-AMP (cGAMP)-STING pathway is crucial in the innate immune response to microbial infections, autoimmunity, and anticancer immunity. We confirmed that EGCG enhanced the immune response of cGAMP and identified E2 from 13 synthetic derivatives of EGCG. E2 specifically activated the interferon (IFN) signaling pathway specifically through STING- and cGAMP-dependent mechanisms. These results demonstrate the potential of EGCG and its derivatives as new STING activators that can stimulate the type I interferon response by boosting cGAMP-mediated STING activity.
Collapse
Affiliation(s)
- Hyelim Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jeong Hyun Jeong
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Taegum Lee
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Youhoon Chong
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Hyunah Choo
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sanghee Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Department for HY-KIST Bio-convergence, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Palasz E, Wilkaniec A, Stanaszek L, Andrzejewska A, Adamczyk A. Glia-Neurotrophic Factor Relationships: Possible Role in Pathobiology of Neuroinflammation-Related Brain Disorders. Int J Mol Sci 2023; 24:ijms24076321. [PMID: 37047292 PMCID: PMC10094105 DOI: 10.3390/ijms24076321] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neurotrophic factors (NTFs) play an important role in maintaining homeostasis of the central nervous system (CNS) by regulating the survival, differentiation, maturation, and development of neurons and by participating in the regeneration of damaged tissues. Disturbances in the level and functioning of NTFs can lead to many diseases of the nervous system, including degenerative diseases, mental diseases, and neurodevelopmental disorders. Each CNS disease is characterized by a unique pathomechanism, however, the involvement of certain processes in its etiology is common, such as neuroinflammation, dysregulation of NTFs levels, or mitochondrial dysfunction. It has been shown that NTFs can control the activation of glial cells by directing them toward a neuroprotective and anti-inflammatory phenotype and activating signaling pathways responsible for neuronal survival. In this review, our goal is to outline the current state of knowledge about the processes affected by NTFs, the crosstalk between NTFs, mitochondria, and the nervous and immune systems, leading to the inhibition of neuroinflammation and oxidative stress, and thus the inhibition of the development and progression of CNS disorders.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| | - Anna Wilkaniec
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna Andrzejewska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Agata Adamczyk
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| |
Collapse
|
10
|
Xing C, Lv J, Zhu Z, Cong W, Bian H, Zhang C, Gu R, Chen D, Tan X, Su L, Zhang Y. Regulation of microglia related neuroinflammation contributes to the protective effect of Gelsevirine on ischemic stroke. Front Immunol 2023; 14:1164278. [PMID: 37063929 PMCID: PMC10098192 DOI: 10.3389/fimmu.2023.1164278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Stroke, especially ischemic stroke, is an important cause of neurological morbidity and mortality worldwide. Growing evidence suggests that the immune system plays an intricate function in the pathophysiology of stroke. Gelsevirine (Gs), an alkaloid from Gelsemium elegans, has been proven to decrease inflammation and neuralgia in osteoarthritis previously, but its role in stroke is unknown. In this study, the middle cerebral artery occlusion (MCAO) mice model was used to evaluate the protective effect of Gs on stroke, and the administration of Gs significantly improved infarct volume, Bederson score, neurobiological function, apoptosis of neurons, and inflammation state in vivo. According to the data in vivo and the conditioned medium (CM) stimulated model in vitro, the beneficial effect of Gs came from the downregulation of the over-activity of microglia, such as the generation of inflammatory factors, dysfunction of mitochondria, production of ROS and so on. By RNA-seq analysis and Western-blot analysis, the JAK-STAT signal pathway plays a critical role in the anti-inflammatory effect of Gs. According to the results of molecular docking, inhibition assay, and thermal shift assay, the binding of Gs on JAK2 inhibited the activity of JAK2 which inhibited the over-activity of JAK2 and downregulated the phosphorylation of STAT3. Over-expression of a gain-of-function STAT3 mutation (K392R) abolished the beneficial effects of Gs. So, the downregulation of JAK2-STAT3 signaling pathway by Gs contributed to its anti-inflammatory effect on microglia in stroke. Our study revealed that Gs was benefit to stroke treatment by decreasing neuroinflammation in stroke as a potential drug candidate regulating the JAK2-STAT3 signal pathway.
Collapse
Affiliation(s)
- Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhihui Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Wei Cong
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Ruxin Gu
- Department of Geriatric Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xiying Tan
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Xiying Tan, ; Li Su, ; Yu Zhang,
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xiying Tan, ; Li Su, ; Yu Zhang,
| | - Yu Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- *Correspondence: Xiying Tan, ; Li Su, ; Yu Zhang,
| |
Collapse
|