1
|
Müller M, Legrand C, Tuorto F, Kelly VP, Atlasi Y, Lyko F, Ehrenhofer-Murray AE. Queuine links translational control in eukaryotes to a micronutrient from bacteria. Nucleic Acids Res 2019; 47:3711-3727. [PMID: 30715423 PMCID: PMC6468285 DOI: 10.1093/nar/gkz063] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/11/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
In eukaryotes, the wobble position of tRNA with a GUN anticodon is modified to the 7-deaza-guanosine derivative queuosine (Q34), but the original source of Q is bacterial, since Q is synthesized by eubacteria and salvaged by eukaryotes for incorporation into tRNA. Q34 modification stimulates Dnmt2/Pmt1-dependent C38 methylation (m5C38) in the tRNAAsp anticodon loop in Schizosaccharomyces pombe. Here, we show by ribosome profiling in S. pombe that Q modification enhances the translational speed of the C-ending codons for aspartate (GAC) and histidine (CAC) and reduces that of U-ending codons for asparagine (AAU) and tyrosine (UAU), thus equilibrating the genome-wide translation of synonymous Q codons. Furthermore, Q prevents translation errors by suppressing second-position misreading of the glycine codon GGC, but not of wobble misreading. The absence of Q causes reduced translation of mRNAs involved in mitochondrial functions, and accordingly, lack of Q modification causes a mitochondrial defect in S. pombe. We also show that Q-dependent stimulation of Dnmt2 is conserved in mice. Our findings reveal a direct mechanism for the regulation of translational speed and fidelity in eukaryotes by a nutrient originating from bacteria.
Collapse
Affiliation(s)
- Martin Müller
- Institut für Biologie, Molekulare Zellbiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carine Legrand
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Francesca Tuorto
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Vincent P Kelly
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Dublin, Ireland
| | - Yaser Atlasi
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Ann E Ehrenhofer-Murray
- Institut für Biologie, Molekulare Zellbiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Göke A, Schrott S, Mizrak A, Belyy V, Osman C, Walter P. Mrx6 regulates mitochondrial DNA copy number in Saccharomyces cerevisiae by engaging the evolutionarily conserved Lon protease Pim1. Mol Biol Cell 2019; 31:527-545. [PMID: 31532710 PMCID: PMC7202074 DOI: 10.1091/mbc.e19-08-0470] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial function depends crucially on the maintenance of multiple mitochondrial DNA (mtDNA) copies. Surprisingly, the cellular mechanisms regulating mtDNA copy number remain poorly understood. Through a systematic high-throughput approach in Saccharomyces cerevisiae, we determined mtDNA–to–nuclear DNA ratios in 5148 strains lacking nonessential genes. The screen revealed MRX6, a largely uncharacterized gene, whose deletion resulted in a marked increase in mtDNA levels, while maintaining wild type–like mitochondrial structure and cell size. Quantitative superresolution imaging revealed that deletion of MRX6 alters both the size and the spatial distribution of mtDNA nucleoids. We demonstrate that Mrx6 partially colocalizes with mtDNA within mitochondria and interacts with the conserved Lon protease Pim1 in a complex that also includes Mam33 and the Mrx6-related protein Pet20. Acute depletion of Pim1 phenocopied the high mtDNA levels observed in Δmrx6 cells. No further increase in mtDNA copy number was observed upon depletion of Pim1 in Δmrx6 cells, revealing an epistatic relationship between Pim1 and Mrx6. Human and bacterial Lon proteases regulate DNA replication by degrading replication initiation factors, suggesting a model in which Pim1 acts similarly with the Mrx6 complex, providing a scaffold linking it to mtDNA.
Collapse
Affiliation(s)
- Aylin Göke
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics and
| | - Simon Schrott
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| | - Arda Mizrak
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143
| | - Vladislav Belyy
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics and
| | - Christof Osman
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics and.,Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics and
| |
Collapse
|
3
|
Müller M, Samel-Pommerencke A, Legrand C, Tuorto F, Lyko F, Ehrenhofer-Murray AE. Division of labour: tRNA methylation by the NSun2 tRNA methyltransferases Trm4a and Trm4b in fission yeast. RNA Biol 2019; 16:249-256. [PMID: 30646830 PMCID: PMC6380293 DOI: 10.1080/15476286.2019.1568819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enzymes of the cytosine-5 RNA methyltransferase Trm4/NSun2 family methylate tRNAs at C48 and C49 in multiple tRNAs, as well as C34 and C40 in selected tRNAs. In contrast to most other organisms, fission yeast Schizosaccharomyces pombe carries two Trm4/NSun2 homologs, Trm4a (SPAC17D4.04) and Trm4b (SPAC23C4.17). Here, we have employed tRNA methylome analysis to determine the dependence of cytosine-5 methylation (m5C) tRNA methylation in vivo on the two enzymes. Remarkably, Trm4a is responsible for all C48 methylation, which lies in the tRNA variable loop, as well as for C34 in tRNALeuCAA and tRNAProCGG, which are at the anticodon wobble position. Conversely, Trm4b methylates C49 and C50, which both lie in the TΨC-stem. Thus, S. pombe show an unusual separation of activities of the NSun2/Trm4 enzymes that are united in a single enzyme in other eukaryotes like humans, mice and Saccharomyces cerevisiae. Furthermore, in vitro activity assays showed that Trm4a displays intron-dependent methylation of C34, whereas Trm4b activity is independent of the intron. The absence of Trm4a, but not Trm4b, causes a mild resistance of S. pombe to calcium chloride.
Collapse
Affiliation(s)
- Martin Müller
- a Institut für Biologie, Molekulare Zellbiologie , Humboldt-Universität zu Berlin , Berlin , Germany
| | - Anke Samel-Pommerencke
- a Institut für Biologie, Molekulare Zellbiologie , Humboldt-Universität zu Berlin , Berlin , Germany
| | - Carine Legrand
- b Division of Epigenetics, DKFZ-ZMBH Alliance , German Cancer Research Center , Heidelberg , Germany
| | - Francesca Tuorto
- b Division of Epigenetics, DKFZ-ZMBH Alliance , German Cancer Research Center , Heidelberg , Germany
| | - Frank Lyko
- b Division of Epigenetics, DKFZ-ZMBH Alliance , German Cancer Research Center , Heidelberg , Germany
| | - Ann E Ehrenhofer-Murray
- a Institut für Biologie, Molekulare Zellbiologie , Humboldt-Universität zu Berlin , Berlin , Germany
| |
Collapse
|
4
|
Zhu X, Cai J, Zhou F, Wu Z, Li D, Li Y, Xie Z, Zhou Y, Liang Y. Genome-wide screening of budding yeast with honokiol to associate mitochondrial function with lipid metabolism. Traffic 2018; 19:867-878. [PMID: 30120820 DOI: 10.1111/tra.12611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022]
Abstract
Honokiol (HNK), an important medicinal component of Magnolia officinalis, is reported to possess pharmacological activities against a variety of diseases. However, the molecular mechanisms of HNK medicinal functions are not fully clear. To systematically study the mechanisms of HNK action, we screened a yeast mutant library based on the conserved nature of its genes among eukaryotes. We identified genes associated with increased resistance or sensitivity to HNK after mutation. After functional classification of these genes, we found that most HNK-resistant strains in the largest functional category were petites with mutations in mitochondrial genes, indicating that mitochondria were related to HNK resistance. Additional analysis showed that resistance of petite mutants to HNK was associated with upregulation of the ATP-binding cassette transporter Pdr5, which pumps out HNK. We also found that several HNK-sensitive mitochondria mutants were not petites, and had larger lipid droplets (LDs). Furthermore, HNK treatment on wild-type yeast cells seemed to disrupt mitochondrial morphology, induced triacylglycerol synthesis, and generated supersized LDs surrounded by mitochondria and endoplasmic reticulum (ER). These changes are also applied to atp7Δ mutant if no carbon resource was available. These results suggested that HNK treatment partly impaired normal mitochondrial function to form larger LDs by altering lipid metabolism.
Collapse
Affiliation(s)
- Xiaolong Zhu
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Juan Cai
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Fan Zhou
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Zulin Wu
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Dan Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Youbin Li
- School of Pharmacy, Hainan Medical University, Haikou, China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiting Zhou
- Department of Biochemistry and Molecular Biology, Dr. Li Dak Sam & Yap Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongheng Liang
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Ward DM, Chen OS, Li L, Kaplan J, Bhuiyan SA, Natarajan SK, Bard M, Cox JE. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis. J Biol Chem 2018; 293:10782-10795. [PMID: 29773647 DOI: 10.1074/jbc.ra118.001781] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/11/2018] [Indexed: 01/05/2023] Open
Abstract
Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial iron metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29 Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increases mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism.
Collapse
Affiliation(s)
- Diane M Ward
- From the Department of Pathology, Division of Microbiology and Immunology, and
| | - Opal S Chen
- the DNA Sequencing Core, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Liangtao Li
- From the Department of Pathology, Division of Microbiology and Immunology, and
| | - Jerry Kaplan
- From the Department of Pathology, Division of Microbiology and Immunology, and
| | - Shah Alam Bhuiyan
- the Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, and
| | - Selvamuthu K Natarajan
- the Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, and
| | - Martin Bard
- the Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, and
| | - James E Cox
- the Department of Biochemistry and.,Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah 84112
| |
Collapse
|
6
|
Oliver BG, Silver PM, Marie C, Hoot SJ, Leyde SE, White TC. Tetracycline alters drug susceptibility in Candida albicans and other pathogenic fungi. MICROBIOLOGY (READING, ENGLAND) 2008; 154:960-970. [PMID: 18310042 PMCID: PMC2615396 DOI: 10.1099/mic.0.2007/013805-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The tetracycline (TET) promoter has been used in several systems as an inducible regulator of gene expression. In control analyses, the standard Candida albicans laboratory strain SC5314 was found to have altered susceptibility to a variety of antifungal drugs in the presence of relatively high concentrations (50-200 microg ml(-1)) of TET. Altered susceptibility was most notable with exposure to amphotericin B (AMB), with a 32-fold increase in susceptibility, and terbinafine (TRB), with a 32-fold decrease in susceptibility. The TET/AMB synergy was observed in several clinical isolates of C. albicans and in the distantly related species Aspergillus fumigatus and Cryptococcus neoformans. The TET/AMB synergy is not related to efflux pump activity, as determined by FACS analyses and by analysis of a strain containing efflux pump deletions. Gene expression analyses by luciferase and by quantitative real-time reverse transcriptase PCR failed to identify significant alterations in expression of any genes associated with resistance. C. albicans grown with TET for 48 h does show a reduction in total cellular ergosterol. Analysis of growth curves suggests that the TET effect is associated with lack of a diauxic shift, which is related to a loss of mitochondrial function. MitoTracker fluorescent dye was used to demonstrate that TET has a direct effect on mitochondrial function. These results demonstrate the need for careful analysis of TET effects when using a TET-inducible promoter, especially in studies that involve antifungal drugs. This study defines some limits to the use of the TET-inducible promoter, and identifies effects on cells that are the result of TET exposure alone, not the result of expression of a targeted gene.
Collapse
Affiliation(s)
- Brian G. Oliver
- Dept. of Pathobiology, School of Public Health and Community Medicine, University of Washington
- Seattle Biomedical Research Institute, Seattle Washington
| | - Peter M. Silver
- Dept. of Pathobiology, School of Public Health and Community Medicine, University of Washington
- Seattle Biomedical Research Institute, Seattle Washington
| | - Chelsea Marie
- Dept. of Pathobiology, School of Public Health and Community Medicine, University of Washington
- Seattle Biomedical Research Institute, Seattle Washington
| | - Samantha J. Hoot
- Dept. of Pathobiology, School of Public Health and Community Medicine, University of Washington
- Seattle Biomedical Research Institute, Seattle Washington
| | - Sarah E. Leyde
- Seattle Biomedical Research Institute, Seattle Washington
| | - Theodore C. White
- Dept. of Pathobiology, School of Public Health and Community Medicine, University of Washington
- Seattle Biomedical Research Institute, Seattle Washington
| |
Collapse
|
7
|
Omura F. Targeting of mitochondrial Saccharomyces cerevisiae Ilv5p to the cytosol and its effect on vicinal diketone formation in brewing. Appl Microbiol Biotechnol 2008; 78:503-13. [PMID: 18193418 DOI: 10.1007/s00253-007-1333-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/11/2007] [Accepted: 12/14/2007] [Indexed: 11/25/2022]
Abstract
Vicinal diketones (VDK) cause butter-like off-flavors in beer and are formed by a non-enzymatic oxidative decarboxylation of alpha-aceto-alpha-hydroxybutyrate and alpha-acetolactate, which are intermediates in isoleucine and valine biosynthesis taking place in the mitochondria. On the assumption that part of alpha-acetolactate can be formed also in the cytosol due to a mislocalization of the responsible acetohydroxyacid synthase encoded by ILV2 and ILV6, functional expression in the cytosol of acetohydroxyacid reductoisomerase (Ilv5p) was explored. Using the cytosolic Ilv5p, I aimed to metabolize the cytosolically formed alpha-aetolactate, thereby lowering the total VDK production. Among mutant Ilv5p enzymes with varying degrees of N-terminal truncation, one with a 46-residue deletion (Ilv5pDelta46) exhibited an unequivocal localization in the cytosol judged from microscopy of the Ilv5pDelta46-green fluorescent protein fusion protein and the inability of Ilv5pDelta46 to remedy the isoleucine/valine requirement of an ilv5Delta strain. When introduced into an industrial lager brewing strain, a robust expression of Ilv5pDelta46 was as effective as that of a wild-type Ilv5p in lowering the total VDK production in a 2-l scale fermentation trial. Unlike the case of the wild-type Ilv5p, an additional expression of Ilv5pDelta46 did not alter the quality of the resultant beer in terms of contents of aromatic compounds and organic acids.
Collapse
Affiliation(s)
- Fumihiko Omura
- Suntory Research Center, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka, 618-8503, Japan.
| |
Collapse
|
8
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|