1
|
Zencir S, Dilg D, Bruzzone M, Stutz F, Soudet J, Shore D, Albert B. A two-step regulatory mechanism dynamically controls histone H3 acetylation by SAGA complex at growth-related promoters. Nucleic Acids Res 2025; 53:gkaf276. [PMID: 40207626 PMCID: PMC11983098 DOI: 10.1093/nar/gkaf276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
Acetylation of histone H3 at residue K9 (H3K9ac) is a dynamically regulated mark associated with transcriptionally active promoters in eukaryotes. However, our understanding of the relationship between H3K9ac and gene expression remains mostly correlative. In this study, we identify a large suite of growth-related (GR) genes in yeast that undergo a particularly strong down-regulation of both transcription and promoter-associated H3K9ac upon stress, and delineate the roles of transcriptional activators (TAs), repressors, SAGA (Spt-Ada-Gcn5 acetyltransferase) histone acetyltransferase, and RNA-polymerase II in this response. We demonstrate that H3K9 acetylation states are orchestrated by a two-step mechanism driven by the dynamic binding of transcriptional repressors (TRs) and activators, that is independent of transcription. In response to stress, promoter release of TAs at GR genes is a prerequisite for rapid reduction of H3K9ac, whereas binding of TRs is required to establish a hypo-acetylated, strongly repressed state.
Collapse
Affiliation(s)
- Sevil Zencir
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Daniel Dilg
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Julien Soudet
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - David Shore
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Benjamin Albert
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| |
Collapse
|
2
|
Fulton MD, Yama DJ, Dahl E, Johnson JL. Hsp90 and cochaperones have two genetically distinct roles in regulating eEF2 function. PLoS Genet 2024; 20:e1011508. [PMID: 39652595 DOI: 10.1371/journal.pgen.1011508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/17/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Protein homeostasis relies on the accurate translation and folding of newly synthesized proteins. Eukaryotic elongation factor 2 (eEF2) promotes GTP-dependent translocation of the ribosome during translation. eEF2 folding was recently shown to be dependent on Hsp90 as well as the cochaperones Hgh1, Cns1, and Cpr7. We examined the requirement for Hsp90 and cochaperones more closely and found that Hsp90 and cochaperones have two distinct roles in regulating eEF2 function. Yeast expressing one group of Hsp90 mutations or one group of cochaperone mutations had reduced steady-state levels of eEF2. The growth of Hsp90 mutants that affected eEF2 accumulation was also negatively affected by deletion of the gene encoding Hgh1. Further, mutations in yeast eEF2 that mimic disease-associated mutations in human eEF2 were negatively impacted by loss of Hgh1 and growth of one mutant was partially rescued by overexpression of Hgh1. In contrast, yeast expressing different groups of Hsp90 mutations or a different cochaperone mutation had altered sensitivity to diphtheria toxin, which is dictated by a unique posttranslational modification on eEF2. Our results provide further evidence that Hsp90 contributes to proteostasis not just by assisting protein folding, but also by enabling accurate translation of newly synthesized proteins. In addition, these results provide further evidence that yeast Hsp90 mutants have distinct in vivo effects that correlate with defects in subsets of cochaperones.
Collapse
Affiliation(s)
- Melody D Fulton
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Danielle J Yama
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ella Dahl
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
3
|
Cittadino GM, Andrews J, Purewal H, Estanislao Acuña Avila P, Arnone JT. Functional Clustering of Metabolically Related Genes Is Conserved across Dikarya. J Fungi (Basel) 2023; 9:jof9050523. [PMID: 37233234 DOI: 10.3390/jof9050523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Transcriptional regulation is vital for organismal survival, with many layers and mechanisms collaborating to balance gene expression. One layer of this regulation is genome organization, specifically the clustering of functionally related, co-expressed genes along the chromosomes. Spatial organization allows for position effects to stabilize RNA expression and balance transcription, which can be advantageous for a number of reasons, including reductions in stochastic influences between the gene products. The organization of co-regulated gene families into functional clusters occurs extensively in Ascomycota fungi. However, this is less characterized within the related Basidiomycota fungi despite the many uses and applications for the species within this clade. This review will provide insight into the prevalence, purpose, and significance of the clustering of functionally related genes across Dikarya, including foundational studies from Ascomycetes and the current state of our understanding throughout representative Basidiomycete species.
Collapse
Affiliation(s)
- Gina M Cittadino
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Johnathan Andrews
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Harpreet Purewal
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | | | - James T Arnone
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
4
|
Bhutada P, Favre S, Jaafar M, Hafner J, Liesinger L, Unterweger S, Bischof K, Darnhofer B, Siva Sankar D, Rechberger G, Abou Merhi R, Lebaron S, Birner-Gruenberger R, Kressler D, Henras AK, Pertschy B. Rbp95 binds to 25S rRNA helix H95 and cooperates with the Npa1 complex during early pre-60S particle maturation. Nucleic Acids Res 2022; 50:10053-10077. [PMID: 36018804 PMCID: PMC9508819 DOI: 10.1093/nar/gkac724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic ribosome synthesis involves more than 200 assembly factors, which promote ribosomal RNA (rRNA) processing, modification and folding, and assembly of ribosomal proteins. The formation and maturation of the earliest pre-60S particles requires structural remodeling by the Npa1 complex, but is otherwise still poorly understood. Here, we introduce Rbp95 (Ycr016w), a constituent of early pre-60S particles, as a novel ribosome assembly factor. We show that Rbp95 is both genetically and physically linked to most Npa1 complex members and to ribosomal protein Rpl3. We demonstrate that Rbp95 is an RNA-binding protein containing two independent RNA-interacting domains. In vivo, Rbp95 associates with helix H95 in the 3′ region of the 25S rRNA, in close proximity to the binding sites of Npa1 and Rpl3. Additionally, Rbp95 interacts with several snoRNAs. The absence of Rbp95 results in alterations in the protein composition of early pre-60S particles. Moreover, combined mutation of Rbp95 and Npa1 complex members leads to a delay in the maturation of early pre-60S particles. We propose that Rbp95 acts together with the Npa1 complex during early pre-60S maturation, potentially by promoting pre-rRNA folding events within pre-60S particles.
Collapse
Affiliation(s)
- Priya Bhutada
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Sébastien Favre
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Mariam Jaafar
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.,Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Jutta Hafner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Laura Liesinger
- BioTechMed-Graz, Graz, Austria.,Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Stefan Unterweger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Karin Bischof
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Barbara Darnhofer
- BioTechMed-Graz, Graz, Austria.,Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Devanarayanan Siva Sankar
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Gerald Rechberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Raghida Abou Merhi
- Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Simon Lebaron
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Ruth Birner-Gruenberger
- BioTechMed-Graz, Graz, Austria.,Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria.,Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/E164, 1060 Vienna, Austria
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
5
|
Lu Z, Wu Y, Chen Y, Chen X, Wu R, Lu Q, Chen D, Huang R. Role of spt23 in Saccharomyces cerevisiae thermal tolerance. Appl Microbiol Biotechnol 2022; 106:3691-3705. [PMID: 35476152 PMCID: PMC9151549 DOI: 10.1007/s00253-022-11920-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/02/2022]
Abstract
spt23 plays multiple roles in the thermal tolerance of budding yeast. spt23 regulates unsaturated lipid acid (ULA) content in the cell, which can then significantly affect cellular thermal tolerance. Being a Ty suppressor, spt23 can also interact with transposons (Tys) that are contributors to yeast's adaptive evolution. Nevertheless, few studies have investigated whether and how much spt23 can exert its regulatory functions through transposons. In this study, expression quantitative trait loci (eQTL) analysis was conducted with thermal-tolerant Saccharomyces cerevisiae strains, and spt23 was identified as one of the most important genes in mutants. spt23-overexpression (OE), deletion (Del), and integrative-expressed (IE) strains were constructed. Their heat tolerance, ethanol production, the expression level of key genes, and lipid acid contents in the cell membranes were measured. Furthermore, LTR (long terminal repeat)-amplicon sequencing was used to profile yeast transposon activities in the treatments. The results showed the Del type had a higher survival rate, biomass, and ethanol production, revealing negative correlations between spt23 expression levels and thermal tolerance. Total unsaturated lipid acid (TULA) contents in cell membranes were lower in the Del type, indicating its negative association with spt23 expression levels. The Del type resulted in the lower richness and higher evenness in LTR distributions, as well as higher transposon activities. The intersection of 3 gene sets and regression analysis revealed the relative weight of spt23's direct and TY-induced influence is about 4:3. These results suggested a heat tolerance model in which spt23 increases cell thermal tolerance through transcriptional regulation in addition to spt23-transposon triggered unknown responses. KEY POINTS: • spt23 is a key gene for heat tolerance, important for LA contents but not vital. • Deletion of spt23 decreases in yeast's LTR richness but not in evenness. • The relative weight of spt23's direct and TY-induced influence is about 4:3.
Collapse
Affiliation(s)
- Zhilong Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.,College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.,National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, People's Republic of China
| | - Yanling Wu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, People's Republic of China
| | - Ying Chen
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, People's Republic of China
| | - Xiaoling Chen
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, People's Republic of China
| | - Renzhi Wu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, People's Republic of China
| | - Qi Lu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, People's Republic of China
| | - Dong Chen
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, People's Republic of China
| | - Ribo Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China. .,College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China. .,National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, People's Republic of China.
| |
Collapse
|
6
|
Kusama K, Suzuki Y, Kurita E, Kawarasaki T, Obara K, Okumura F, Kamura T, Nakatsukasa K. Dot6/Tod6 degradation fine-tunes the repression of ribosome biogenesis under nutrient-limited conditions. iScience 2022; 25:103986. [PMID: 35310337 PMCID: PMC8924686 DOI: 10.1016/j.isci.2022.103986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/31/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Ribosome biogenesis (Ribi) is a complex and energy-consuming process, and should therefore be repressed under nutrient-limited conditions to minimize unnecessary cellular energy consumption. In yeast, the transcriptional repressors Dot6 and Tod6 are phosphorylated and inactivated by the TORC1 pathway under nutrient-rich conditions, but are activated and repress ∼200 Ribi genes under nutrient-limited conditions. However, we show that in the presence of rapamycin or under nitrogen starvation conditions, Dot6 and Tod6 were readily degraded by the proteasome in a SCFGrr1 and Tom1 ubiquitin ligase-dependent manner, respectively. Moreover, promiscuous accumulation of Dot6 and Tod6 excessively repressed Ribi gene expression as well as translation activity and caused a growth defect in the presence of rapamycin. Thus, we propose that degradation of Dot6 and Tod6 is a novel mechanism to ensure an appropriate level of Ribi gene expression and thereby fine-tune the repression of Ribi and translation activity for cell survival under nutrient-limited conditions. Dot6 and Tod6 repress Ribi gene expression under nutrient-limited conditions Dot6 and Tod6 are degraded by the proteasome Excess repression of Ribi causes a growth defect in the presence of rapamycin Dot6 and Tod6 degradation fine-tunes the repression of Ribi and translation activity
Collapse
|
7
|
Sailer C, Jansen J, Sekulski K, Cruz VE, Erzberger JP, Stengel F. A comprehensive landscape of 60S ribosome biogenesis factors. Cell Rep 2022; 38:110353. [PMID: 35139378 PMCID: PMC8884084 DOI: 10.1016/j.celrep.2022.110353] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/02/2021] [Accepted: 01/19/2022] [Indexed: 01/03/2023] Open
Abstract
Eukaryotic ribosome biogenesis is facilitated and regulated by numerous ribosome biogenesis factors (RBFs). High-resolution cryoelectron microscopy (cryo-EM) maps have defined the molecular interactions of RBFs during maturation, but many transient and dynamic interactions, particularly during early assembly, remain uncharacterized. Using quantitative proteomics and crosslinking coupled to mass spectrometry (XL-MS) data from an extensive set of pre-ribosomal particles, we derive a comprehensive and time-resolved interaction map of RBF engagement during 60S maturation. We localize 22 previously unmapped RBFs to specific biogenesis intermediates and validate our results by mapping the catalytic activity of the methyltransferases Bmt2 and Rcm1 to their predicted nucleolar 60S intermediates. Our analysis reveals the interaction sites for the RBFs Noc2 and Ecm1 and elucidates the interaction map and timing of 60S engagement by the DEAD-box ATPases Dbp9 and Dbp10. Our data provide a powerful resource for future studies of 60S ribosome biogenesis. In this study, Sailer et al. generate a comprehensive and precise timeline of ribosome biogenesis factor (RBF) engagement during 60S maturation and localize previously unmapped RBFs in the yeast Saccharomyces cerevisiae. Overall, their data represent an essential resource for future structural studies of large subunit ribosome biogenesis.
Collapse
Affiliation(s)
- Carolin Sailer
- Department of Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany
| | - Jasmin Jansen
- Department of Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany
| | - Kamil Sekulski
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Victor E Cruz
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Jan P Erzberger
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA.
| | - Florian Stengel
- Department of Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany.
| |
Collapse
|
8
|
Van Dyke K, Lutz S, Mekonnen G, Myers CL, Albert FW. Trans-acting genetic variation affects the expression of adjacent genes. Genetics 2021; 217:6126816. [PMID: 33789351 DOI: 10.1093/genetics/iyaa051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Gene expression differences among individuals are shaped by trans-acting expression quantitative trait loci (eQTLs). Most trans-eQTLs map to hotspot locations that influence many genes. The molecular mechanisms perturbed by hotspots are often assumed to involve "vertical" cascades of effects in pathways that can ultimately affect the expression of thousands of genes. Here, we report that trans-eQTLs can affect the expression of adjacent genes via "horizontal" mechanisms that extend along a chromosome. Genes affected by trans-eQTL hotspots in the yeast Saccharomyces cerevisiae were more likely to be located next to each other than expected by chance. These paired hotspot effects tended to occur at adjacent genes that also show coexpression in response to genetic and environmental perturbations, suggesting shared mechanisms. Physical proximity and shared chromatin state, in addition to regulation of adjacent genes by similar transcription factors, were independently associated with paired hotspot effects among adjacent genes. Paired effects of trans-eQTLs can occur at neighboring genes even when these genes do not share a common function. This phenomenon could result in unexpected connections between regulatory genetic variation and phenotypes.
Collapse
Affiliation(s)
- Krisna Van Dyke
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sheila Lutz
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gemechu Mekonnen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Decourty L, Malabat C, Frachon E, Jacquier A, Saveanu C. Investigation of RNA metabolism through large-scale genetic interaction profiling in yeast. Nucleic Acids Res 2021; 49:8535-8555. [PMID: 34358317 PMCID: PMC8421204 DOI: 10.1093/nar/gkab680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 11/15/2022] Open
Abstract
Gene deletion and gene expression alteration can lead to growth defects that are amplified or reduced when a second mutation is present in the same cells. We performed 154 genetic interaction mapping (GIM) screens with query mutants related with RNA metabolism and estimated the growth rates of about 700 000 double mutant Saccharomyces cerevisiae strains. The tested targets included the gene deletion collection and 900 strains in which essential genes were affected by mRNA destabilization (DAmP). To analyze the results, we developed RECAP, a strategy that validates genetic interaction profiles by comparison with gene co-citation frequency, and identified links between 1471 genes and 117 biological processes. In addition to these large-scale results, we validated both enhancement and suppression of slow growth measured for specific RNA-related pathways. Thus, negative genetic interactions identified a role for the OCA inositol polyphosphate hydrolase complex in mRNA translation initiation. By analysis of suppressors, we found that Puf4, a Pumilio family RNA binding protein, inhibits ribosomal protein Rpl9 function, by acting on a conserved UGUAcauUA motif located downstream the stop codon of the RPL9B mRNA. Altogether, the results and their analysis should represent a useful resource for discovery of gene function in yeast.
Collapse
Affiliation(s)
- Laurence Decourty
- Unité de Génétique des Interactions Macromoléculaires, Département Génomes et Génétique, Institut Pasteur, 75015 Paris, France.,UMR3525, Centre national de la recherche scientifique (CNRS), 75015 Paris, France
| | - Christophe Malabat
- Hub Bioinformatique et Biostatistique, Département de Biologie Computationnelle, Institut Pasteur, 75015 Paris, France
| | - Emmanuel Frachon
- Plate-forme Technologique Biomatériaux et Microfluidique, Centre des ressources et recherches technologiques, Institut Pasteur, 75015 Paris, France
| | - Alain Jacquier
- Unité de Génétique des Interactions Macromoléculaires, Département Génomes et Génétique, Institut Pasteur, 75015 Paris, France.,UMR3525, Centre national de la recherche scientifique (CNRS), 75015 Paris, France
| | - Cosmin Saveanu
- Unité de Génétique des Interactions Macromoléculaires, Département Génomes et Génétique, Institut Pasteur, 75015 Paris, France.,UMR3525, Centre national de la recherche scientifique (CNRS), 75015 Paris, France
| |
Collapse
|
10
|
Transcriptional control of ribosome biogenesis in yeast: links to growth and stress signals. Biochem Soc Trans 2021; 49:1589-1599. [PMID: 34240738 PMCID: PMC8421047 DOI: 10.1042/bst20201136] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Ribosome biogenesis requires prodigious transcriptional output in rapidly growing yeast cells and is highly regulated in response to both growth and stress signals. This minireview focuses on recent developments in our understanding of this regulatory process, with an emphasis on the 138 ribosomal protein genes (RPGs) themselves and a group of >200 ribosome biogenesis (RiBi) genes whose products contribute to assembly but are not part of the ribosome. Expression of most RPGs depends upon Rap1, a pioneer transcription factor (TF) required for the binding of a pair of RPG-specific TFs called Fhl1 and Ifh1. RPG expression is correlated with Ifh1 promoter binding, whereas Rap1 and Fhl1 remain promoter-associated upon stress-induced down regulation. A TF called Sfp1 has also been implicated in RPG regulation, though recent work reveals that its primary function is in activation of RiBi and other growth-related genes. Sfp1 plays an important regulatory role at a small number of RPGs where Rap1–Fhl1–Ifh1 action is subsidiary or non-existent. In addition, nearly half of all RPGs are bound by Hmo1, which either stabilizes or re-configures Fhl1–Ifh1 binding. Recent studies identified the proline rotamase Fpr1, known primarily for its role in rapamycin-mediated inhibition of the TORC1 kinase, as an additional TF at RPG promoters. Fpr1 also affects Fhl1–Ifh1 binding, either independently or in cooperation with Hmo1. Finally, a major recent development was the discovery of a protein homeostasis mechanism driven by unassembled ribosomal proteins, referred to as the Ribosome Assembly Stress Response (RASTR), that controls RPG transcription through the reversible condensation of Ifh1.
Collapse
|
11
|
Transcription at a Distance in the Budding Yeast Saccharomyces cerevisiae. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proper transcriptional regulation depends on the collaboration of multiple layers of control simultaneously. Cells tightly balance cellular resources and integrate various signaling inputs to maintain homeostasis during growth, development and stressors, among other signals. Many eukaryotes, including the budding yeast Saccharomyces cerevisiae, exhibit a non-random distribution of functionally related genes throughout their genomes. This arrangement coordinates the transcription of genes that are found in clusters, and can occur over long distances. In this work, we review the current literature pertaining to gene regulation at a distance in budding yeast.
Collapse
|
12
|
Asfare S, Eldabagh R, Siddiqui K, Patel B, Kaba D, Mullane J, Siddiqui U, Arnone JT. Systematic Analysis of Functionally Related Gene Clusters in the Opportunistic Pathogen, Candida albicans. Microorganisms 2021; 9:microorganisms9020276. [PMID: 33525750 PMCID: PMC7911571 DOI: 10.3390/microorganisms9020276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
The proper balance of gene expression is essential for cellular health, organismal development, and maintaining homeostasis. In response to complex internal and external signals, the cell needs to modulate gene expression to maintain proteostasis and establish cellular identity within its niche. On a genome level, single-celled prokaryotic microbes display clustering of co-expressed genes that are regulated as a polycistronic RNA. This phenomenon is largely absent from eukaryotic microbes, although there is extensive clustering of co-expressed genes as functional pairs spread throughout the genome in Saccharomyces cerevisiae. While initial analysis demonstrated conservation of clustering in divergent fungal lineages, a comprehensive analysis has yet to be performed. Here we report on the prevalence, conservation, and significance of the functional clustering of co-regulated genes within the opportunistic human pathogen, Candida albicans. Our analysis reveals that there is extensive clustering within this organism-although the identity of the gene pairs is unique compared with those found in S. cerevisiae-indicating that this genomic arrangement evolved after these microbes diverged evolutionarily, rather than being the result of an ancestral arrangement. We report a clustered arrangement in gene families that participate in diverse molecular functions and are not the result of a divergent orientation with a shared promoter. This arrangement coordinates the transcription of the clustered genes to their neighboring genes, with the clusters congregating to genomic loci that are conducive to transcriptional regulation at a distance.
Collapse
|
13
|
Hagee D, Abu Hardan A, Botero J, Arnone JT. Genomic clustering within functionally related gene families in Ascomycota fungi. Comput Struct Biotechnol J 2020; 18:3267-3277. [PMID: 33209211 PMCID: PMC7653285 DOI: 10.1016/j.csbj.2020.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple mechanisms collaborate for proper regulation of gene expression. One layer of this regulation is through the clustering of functionally related genes at discrete loci throughout the genome. This phenomenon occurs extensively throughout Ascomycota fungi and is an organizing principle for many gene families whose proteins participate in diverse molecular functions throughout the cell. Members of this phylum include organisms that serve as model systems and those of interest medically, pharmaceutically, and for industrial and biotechnological applications. In this review, we discuss the prevalence of functional clustering through a broad range of organisms within the phylum. Position effects on transcription, genomic locations of clusters, transcriptional regulation of clusters, and selective pressures contributing to the formation and maintenance of clusters are addressed, as are common methods to identify and characterize clusters.
Collapse
Affiliation(s)
- Danielle Hagee
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Ahmad Abu Hardan
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Juan Botero
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - James T. Arnone
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| |
Collapse
|
14
|
Bresson S, Shchepachev V, Spanos C, Turowski TW, Rappsilber J, Tollervey D. Stress-Induced Translation Inhibition through Rapid Displacement of Scanning Initiation Factors. Mol Cell 2020; 80:470-484.e8. [PMID: 33053322 PMCID: PMC7657445 DOI: 10.1016/j.molcel.2020.09.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/14/2020] [Accepted: 09/21/2020] [Indexed: 12/03/2022]
Abstract
Cellular responses to environmental stress are frequently mediated by RNA-binding proteins (RBPs). Here, we examined global RBP dynamics in Saccharomyces cerevisiae in response to glucose starvation and heat shock. Each stress induced rapid remodeling of the RNA-protein interactome without corresponding changes in RBP abundance. Consistent with general translation shutdown, ribosomal proteins contacting the mRNA showed decreased RNA association. Among translation components, RNA association was most reduced for initiation factors involved in 40S scanning (eukaryotic initiation factor 4A [eIF4A], eIF4B, and Ded1), indicating a common mechanism of translational repression. In unstressed cells, eIF4A, eIF4B, and Ded1 primarily targeted the 5′ ends of mRNAs. Following glucose withdrawal, 5′ binding was abolished within 30 s, explaining the rapid translation shutdown, but mRNAs remained stable. Heat shock induced progressive loss of 5′ RNA binding by initiation factors over ∼16 min and provoked mRNA degradation, particularly for translation-related factors, mediated by Xrn1. Taken together, these results reveal mechanisms underlying translational control of gene expression during stress. A quantitative proteomic approach reveals global stress-induced changes in RNA binding Translation shutdown is driven by rapid loss of mRNA binding by key initiation factors Heat shock induces general mRNA degradation facilitated by Xrn1
Collapse
Affiliation(s)
- Stefan Bresson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Vadim Shchepachev
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tomasz W Turowski
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
15
|
Application of Transcriptional Gene Modules to Analysis of Caenorhabditis elegans' Gene Expression Data. G3-GENES GENOMES GENETICS 2020; 10:3623-3638. [PMID: 32759329 PMCID: PMC7534440 DOI: 10.1534/g3.120.401270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identification of co-expressed sets of genes (gene modules) is used widely for grouping functionally related genes during transcriptomic data analysis. An organism-wide atlas of high-quality gene modules would provide a powerful tool for unbiased detection of biological signals from gene expression data. Here, using a method based on independent component analysis we call DEXICA, we have defined and optimized 209 modules that broadly represent transcriptional wiring of the key experimental organism C. elegans. These modules represent responses to changes in the environment (e.g., starvation, exposure to xenobiotics), genes regulated by transcriptions factors (e.g., ATFS-1, DAF-16), genes specific to tissues (e.g., neurons, muscle), genes that change during development, and other complex transcriptional responses to genetic, environmental and temporal perturbations. Interrogation of these modules reveals processes that are activated in long-lived mutants in cases where traditional analyses of differentially expressed genes fail to do so. Additionally, we show that modules can inform the strength of the association between a gene and an annotation (e.g., GO term). Analysis of “module-weighted annotations” improves on several aspects of traditional annotation-enrichment tests and can aid in functional interpretation of poorly annotated genes. We provide an online interactive resource with tutorials at http://genemodules.org/, in which users can find detailed information on each module, check genes for module-weighted annotations, and use both of these to analyze their own gene expression data (generated using any platform) or gene sets of interest.
Collapse
|
16
|
Zhang J, Li Q, Liu J, Lu Y, Wang Y, Wang Y. Astaxanthin overproduction and proteomic analysis of Phaffia rhodozyma under the oxidative stress induced by TiO 2. BIORESOURCE TECHNOLOGY 2020; 311:123525. [PMID: 32447228 DOI: 10.1016/j.biortech.2020.123525] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
This study analyzed the effect of TiO2 on the growth and astaxanthin yield of P. rhodozyma PR106. Subsequently, proteomics method was used to analyze the proteins changes of the strain under TiO2 treatment, to investigate the metabolic mechanism of the active oxygen generator TiO2 promoting the astaxanthin synthesis in P. rhodozyma. The results showed that TiO2 caused oxidative stress response in P. rhodozyma, and astaxanthin yield was 14.74 mg/L, which was 2 times of the control group; while, TiO2 had no effect on biomass and apoptosis of the cells. Proteomics analysis and parallel reaction monitoring (PRM) technology initially explored that bud-site selection protein (BUD22), ubiquitin-40s ribosomal protein s31 fusion protein, cell cycle control protein, C-4 methyl sterol oxidase and glutaredoxin were associated with astaxanthin synthesis.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Qingru Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Jiahuan Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yanhong Lu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, Chin; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.
| |
Collapse
|
17
|
Genomic Considerations for the Modification of Saccharomyces cerevisiae for Biofuel and Metabolite Biosynthesis. Microorganisms 2020; 8:microorganisms8030321. [PMID: 32110897 PMCID: PMC7143498 DOI: 10.3390/microorganisms8030321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 11/22/2022] Open
Abstract
The growing global population and developing world has put a strain on non-renewable natural resources, such as fuels. The shift to renewable sources will, thus, help meet demands, often through the modification of existing biosynthetic pathways or the introduction of novel pathways into non-native species. There are several useful biosynthetic pathways endogenous to organisms that are not conducive for the scale-up necessary for industrial use. The use of genetic and synthetic biological approaches to engineer these pathways in non-native organisms can help ameliorate these challenges. The budding yeast Saccharomyces cerevisiae offers several advantages for genetic engineering for this purpose due to its widespread use as a model system studied by many researchers. The focus of this review is to present a primer on understanding genomic considerations prior to genetic modification and manipulation of S. cerevisiae. The choice of a site for genetic manipulation can have broad implications on transcription throughout a region and this review will present the current understanding of position effects on transcription.
Collapse
|
18
|
Ramos-Sáenz A, González-Álvarez D, Rodríguez-Galán O, Rodríguez-Gil A, Gaspar SG, Villalobo E, Dosil M, de la Cruz J. Pol5 is an essential ribosome biogenesis factor required for 60S ribosomal subunit maturation in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2019; 25:1561-1575. [PMID: 31413149 PMCID: PMC6795146 DOI: 10.1261/rna.072116.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
In Saccharomyces cerevisiae, more than 250 trans-acting factors are involved in the maturation of 40S and 60S ribosomal subunits. The expression of most of these factors is transcriptionally coregulated to ensure correct ribosome production under a wide variety of environmental and intracellular conditions. Here, we identified the essential nucleolar Pol5 protein as a novel trans-acting factor required for the synthesis of 60S ribosomal subunits. Pol5 weakly and/or transiently associates with early to medium pre-60S ribosomal particles. Depletion of and temperature-sensitive mutations in Pol5 result in a deficiency of 60S ribosomal subunits and accumulation of half-mer polysomes. Both processing of 27SB pre-rRNA to mature 25S rRNA and release of pre-60S ribosomal particles from the nucle(ol)us to the cytoplasm are impaired in the Pol5-depleted strain. Moreover, we identified the genes encoding ribosomal proteins uL23 and eL27A as multicopy suppressors of the slow growth of a temperature-sensitive pol5 mutant. These results suggest that Pol5 could function in ensuring the correct folding of 25S rRNA domain III; thus, favoring the correct assembly of these two ribosomal proteins at their respective binding sites into medium pre-60S ribosomal particles. Pol5 is homologous to the human tumor suppressor Myb-binding protein 1A (MYBBP1A). However, expression of MYBBP1A failed to complement the lethal phenotype of a pol5 null mutant strain though interfered with 60S ribosomal subunit biogenesis.
Collapse
Affiliation(s)
- Ana Ramos-Sáenz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Daniel González-Álvarez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
| | - Sonia G Gaspar
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Mercedes Dosil
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, E-37007, Salamanca, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| |
Collapse
|
19
|
Medkour Y, Mohammad K, Arlia-Ciommo A, Svistkova V, Dakik P, Mitrofanova D, Rodriguez MEL, Junio JAB, Taifour T, Escudero P, Goltsios FF, Soodbakhsh S, Maalaoui H, Simard É, Titorenko VI. Mechanisms by which PE21, an extract from the white willow Salix alba, delays chronological aging in budding yeast. Oncotarget 2019; 10:5780-5816. [PMID: 31645900 PMCID: PMC6791382 DOI: 10.18632/oncotarget.27209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
We have recently found that PE21, an extract from the white willow Salix alba, slows chronological aging and prolongs longevity of the yeast Saccharomyces cerevisiae more efficiently than any of the previously known pharmacological interventions. Here, we investigated mechanisms through which PE21 delays yeast chronological aging and extends yeast longevity. We show that PE21 causes a remodeling of lipid metabolism in chronologically aging yeast, thereby instigating changes in the concentrations of several lipid classes. We demonstrate that such changes in the cellular lipidome initiate three mechanisms of aging delay and longevity extension. The first mechanism through which PE21 slows aging and prolongs longevity consists in its ability to decrease the intracellular concentration of free fatty acids. This postpones an age-related onset of liponecrotic cell death promoted by excessive concentrations of free fatty acids. The second mechanism of aging delay and longevity extension by PE21 consists in its ability to decrease the concentrations of triacylglycerols and to increase the concentrations of glycerophospholipids within the endoplasmic reticulum membrane. This activates the unfolded protein response system in the endoplasmic reticulum, which then decelerates an age-related decline in protein and lipid homeostasis and slows down an aging-associated deterioration of cell resistance to stress. The third mechanisms underlying aging delay and longevity extension by PE21 consists in its ability to change lipid concentrations in the mitochondrial membranes. This alters certain catabolic and anabolic processes in mitochondria, thus amending the pattern of aging-associated changes in several key aspects of mitochondrial functionality.
Collapse
Affiliation(s)
- Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | - Veronika Svistkova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Tarek Taifour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Paola Escudero
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Fani-Fay Goltsios
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sahar Soodbakhsh
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Hana Maalaoui
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec J7A 4A5, Canada
| | | |
Collapse
|
20
|
Parnell EJ, Stillman DJ. Multiple Negative Regulators Restrict Recruitment of the SWI/SNF Chromatin Remodeler to the HO Promoter in Saccharomyces cerevisiae. Genetics 2019; 212:1181-1204. [PMID: 31167839 PMCID: PMC6707452 DOI: 10.1534/genetics.119.302359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/30/2019] [Indexed: 01/22/2023] Open
Abstract
Activation of the Saccharomyces cerevisiae HO promoter is highly regulated, requiring the ordered recruitment of activators and coactivators and allowing production of only a few transcripts in mother cells within a short cell cycle window. We conducted genetic screens to identify the negative regulators of HO expression necessary to limit HO transcription. Known repressors of HO (Ash1 and Rpd3) were identified, as well as several additional chromatin-associated factors including the Hda1 histone deacetylase, the Isw2 chromatin remodeler, and the corepressor Tup1 We also identified clusters of HO promoter mutations that suggested roles for the Dot6/Tod6 (PAC site) and Ume6 repression pathways. We used ChIP assays with synchronized cells to validate the involvement of these factors and map the association of Ash1, Dot6, and Ume6 with the HO promoter to a brief window in the cell cycle between binding of the initial activating transcription factor and initiation of transcription. We found that Ash1 and Ume6 each recruit the Rpd3 histone deacetylase to HO, and their effects are additive. In contrast, Rpd3 was not recruited significantly to the PAC site, suggesting this site has a distinct mechanism for repression. Increases in HO expression and SWI/SNF recruitment were all additive upon loss of Ash1, Ume6, and PAC site factors, indicating the convergence of independent pathways for repression. Our results demonstrate that multiple protein complexes are important for limiting the spread of SWI/SNF-mediated nucleosome eviction across the HO promoter, suggesting that regulation requires a delicate balance of activities that promote and repress transcription.
Collapse
Affiliation(s)
- Emily J Parnell
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| |
Collapse
|
21
|
Iacovella MG, Bremang M, Basha O, Giacò L, Carotenuto W, Golfieri C, Szakal B, Dal Maschio M, Infantino V, Beznoussenko GV, Joseph CR, Visintin C, Mironov AA, Visintin R, Branzei D, Ferreira-Cerca S, Yeger-Lotem E, De Wulf P. Integrating Rio1 activities discloses its nutrient-activated network in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 46:7586-7611. [PMID: 30011030 PMCID: PMC6125641 DOI: 10.1093/nar/gky618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
The Saccharomyces cerevisiae kinase/adenosine triphosphatase Rio1 regulates rDNA transcription and segregation, pre-rRNA processing and small ribosomal subunit maturation. Other roles are unknown. When overexpressed, human ortholog RIOK1 drives tumor growth and metastasis. Likewise, RIOK1 promotes 40S ribosomal subunit biogenesis and has not been characterized globally. We show that Rio1 manages directly and via a series of regulators, an essential signaling network at the protein, chromatin and RNA levels. Rio1 orchestrates growth and division depending on resource availability, in parallel to the nutrient-activated Tor1 kinase. To define the Rio1 network, we identified its physical interactors, profiled its target genes/transcripts, mapped its chromatin-binding sites and integrated our data with yeast’s protein–protein and protein–DNA interaction catalogs using network computation. We experimentally confirmed network components and localized Rio1 also to mitochondria and vacuoles. Via its network, Rio1 commands protein synthesis (ribosomal gene expression, assembly and activity) and turnover (26S proteasome expression), and impinges on metabolic, energy-production and cell-cycle programs. We find that Rio1 activity is conserved to humans and propose that pathological RIOK1 may fuel promiscuous transcription, ribosome production, chromosomal instability, unrestrained metabolism and proliferation; established contributors to cancer. Our study will advance the understanding of numerous processes, here revealed to depend on Rio1 activity.
Collapse
Affiliation(s)
- Maria G Iacovella
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Michael Bremang
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.,Current address: Proteome Sciences Plc, Hamilton House, Mabledon Place, London, United Kingdom
| | - Omer Basha
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
| | - Luciano Giacò
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Walter Carotenuto
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Cristina Golfieri
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Barnabas Szakal
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Marianna Dal Maschio
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Valentina Infantino
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Galina V Beznoussenko
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Chinnu R Joseph
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Clara Visintin
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Alexander A Mironov
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Rosella Visintin
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Dana Branzei
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy.,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Sébastien Ferreira-Cerca
- Lehrstuhl für Biochemie III, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
| | - Peter De Wulf
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.,Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
22
|
Cheng Z, Brar GA. Global translation inhibition yields condition-dependent de-repression of ribosome biogenesis mRNAs. Nucleic Acids Res 2019; 47:5061-5073. [PMID: 30937450 PMCID: PMC6547411 DOI: 10.1093/nar/gkz231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 11/15/2022] Open
Abstract
Ribosome biogenesis (RiBi) is an extremely energy intensive process that is critical for gene expression. It is thus highly regulated, including through the tightly coordinated expression of over 200 RiBi genes by positive and negative transcriptional regulators. We investigated RiBi regulation as cells initiated meiosis in budding yeast and noted early transcriptional activation of RiBi genes, followed by their apparent translational repression 1 hour (h) after stimulation to enter meiosis. Surprisingly, in the representative genes examined, measured translational repression depended on their promoters rather than mRNA regions. Further investigation revealed that the signature of this regulation in our data depended on pre-treating cells with the translation inhibitor, cycloheximide (CHX). This treatment, at 1 h in meiosis, but not earlier, rapidly resulted in accumulation of RiBi mRNAs that were not translated. This effect was also seen in with CHX pre-treatment of cells grown in media lacking amino acids. For NSR1, this effect depended on the -150 to -101 region of the promoter, as well as the RiBi transcriptional repressors Dot6 and Tod6. Condition-specific RiBi mRNA accumulation was also seen with translation inhibitors that are dissimilar from CHX, suggesting that this phenomenon might represent a feedback response to global translation inhibition.
Collapse
Affiliation(s)
- Ze Cheng
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Functionally Related Genes Cluster into Genomic Regions That Coordinate Transcription at a Distance in Saccharomyces cerevisiae. mSphere 2019; 4:4/2/e00063-19. [PMID: 30867326 PMCID: PMC6416364 DOI: 10.1128/msphere.00063-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The two-dimensional, physical positioning of genes along a chromosome can impact proper transcriptional regulation throughout a genomic region. The transcription of neighboring genes is correlated in a genome-wide manner, which is a characteristic of eukaryotes. Many coregulated gene families can be found clustered with another member of the same set—which can result in adjacent gene coregulation of the pair. Due to the myriad gene families that exhibit a nonrandom genomic distribution, there are likely multiple mechanisms working in concert to properly regulate transcriptional coordination of functionally clustered genes. In this study, we utilized budding yeast in an attempt to elucidate mechanisms that underlie this coregulation: testing and empirically validating the enhancer-promoter hypothesis in this species and reporting that functionally related genes cluster to genomic regions that are more conducive to transcriptional regulation at a distance. These clusters rely, in part, on chromatin maintenance and remodelers to maintain proper transcriptional coordination. Our work provides insight into the mechanisms underlying adjacent gene coregulation. Balancing gene expression is a fundamental challenge of all cell types. To properly regulate transcription on a genome-wide level, there are myriad mechanisms employed by the cell. One layer to this regulation is through spatial positioning, with particular chromosomal loci exerting an influence on transcription throughout a region. Many coregulated gene families utilize spatial positioning to coordinate transcription, with functionally related genes clustering together which can allow coordinated expression via adjacent gene coregulation. The mechanisms underlying this process have not been elucidated, though there are many coregulated gene families that exhibit this genomic distribution. In the present study, we tested for a role for the enhancer-promoter (EP) hypothesis, which demonstrates that regulatory elements can exert transcriptional effects over a broad distance, in coordinating transcriptional coregulation using budding yeast, Saccharomyces cerevisiae. We empirically validated the EP model, finding that the genomic distance a promoter can affect varies by locus, which can profoundly affect levels of transcription, phenotype, and the extent of transcriptional disruption throughout a genomic region. Using the nitrogen metabolism, ribosomal protein, toxin response, and heat shock gene families as our test case, we report functionally clustered genes localize to genomic loci that are more conducive to transcriptional regulation at a distance compared to the unpaired members of the same families. Furthermore, we report that the coregulation of functional clusters is dependent, in part, on chromatin maintenance and remodeling, providing one mechanism underlying adjacent gene coregulation. IMPORTANCE The two-dimensional, physical positioning of genes along a chromosome can impact proper transcriptional regulation throughout a genomic region. The transcription of neighboring genes is correlated in a genome-wide manner, which is a characteristic of eukaryotes. Many coregulated gene families can be found clustered with another member of the same set—which can result in adjacent gene coregulation of the pair. Due to the myriad gene families that exhibit a nonrandom genomic distribution, there are likely multiple mechanisms working in concert to properly regulate transcriptional coordination of functionally clustered genes. In this study, we utilized budding yeast in an attempt to elucidate mechanisms that underlie this coregulation: testing and empirically validating the enhancer-promoter hypothesis in this species and reporting that functionally related genes cluster to genomic regions that are more conducive to transcriptional regulation at a distance. These clusters rely, in part, on chromatin maintenance and remodelers to maintain proper transcriptional coordination. Our work provides insight into the mechanisms underlying adjacent gene coregulation.
Collapse
|
24
|
Abu-Jamous B, Kelly S. Clust: automatic extraction of optimal co-expressed gene clusters from gene expression data. Genome Biol 2018; 19:172. [PMID: 30359297 PMCID: PMC6203272 DOI: 10.1186/s13059-018-1536-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/11/2018] [Indexed: 01/24/2023] Open
Abstract
Identifying co-expressed gene clusters can provide evidence for genetic or physical interactions. Thus, co-expression clustering is a routine step in large-scale analyses of gene expression data. We show that commonly used clustering methods produce results that substantially disagree and that do not match the biological expectations of co-expressed gene clusters. We present clust, a method that solves these problems by extracting clusters matching the biological expectations of co-expressed genes and outperforms widely used methods. Additionally, clust can simultaneously cluster multiple datasets, enabling users to leverage the large quantity of public expression data for novel comparative analysis. Clust is available at https://github.com/BaselAbujamous/clust.
Collapse
Affiliation(s)
- Basel Abu-Jamous
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
25
|
Systematic Identification, Characterization, and Conservation of Adjacent-Gene Coregulation in the Budding Yeast Saccharomyces cerevisiae. mSphere 2018; 3:3/3/e00220-18. [PMID: 29898982 PMCID: PMC6001612 DOI: 10.1128/msphere.00220-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 12/28/2022] Open
Abstract
The spatial positioning of genes throughout the genome arrangement can alter their expression in many eukaryotic organisms. Often this results in a genomic context-specific effect on transcription. One example of this is through the clustering of functionally related genes, which results in adjacent-gene coregulation in the budding yeast Saccharomyces cerevisiae. In the present study, we set out to systematically characterize the prevalence of this phenomenon, finding the genomic organization of functionally related genes into clusters is a characteristic of myriad gene families. These arrangements are found in many evolutionarily divergent fungi and thus represent a widespread, yet underappreciated, layer of transcriptional regulation. It is essential that cells orchestrate gene expression for the specific niche that they occupy, and this often requires coordination of the expression of large sets of genes. There are multiple regulatory systems that exist for modulation of gene expression, including the adjacent-gene coregulation of the rRNA and ribosome biogenesis and ribosomal protein families. Both gene families exhibit a nonrandom genomic distribution, often clustered directly adjacent to another member of the same family, which results in a tighter transcriptional coordination among adjacent paired genes than that of the unpaired genes within each regulon and can result in a shared promoter that coordinates expression of the pairs. This nonrandom genomic distribution has been seen in a few functionally related gene families, and many of these functional pairings are conserved across divergent fungal lineages. To date, the significance of these observations has not been extended in a systematic way to characterize how prevalent the role of adjacent-gene coregulation is in transcriptional regulation. In the present study, we systematically analyzed the transcriptional coherence of the functional pairs compared to the singletons within all gene families defined by the Gene Ontology Slim designation, using Saccharomyces cerevisiae as a model system, finding that clusters exhibit a tighter transcriptional correlation under specific contexts. We found that the longer a functional pairing is conserved the tighter its response to broad stress and nutritional responses, that roughly 25% of gene families exhibit a nonrandom genomic distribution, and that many of these clusters are conserved. This suggests that adjacent-gene coregulation is a widespread, yet underappreciated, transcriptional mechanism. IMPORTANCE The spatial positioning of genes throughout the genome arrangement can alter their expression in many eukaryotic organisms. Often this results in a genomic context-specific effect on transcription. One example of this is through the clustering of functionally related genes, which results in adjacent-gene coregulation in the budding yeast Saccharomyces cerevisiae. In the present study, we set out to systematically characterize the prevalence of this phenomenon, finding the genomic organization of functionally related genes into clusters is a characteristic of myriad gene families. These arrangements are found in many evolutionarily divergent fungi and thus represent a widespread, yet underappreciated, layer of transcriptional regulation.
Collapse
|
26
|
Gómez-Herreros F, Margaritis T, Rodríguez-Galán O, Pelechano V, Begley V, Millán-Zambrano G, Morillo-Huesca M, Muñoz-Centeno MC, Pérez-Ortín JE, de la Cruz J, Holstege FCP, Chávez S. The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation. Nucleic Acids Res 2017. [PMID: 28637236 PMCID: PMC5737610 DOI: 10.1093/nar/gkx529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ribosome assembly requires the concerted expression of hundreds of genes, which are transcribed by all three nuclear RNA polymerases. Transcription elongation involves dynamic interactions between RNA polymerases and chromatin. We performed a synthetic lethal screening in Saccharomyces cerevisiae with a conditional allele of SPT6, which encodes one of the factors that facilitates this process. Some of these synthetic mutants corresponded to factors that facilitate pre-rRNA processing and ribosome biogenesis. We found that the in vivo depletion of one of these factors, Arb1, activated transcription elongation in the set of genes involved directly in ribosome assembly. Under these depletion conditions, Spt6 was physically targeted to the up-regulated genes, where it helped maintain their chromatin integrity and the synthesis of properly stable mRNAs. The mRNA profiles of a large set of ribosome biogenesis mutants confirmed the existence of a feedback regulatory network among ribosome assembly genes. The transcriptional response in this network depended on both the specific malfunction and the role of the regulated gene. In accordance with our screening, Spt6 positively contributed to the optimal operation of this global network. On the whole, this work uncovers a feedback control of ribosome biogenesis by fine-tuning transcription elongation in ribosome assembly factor-coding genes.
Collapse
Affiliation(s)
- Fernando Gómez-Herreros
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Thanasis Margaritis
- Molecular Cancer Research, University Medical Center Utrecht, & Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Vicent Pelechano
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed. Facultad de Biológicas, Universitat de València. Burjassot, Spain.,SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Victoria Begley
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Gonzalo Millán-Zambrano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Macarena Morillo-Huesca
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Mari Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed. Facultad de Biológicas, Universitat de València. Burjassot, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Frank C P Holstege
- Molecular Cancer Research, University Medical Center Utrecht, & Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
27
|
de la Cruz J, Gómez-Herreros F, Rodríguez-Galán O, Begley V, de la Cruz Muñoz-Centeno M, Chávez S. Feedback regulation of ribosome assembly. Curr Genet 2017; 64:393-404. [PMID: 29022131 DOI: 10.1007/s00294-017-0764-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 12/12/2022]
Abstract
Ribosome biogenesis is a crucial process for growth and constitutes the major consumer of cellular resources. This pathway is subjected to very stringent regulation to ensure correct ribosome manufacture with a wide variety of environmental and metabolic changes, and intracellular insults. Here we summarise our current knowledge on the regulation of ribosome biogenesis in Saccharomyces cerevisiae by particularly focusing on the feedback mechanisms that maintain ribosome homeostasis. Ribosome biogenesis in yeast is controlled mainly at the level of the production of both pre-rRNAs and ribosomal proteins through the transcriptional and post-transcriptional control of the TORC1 and protein kinase A signalling pathways. Pre-rRNA processing can occur before or after the 35S pre-rRNA transcript is completed; the switch between these two alternatives is regulated by growth conditions. The expression of both ribosomal proteins and the large family of transacting factors involved in ribosome biogenesis is co-regulated. Recently, it has been shown that the synthesis of rRNA and ribosomal proteins, but not of trans-factors, is coupled. Thus the so-called CURI complex sequesters specific transcription factor Ifh1 to repress ribosomal protein genes when rRNA transcription is impaired. We recently found that an analogue system should operate to control the expression of transacting factor genes in response to actual ribosome assembly performance. Regulation of ribosome biogenesis manages situations of imbalanced ribosome production or misassembled ribosomal precursors and subunits, which have been closely linked to distinct human diseases.
Collapse
Affiliation(s)
- Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain. .,Departamento de Genética, Universidad de Sevilla, Seville, Spain.
| | - Fernando Gómez-Herreros
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Victoria Begley
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - María de la Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain. .,Departamento de Genética, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
28
|
Madru C, Leulliot N, Lebaron S. [Ribosomes synthesis at the heart of cell proliferation]. Med Sci (Paris) 2017; 33:613-619. [PMID: 28990563 DOI: 10.1051/medsci/20173306018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ribosomes are central to gene expression. Their assembly is a complex and an energy consuming process. Many controls exist to make it possible a fine-tuning of ribosome production adapted to cell needs. In this review, we describe recent advances in the characterisation of the links occurring between ribosome synthesis and cell proliferation control. Defects in ribosome biogenesis directly impede cellular cycle and slow-down proliferation. Among the different factors involved, we could define the 5S particle, a ribosome sub-complex, as a key-regulator of p53 and other tumour suppressors such as pRB. This cross-talk between ribosome neogenesis defects and proliferation and cellular cycle also involves other cell cycle controls such as p14ARF, SRSF1 or PRAS40 pathways. These data place ribosome synthesis at the heart of cell proliferation and offer new therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Clément Madru
- Laboratoire de Cristallographie et RMN Biologiques, UMR, CNRS 8015, Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, 75006 Paris, France
| | - Nicolas Leulliot
- Laboratoire de Cristallographie et RMN Biologiques, UMR, CNRS 8015, Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, 75006 Paris, France
| | - Simon Lebaron
- Laboratoire de Cristallographie et RMN Biologiques, UMR, CNRS 8015, Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, 75006 Paris, France - Institut national de la santé et de la recherche médicale, Paris, France
| |
Collapse
|
29
|
Bosio MC, Fermi B, Spagnoli G, Levati E, Rubbi L, Ferrari R, Pellegrini M, Dieci G. Abf1 and other general regulatory factors control ribosome biogenesis gene expression in budding yeast. Nucleic Acids Res 2017; 45:4493-4506. [PMID: 28158860 PMCID: PMC5416754 DOI: 10.1093/nar/gkx058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 01/25/2017] [Indexed: 01/21/2023] Open
Abstract
Ribosome biogenesis in Saccharomyces cerevisiae involves a regulon of >200 genes (Ribi genes) coordinately regulated in response to nutrient availability and cellular growth rate. Two cis-acting elements called PAC and RRPE are known to mediate Ribi gene repression in response to nutritional downshift. Here, we show that most Ribi gene promoters also contain binding sites for one or more General Regulatory Factors (GRFs), most frequently Abf1 and Reb1, and that these factors are enriched in vivo at Ribi promoters. Abf1/Reb1/Tbf1 promoter association was required for full Ribi gene expression in rich medium and for its modulation in response to glucose starvation, characterized by a rapid drop followed by slow recovery. Such a response did not entail changes in Abf1 occupancy, but it was paralleled by a quick increase, followed by slow decrease, in Rpd3L histone deacetylase occupancy. Remarkably, Abf1 site disruption also abolished Rpd3L complex recruitment in response to starvation. Extensive mutational analysis of the DBP7 promoter revealed a complex interplay of Tbf1 sites, PAC and RRPE in the transcriptional regulation of this Ribi gene. Our observations point to GRFs as new multifaceted players in Ribi gene regulation both during exponential growth and under repressive conditions.
Collapse
Affiliation(s)
- Maria Cristina Bosio
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Beatrice Fermi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Gloria Spagnoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Elisabetta Levati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Ludmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Roberto Ferrari
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| |
Collapse
|
30
|
Bosio MC, Fermi B, Dieci G. Transcriptional control of yeast ribosome biogenesis: A multifaceted role for general regulatory factors. Transcription 2017; 8:254-260. [PMID: 28448767 DOI: 10.1080/21541264.2017.1317378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In Saccharomyces cerevisiae, a group of more than 200 co-regulated genes (Ribi genes) is involved in ribosome biogenesis. This regulon has recently been shown to rely on a small set of transcriptional regulators (mainly Abf1, but also Reb1, Tbf1 and Rap1) previously referred to as general regulatory factors (GRFs) because of their widespread binding and action at many promoters and other specialized genomic regions. Intriguingly, Abf1 binding to Ribi genes is differentially modulated in response to distinct nutrition signaling pathways. Such a dynamic promoter association has the potential to orchestrate both activation and repression of Ribi genes in synergy with neighboring regulatory sites and through the functional interplay of histone acetyltransferases and deacetylases.
Collapse
Affiliation(s)
- Maria Cristina Bosio
- a Department of Chemistry , Life Sciences and Environmental Sustainability, University of Parma , Parma , Italy
| | - Beatrice Fermi
- a Department of Chemistry , Life Sciences and Environmental Sustainability, University of Parma , Parma , Italy
| | - Giorgio Dieci
- a Department of Chemistry , Life Sciences and Environmental Sustainability, University of Parma , Parma , Italy
| |
Collapse
|
31
|
Abstract
Usually, cells balance their growth with their division. Coordinating growth inputs with cell division ensures the proper timing of division when sufficient cell material is available and affects the overall rate of cell proliferation. At a very fundamental level, cellular replicative lifespan-defined as the number of times a cell can divide, is a manifestation of cell cycle control. Hence, control of mitotic cell divisions, especially when the commitment is made to a new round of cell division, is intimately linked to replicative aging of cells. In this chapter, we review our current understanding, and its shortcomings, of how unbalanced growth and division, can dramatically influence the proliferative potential of cells, often leading to cellular and organismal aging phenotypes. The interplay between growth and division also underpins cellular senescence (i.e., inability to divide) and quiescence, when cells exit the cell cycle but still retain their ability to divide.
Collapse
|
32
|
Abu-Jamous B, Fa R, Roberts DJ, Nandi AK. UNCLES: method for the identification of genes differentially consistently co-expressed in a specific subset of datasets. BMC Bioinformatics 2015; 16:184. [PMID: 26040489 PMCID: PMC4453228 DOI: 10.1186/s12859-015-0614-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/16/2015] [Indexed: 12/13/2022] Open
Abstract
Background Collective analysis of the increasingly emerging gene expression datasets are required. The recently proposed binarisation of consensus partition matrices (Bi-CoPaM) method can combine clustering results from multiple datasets to identify the subsets of genes which are consistently co-expressed in all of the provided datasets in a tuneable manner. However, results validation and parameter setting are issues that complicate the design of such methods. Moreover, although it is a common practice to test methods by application to synthetic datasets, the mathematical models used to synthesise such datasets are usually based on approximations which may not always be sufficiently representative of real datasets. Results Here, we propose an unsupervised method for the unification of clustering results from multiple datasets using external specifications (UNCLES). This method has the ability to identify the subsets of genes consistently co-expressed in a subset of datasets while being poorly co-expressed in another subset of datasets, and to identify the subsets of genes consistently co-expressed in all given datasets. We also propose the M-N scatter plots validation technique and adopt it to set the parameters of UNCLES, such as the number of clusters, automatically. Additionally, we propose an approach for the synthesis of gene expression datasets using real data profiles in a way which combines the ground-truth-knowledge of synthetic data and the realistic expression values of real data, and therefore overcomes the problem of faithfulness of synthetic expression data modelling. By application to those datasets, we validate UNCLES while comparing it with other conventional clustering methods, and of particular relevance, biclustering methods. We further validate UNCLES by application to a set of 14 real genome-wide yeast datasets as it produces focused clusters that conform well to known biological facts. Furthermore, in-silico-based hypotheses regarding the function of a few previously unknown genes in those focused clusters are drawn. Conclusions The UNCLES method, the M-N scatter plots technique, and the expression data synthesis approach will have wide application for the comprehensive analysis of genomic and other sources of multiple complex biological datasets. Moreover, the derived in-silico-based biological hypotheses represent subjects for future functional studies. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0614-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Basel Abu-Jamous
- Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK.
| | - Rui Fa
- Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK.
| | - David J Roberts
- National Health Service Blood and Transplant, Oxford, OX3 9BQ, UK. .,Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Asoke K Nandi
- Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK. .,Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
33
|
Bosio MC, Negri R, Dieci G. Promoter architectures in the yeast ribosomal expression program. Transcription 2014; 2:71-77. [PMID: 21468232 DOI: 10.4161/trns.2.2.14486] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 12/13/2022] Open
Abstract
Ribosome biogenesis begins with the orchestrated expression of hundreds of genes, including the three large classes of ribosomal protein, ribosome biogenesis and snoRNA genes. Current knowledge about the corresponding promoters suggests the existence of novel class-specific transcriptional strategies and crosstalk between telomere length and cell growth control.
Collapse
Affiliation(s)
- Maria Cristina Bosio
- Dipartimento di Biochimica e Biologia Molecolare; Università degli Studi di Parma; Parma
| | | | | |
Collapse
|
34
|
Gigova A, Duggimpudi S, Pollex T, Schaefer M, Koš M. A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability. RNA (NEW YORK, N.Y.) 2014; 20:1632-44. [PMID: 25125595 PMCID: PMC4174444 DOI: 10.1261/rna.043398.113] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In all three domains of life ribosomal RNAs are extensively modified at functionally important sites of the ribosome. These modifications are believed to fine-tune the ribosome structure for optimal translation. However, the precise mechanistic effect of modifications on ribosome function remains largely unknown. Here we show that a cluster of methylated nucleotides in domain IV of 25S rRNA is critical for integrity of the large ribosomal subunit. We identified the elusive cytosine-5 methyltransferase for C2278 in yeast as Rcm1 and found that a combined loss of cytosine-5 methylation at C2278 and ribose methylation at G2288 caused dramatic ribosome instability, resulting in loss of 60S ribosomal subunits. Structural and biochemical analyses revealed that this instability was caused by changes in the structure of 25S rRNA and a consequent loss of multiple ribosomal proteins from the large ribosomal subunit. Our data demonstrate that individual RNA modifications can strongly affect structure of large ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Andriana Gigova
- Biochemistry Center and Cluster of Excellence CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sujitha Duggimpudi
- Biochemistry Center and Cluster of Excellence CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany
| | - Tim Pollex
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Matthias Schaefer
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Martin Koš
- Biochemistry Center and Cluster of Excellence CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Abu-Jamous B, Fa R, Roberts DJ, Nandi AK. Comprehensive analysis of forty yeast microarray datasets reveals a novel subset of genes (APha-RiB) consistently negatively associated with ribosome biogenesis. BMC Bioinformatics 2014; 15:322. [PMID: 25267386 PMCID: PMC4262117 DOI: 10.1186/1471-2105-15-322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The scale and complexity of genomic data lend themselves to analysis using sophisticated mathematical techniques to yield information that can generate new hypotheses and so guide further experimental investigations. An ensemble clustering method has the ability to perform consensus clustering over the same set of genes from different microarray datasets by combining results from different clustering methods into a single consensus result. RESULTS In this paper we have performed comprehensive analysis of forty yeast microarray datasets. One recently described Bi-CoPaM method can analyse expressions of the same set of genes from various microarray datasets while using different clustering methods, and then combine these results into a single consensus result whose clusters' tightness is tunable from tight, specific clusters to wide, overlapping clusters. This has been adopted in a novel way over genome-wide data from forty yeast microarray datasets to discover two clusters of genes that are consistently co-expressed over all of these datasets from different biological contexts and various experimental conditions. Most strikingly, average expression profiles of those clusters are consistently negatively correlated in all of the forty datasets while neither profile leads or lags the other. CONCLUSIONS The first cluster is enriched with ribosomal biogenesis genes. The biological processes of most of the genes in the second cluster are either unknown or apparently unrelated although they show high connectivity in protein-protein and genetic interaction networks. Therefore, it is possible that this mostly uncharacterised cluster and the ribosomal biogenesis cluster are transcriptionally oppositely regulated by some common machinery. Moreover, we anticipate that the genes included in this previously unknown cluster participate in generic, in contrast to specific, stress response processes. These novel findings illuminate coordinated gene expression in yeast and suggest several hypotheses for future experimental functional work. Additionally, we have demonstrated the usefulness of the Bi-CoPaM-based approach, which may be helpful for the analysis of other groups of (microarray) datasets from other species and systems for the exploration of global genetic co-expression.
Collapse
Affiliation(s)
- Basel Abu-Jamous
- />Department of Electronic and Computer Engineering, Brunel University, Uxbridge, Middlesex, UB8 3PH UK
| | - Rui Fa
- />Department of Electronic and Computer Engineering, Brunel University, Uxbridge, Middlesex, UB8 3PH UK
| | - David J Roberts
- />National Health Service Blood and Transplant, Oxford, UK
- />Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Asoke K Nandi
- />Department of Electronic and Computer Engineering, Brunel University, Uxbridge, Middlesex, UB8 3PH UK
- />Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
36
|
Kordyukova MY, Polzikov MA, Shishova KV, Zatsepina OV. Analysis of protein partners of the human nucleolar protein SURF6 in HeLa cells by a GST pull-down assay. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1068162014040062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Dissecting the cis and trans elements that regulate adjacent-gene coregulation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2014; 13:738-48. [PMID: 24706020 DOI: 10.1128/ec.00317-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The relative positions that genes occupy on their respective chromosomes can play a critical role in determining how they are regulated at the transcriptional level. For example, a significant fraction of the genes from a variety of coregulated gene sets, including the ribosomal protein (RP) and the rRNA and ribosome biogenesis (RRB) regulons, exist as immediate, adjacent gene pairs. These gene pairs occur in all possible divergent, tandem, and convergent orientations. Adjacent-gene pairing in these regulons is associated with a tighter transcriptional coregulation than is observed for nonpaired genes of the same regulons. In order to define the cis and trans factors that regulate adjacent-gene coregulation (AGC), we conducted a mutational analysis of the convergently oriented RRB gene pair MPP10-YJR003C. We observed that coupled corepression of the gene pair under heat shock was abrogated when the two genes were separated by an actively expressed RNA polymerase (Pol) II transcription unit (the LEU2 gene) but not when the inserted LEU2 gene was repressed. In contrast, the insertion of an RNA Pol III-transcribed tRNA (Thr) gene did not disrupt the coregulated repression of MPP10 and YJR003C. A targeted screen of mutants defective in regulating chromosome architecture revealed that the Spt20, Snf2, and Chd1 proteins were required for coupling the repression of YJR003C to that of MPP10. Nucleosome occupancy assays performed across the MPP10 and YJR003C promoter regions revealed that the mechanism of corepression of the gene pair was not related to the repositioning of nucleosomes across the respective gene promoters.
Collapse
|
38
|
Yamanishi M, Ito Y, Kintaka R, Imamura C, Katahira S, Ikeuchi A, Moriya H, Matsuyama T. A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a ″terminatome″ toolbox. ACS Synth Biol 2013; 2:337-47. [PMID: 23654277 DOI: 10.1021/sb300116y] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The terminator regions of eukaryotes encode functional elements in the 3' untranslated region (3'-UTR) that influence the 3'-end processing of mRNA, mRNA stability, and translational efficiency, which can modulate protein production. However, the contribution of these terminator regions to gene expression remains unclear, and therefore their utilization in metabolic engineering or synthetic genetic circuits has been limited. Here, we comprehensively evaluated the activity of 5302 terminator regions from a total of 5880 genes in the budding yeast Saccharomyces cerevisiae by inserting each terminator region downstream of the P TDH3 - green fluorescent protein (GFP) reporter gene and measuring the fluorescent intensity of GFP. Terminator region activities relative to that of the PGK1 standard terminator ranged from 0.036 to 2.52, with a mean of 0.87. We thus could isolate the most and least active terminator regions. The activities of the terminator regions showed a positive correlation with mRNA abundance, indicating that the terminator region is a determinant of mRNA abundance. The least active terminator regions tended to encode longer 3'-UTRs, suggesting the existence of active degradation mechanisms for those mRNAs. The terminator regions of ribosomal protein genes tended to be the most active, suggesting the existence of a common regulator of those genes. The ″terminatome″ (the genome-wide set of terminator regions) thus not only provides valuable information to understand the modulatory roles of terminator regions on gene expression but also serves as a useful toolbox for the development of metabolically and genetically engineered yeast.
Collapse
Affiliation(s)
| | | | - Reiko Kintaka
- Research Core for Interdisciplinary
Sciences, Okayama University, 3-1-1 Tsushima-Naka,
Kita-ku, Okayama, 700-8530, Japan
| | | | | | | | - Hisao Moriya
- Research Core for Interdisciplinary
Sciences, Okayama University, 3-1-1 Tsushima-Naka,
Kita-ku, Okayama, 700-8530, Japan
| | | |
Collapse
|
39
|
Martyanov V, Gross RH. Computational discovery of transcriptional regulatory modules in fungal ribosome biogenesis genes reveals novel sequence and function patterns. PLoS One 2013; 8:e59851. [PMID: 23555806 PMCID: PMC3612091 DOI: 10.1371/journal.pone.0059851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/20/2013] [Indexed: 11/24/2022] Open
Abstract
Genes involved in ribosome biogenesis and assembly (RBA) are responsible for ribosome formation. In Saccharomyces cerevisiae, their transcription is regulated by two dissimilar DNA motifs. We were interested in analyzing conservation and divergence of RBA transcription regulation machinery throughout fungal evolution. We have identified orthologs of S. cerevisiae RBA genes in 39 species across fungal phylogeny and searched upstream regions of these gene sets for DNA sequences significantly similar to S. cerevisiae RBA regulatory motifs. In addition to confirming known motif arrangements comprising two different motifs in a set of S. cerevisiae close relatives or two instances of the same motif (that we refer to as modules), we have also discovered novel modules in a group of fungi closely related to Neurospora crassa. Despite a single nucleotide difference between consensus sequences of RBA motifs, modules associated with S, cerevisiae group and N. crassa group displayed consistently different characteristics with respect to preferred module organization and several other module properties. For a given species, we have found a correlation between the configuration of the RBA module and significant enrichment in a set of specific Gene Ontology biological processes. We have identified several likely new candidates for a role in ribosome biogenesis in S. cerevisiae based on the combined evidence of RBA module presence in the upstream regions, functional annotation information and microarray expression profiles. We believe that this approach will be useful in terms of generating hypotheses about functional roles of genes for which only fragmentary data from a single source are available.
Collapse
Affiliation(s)
- Viktor Martyanov
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Robert H. Gross
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
40
|
Arnone JT, Robbins-Pianka A, Arace JR, Kass-Gergi S, McAlear MA. The adjacent positioning of co-regulated gene pairs is widely conserved across eukaryotes. BMC Genomics 2012; 13:546. [PMID: 23051624 PMCID: PMC3500266 DOI: 10.1186/1471-2164-13-546] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 10/03/2012] [Indexed: 11/16/2022] Open
Abstract
Background Coordinated cell growth and development requires that cells regulate the expression of large sets of genes in an appropriate manner, and one of the most complex and metabolically demanding pathways that cells must manage is that of ribosome biogenesis. Ribosome biosynthesis depends upon the activity of hundreds of gene products, and it is subject to extensive regulation in response to changing cellular conditions. We previously described an unusual property of the genes that are involved in ribosome biogenesis in yeast; a significant fraction of the genes exist on the chromosomes as immediately adjacent gene pairs. The incidence of gene pairing can be as high as 24% in some species, and the gene pairs are found in all of the possible tandem, divergent, and convergent orientations. Results We investigated co-regulated gene sets in S. cerevisiae beyond those related to ribosome biogenesis, and found that a number of these regulons, including those involved in DNA metabolism, heat shock, and the response to cellular stressors were also significantly enriched for adjacent gene pairs. We found that as a whole, adjacent gene pairs were more tightly co-regulated than unpaired genes, and that the specific gene pairing relationships that were most widely conserved across divergent fungal lineages were correlated with those genes that exhibited the highest levels of transcription. Finally, we investigated the gene positions of ribosome related genes across a widely divergent set of eukaryotes, and found a significant level of adjacent gene pairing well beyond yeast species. Conclusion While it has long been understood that there are connections between genomic organization and transcriptional regulation, this study reveals that the strategy of organizing genes from related, co-regulated pathways into pairs of immediately adjacent genes is widespread, evolutionarily conserved, and functionally significant.
Collapse
Affiliation(s)
- James T Arnone
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | | | | | | | | |
Collapse
|
41
|
Talkish J, Zhang J, Jakovljevic J, Horsey EW, Woolford JL. Hierarchical recruitment into nascent ribosomes of assembly factors required for 27SB pre-rRNA processing in Saccharomyces cerevisiae. Nucleic Acids Res 2012; 40:8646-61. [PMID: 22735702 PMCID: PMC3458554 DOI: 10.1093/nar/gks609] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To better define the roles of assembly factors required for eukaryotic ribosome biogenesis, we have focused on one specific step in maturation of yeast 60 S ribosomal subunits: processing of 27SB pre-ribosomal RNA. At least 14 assembly factors, the 'B-factor' proteins, are required for this step. These include most of the major functional classes of assembly factors: RNA-binding proteins, scaffolding protein, DEAD-box ATPases and GTPases. We have investigated the mechanisms by which these factors associate with assembling ribosomes. Our data establish a recruitment model in which assembly of the B-factors into nascent ribosomes ultimately leads to the recruitment of the GTPase Nog2. A more detailed analysis suggests that this occurs in a hierarchical manner via two largely independent recruiting pathways that converge on Nog2. Understanding recruitment has allowed us to better determine the order of association of all assembly factors functioning in one step of ribosome assembly. Furthermore, we have identified a novel subcomplex composed of the B-factors Nop2 and Nip7. Finally, we identified a means by which this step in ribosome biogenesis is regulated in concert with cell growth via the TOR protein kinase pathway. Inhibition of TOR kinase decreases association of Rpf2, Spb4, Nog1 and Nog2 with pre-ribosomes.
Collapse
Affiliation(s)
- Jason Talkish
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
42
|
Young BD, Weiss DI, Zurita-Lopez CI, Webb KJ, Clarke SG, McBride AE. Identification of methylated proteins in the yeast small ribosomal subunit: a role for SPOUT methyltransferases in protein arginine methylation. Biochemistry 2012; 51:5091-104. [PMID: 22650761 DOI: 10.1021/bi300186g] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have characterized the posttranslational methylation of Rps2, Rps3, and Rps27a, three small ribosomal subunit proteins in the yeast Saccharomyces cerevisiae, using mass spectrometry and amino acid analysis. We found that Rps2 is substoichiometrically modified at arginine-10 by the Rmt1 methyltransferase. We demonstrated that Rps3 is stoichiometrically modified by ω-monomethylation at arginine-146 by mass spectrometric and site-directed mutagenic analyses. Substitution of alanine for arginine at position 146 is associated with slow cell growth, suggesting that the amino acid identity at this site may influence ribosomal function and/or biogenesis. Analysis of the three-dimensional structure of Rps3 in S. cerevisiae shows that arginine-146 makes contacts with the small subunit rRNA. Screening of deletion mutants encoding potential yeast methyltransferases revealed that the loss of the YOR021C gene results in the absence of methylation of Rps3. We demonstrated that recombinant Yor021c catalyzes ω-monomethylarginine formation when incubated with S-adenosylmethionine and hypomethylated ribosomes prepared from a YOR021C deletion strain. Interestingly, Yor021c belongs to the family of SPOUT methyltransferases that, to date, have only been shown to modify RNA substrates. Our findings suggest a wider role for SPOUT methyltransferases in nature. Finally, we have demonstrated the presence of a stoichiometrically methylated cysteine residue at position 39 of Rps27a in a zinc-cysteine cluster. The discovery of these three novel sites of protein modification within the small ribosomal subunit will now allow for an analysis of their functional roles in translation and possibly other cellular processes.
Collapse
Affiliation(s)
- Brian D Young
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
43
|
Identification and functional characterization of Rca1, a transcription factor involved in both antifungal susceptibility and host response in Candida albicans. EUKARYOTIC CELL 2012; 11:916-31. [PMID: 22581526 DOI: 10.1128/ec.00134-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The identification of novel transcription factors associated with antifungal response may allow the discovery of fungus-specific targets for new therapeutic strategies. A collection of 241 Candida albicans transcriptional regulator mutants was screened for altered susceptibility to fluconazole, caspofungin, amphotericin B, and 5-fluorocytosine. Thirteen of these mutants not yet identified in terms of their role in antifungal response were further investigated, and the function of one of them, a mutant of orf19.6102 (RCA1), was characterized by transcriptome analysis. Strand-specific RNA sequencing and phenotypic tests assigned Rca1 as the regulator of hyphal formation through the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway and the transcription factor Efg1, but also probably through its interaction with a transcriptional repressor, most likely Tup1. The mechanisms responsible for the high level of resistance to caspofungin and fluconazole observed resulting from RCA1 deletion were investigated. From our observations, we propose that caspofungin resistance was the consequence of the deregulation of cell wall gene expression and that fluconazole resistance was linked to the modulation of the cAMP/PKA signaling pathway activity. In conclusion, our large-scale screening of a C. albicans transcription factor mutant collection allowed the identification of new effectors of the response to antifungals. The functional characterization of Rca1 assigned this transcription factor and its downstream targets as promising candidates for the development of new therapeutic strategies, as Rca1 influences host sensing, hyphal development, and antifungal response.
Collapse
|
44
|
Wlodarski T, Kutner J, Towpik J, Knizewski L, Rychlewski L, Kudlicki A, Rowicka M, Dziembowski A, Ginalski K. Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome. PLoS One 2011; 6:e23168. [PMID: 21858014 PMCID: PMC3153492 DOI: 10.1371/journal.pone.0023168] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 07/13/2011] [Indexed: 01/06/2023] Open
Abstract
Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity). Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity.
Collapse
Affiliation(s)
- Tomasz Wlodarski
- Laboratory of Bioinformatics and Systems Biology, Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Jan Kutner
- Laboratory of Bioinformatics and Systems Biology, Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Joanna Towpik
- Laboratory of Bioinformatics and Systems Biology, Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Lukasz Knizewski
- Laboratory of Bioinformatics and Systems Biology, Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | | | - Andrzej Kudlicki
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maga Rowicka
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
45
|
Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L. EMBO J 2011; 30:3052-64. [PMID: 21730963 PMCID: PMC3160192 DOI: 10.1038/emboj.2011.221] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 06/08/2011] [Indexed: 01/22/2023] Open
Abstract
TORC1 is a conserved multisubunit kinase complex that regulates many aspects of eukaryotic growth including the biosynthesis of ribosomes. The TOR protein kinase resident in TORC1 is responsive to environmental cues and is potently inhibited by the natural product rapamycin. Recent characterization of the rapamycin-sensitive phosphoproteome in yeast has yielded insights into how TORC1 regulates growth. Here, we show that Sch9, an AGC family kinase and direct substrate of TORC1, promotes ribosome biogenesis (Ribi) and ribosomal protein (RP) gene expression via direct inhibitory phosphorylation of the transcriptional repressors Stb3, Dot6 and Tod6. Deletion of STB3, DOT6 and TOD6 partially bypasses the growth and cell size defects of an sch9 strain and reveals interdependent regulation of both Ribi and RP gene expression, and other aspects of Ribi. Dephosphorylation of Stb3, Dot6 and Tod6 enables recruitment of the RPD3L histone deacetylase complex to repress Ribi/RP gene promoters. Taken together with previous studies, these results suggest that Sch9 is a master regulator of ribosome biogenesis through the control of Ribi, RP, ribosomal RNA and tRNA gene transcription.
Collapse
|
46
|
Adjacent gene pairing plays a role in the coordinated expression of ribosome biogenesis genes MPP10 and YJR003C in Saccharomyces cerevisiae. EUKARYOTIC CELL 2010; 10:43-53. [PMID: 21115740 DOI: 10.1128/ec.00257-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rRNA and ribosome biogenesis (RRB) regulon from Saccharomyces cerevisiae contains some 200 genes, the expression of which is tightly regulated under changing cellular conditions. RRB gene promoters are enriched for the RRPE and PAC consensus motifs, and a significant fraction of RRB genes are found as adjacent gene pairs. A genetic analysis of the MPP10 promoter revealed that both the RRPE and PAC motifs are important for coordinated expression of MPP10 following heat shock, osmotic stress, and glucose replenishment. The association of the RRPE binding factor Stb3 with the MPP10 promoter was found to increase after glucose replenishment and to decrease following heat shock. Similarly, bulk histone H3 clearing and histone H4K12 acetylation levels at the MPP10 promoter were found to increase or decrease following glucose replenishment or heat shock, respectively. Interestingly, substitutions in the PAC and RRPE sequences at the MPP10 promoter were also found to impact the regulated expression of the adjacent RRB gene YJR003, whose promoter lies in the opposite orientation and some 3.8 kb away. Furthermore, the regulated expression of YJR003C could be disrupted by inserting a reporter cassette that increased its distance from MPP10. Given that a high incidence of gene pairing was also found within the ribosomal protein (RP) and RRB regulons across different yeast species, our results indicate that immediately adjacent positioning of genes can be functionally significant for their coregulated expression.
Collapse
|
47
|
Wild T, Horvath P, Wyler E, Widmann B, Badertscher L, Zemp I, Kozak K, Csucs G, Lund E, Kutay U. A protein inventory of human ribosome biogenesis reveals an essential function of exportin 5 in 60S subunit export. PLoS Biol 2010; 8:e1000522. [PMID: 21048991 PMCID: PMC2964341 DOI: 10.1371/journal.pbio.1000522] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 09/03/2010] [Indexed: 12/20/2022] Open
Abstract
The assembly of ribosomal subunits in eukaryotes is a complex, multistep process so far mostly studied in yeast. In S. cerevisiae, more than 200 factors including ribosomal proteins and trans-acting factors are required for the ordered assembly of 40S and 60S ribosomal subunits. To date, only few human homologs of these yeast ribosome synthesis factors have been characterized. Here, we used a systematic RNA interference (RNAi) approach to analyze the contribution of 464 candidate factors to ribosomal subunit biogenesis in human cells. The screen was based on visual readouts, using inducible, fluorescent ribosomal proteins as reporters. By performing computer-based image analysis utilizing supervised machine-learning techniques, we obtained evidence for a functional link of 153 human proteins to ribosome synthesis. Our data show that core features of ribosome assembly are conserved from yeast to human, but differences exist for instance with respect to 60S subunit export. Unexpectedly, our RNAi screen uncovered a requirement for the export receptor Exportin 5 (Exp5) in nuclear export of 60S subunits in human cells. We show that Exp5, like the known 60S exportin Crm1, binds to pre-60S particles in a RanGTP-dependent manner. Interference with either Exp5 or Crm1 function blocks 60S export in both human cells and frog oocytes, whereas 40S export is compromised only upon inhibition of Crm1. Thus, 60S subunit export is dependent on at least two RanGTP-binding exportins in vertebrate cells.
Collapse
Affiliation(s)
- Thomas Wild
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Molecular Life Science Ph.D. Program, Zurich, Switzerland
| | - Peter Horvath
- Light Microscopy Center, RISC, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Emanuel Wyler
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Molecular Life Science Ph.D. Program, Zurich, Switzerland
| | - Barbara Widmann
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Molecular Life Science Ph.D. Program, Zurich, Switzerland
| | - Lukas Badertscher
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Molecular Life Science Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Karol Kozak
- Light Microscopy Center, RISC, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Gabor Csucs
- Light Microscopy Center, RISC, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Elsebet Lund
- University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ulrike Kutay
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
48
|
BUD22 affects Ty1 retrotransposition and ribosome biogenesis in Saccharomyces cerevisiae. Genetics 2010; 185:1193-205. [PMID: 20498295 DOI: 10.1534/genetics.110.119115] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A variety of cellular factors affect the movement of the retrovirus-like transposon Ty1. To identify genes involved in Ty1 virus-like particle (VLP) function, the level of the major capsid protein (Gag-p45) and its proteolytic precursor (Gag-p49p) was monitored in a subset of Ty1 cofactor mutants. Twenty-nine of 87 mutants contained alterations in the level of Gag; however, only bud22Delta showed a striking defect in Gag processing. BUD22 affected the +1 translational frameshifting event required to express the Pol proteins protease, integrase, and reverse transcriptase. Therefore, it is possible that the bud22Delta mutant may not produce enough functional Ty1 protease to completely process Gag-p49 to p45. Furthermore, BUD22 is required for 18S rRNA processing and 40S subunit biogenesis and influences polysome density. Together our results suggest that BUD22 is involved in a step in ribosome biogenesis that not only affects general translation, but also may alter the frameshifting efficiency of ribosomes, an event central to Ty1 retrotransposition.
Collapse
|
49
|
Evolutionarily conserved function of RRP36 in early cleavages of the pre-rRNA and production of the 40S ribosomal subunit. Mol Cell Biol 2009; 30:1130-44. [PMID: 20038530 DOI: 10.1128/mcb.00999-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosome biogenesis in eukaryotes is a major cellular activity mobilizing the products of over 200 transcriptionally coregulated genes referred to as the rRNA and ribosome biosynthesis regulon. We investigated the function of an essential, uncharacterized gene of this regulon, renamed RRP36. We show that the Rrp36p protein is nucleolar and interacts with 90S and pre-40S preribosomal particles. Its depletion affects early cleavages of the 35S pre-rRNA and results in a rapid decrease in mature 18S rRNA levels. Rrp36p is a novel component of the 90S preribosome, the assembly of which has been suggested to result from the stepwise incorporation of several modules, including the tUTP/UTP-A, PWP2/UTP-B, and UTP-C subcomplexes. We show that Rrp36p depletion does not impair the incorporation of these subcomplexes and the U3 small nucleolar RNP into preribosomes. In contrast, depletion of components of the UTP-A or UTP-B modules, but not Rrp5p, prevents Rrp36p recruitment and reduces its accumulation levels. In parallel, we studied the human orthologue of Rrp36p in HeLa cells, and we show that the function of this protein in early cleavages of the pre-rRNA has been conserved through evolution in eukaryotes.
Collapse
|
50
|
Protein kinase A and TORC1 activate genes for ribosomal biogenesis by inactivating repressors encoded by Dot6 and its homolog Tod6. Proc Natl Acad Sci U S A 2009; 106:19928-33. [PMID: 19901341 DOI: 10.1073/pnas.0907027106] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genes required for ribosome biogenesis in yeast, referred to collectively as the Ribi regulon, are tightly regulated in coordination with nutrient availability and cellular growth rate. The promoters of a significant fraction of Ribi genes contain one or more copies of the RNA polymerases A and C (PAC) and/or ribosomal RNA-processing element (RRPE) motifs. Prompted by recent studies showing that the yeast protein Dot6 and its homolog Tod6 can bind to a PAC motif sequence in vitro and are required for efficient Ribi gene repression in response to heat shock, we have examined the role of Dot6 and Tod6 in nutrient control of Ribi gene expression in vivo. Our results indicate that PAC sites function as Dot6/Tod6-dependent repressor elements in vivo. Moreover, Dot6 and Tod6 mediate different nutrient signals, with Tod6 responsible for efficient repression of Ribi genes after inhibition of the nitrogen-sensitive TORC1 pathway and Dot6 responsible for repression after inhibition of the carbon-sensitive protein kinase A signaling pathway. Consistently, Dot6 and Tod6 are required for efficient repression of Ribi gene repression immediately after nutrient deprivation and for successful adaptation to nutrient limitation. Thus, these results establish Dot6/Tod6 as a direct link between nutrient availability, Ribi gene regulation, and growth control.
Collapse
|