1
|
Alam NB, Pelzang S, Jain A, Mustafiz A. Cytoprotective role of pyruvate in mitigating abiotic stress response in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112325. [PMID: 39608574 DOI: 10.1016/j.plantsci.2024.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Pyruvate is a central metabolite in cellular respiration and metabolism. It can neutralize reactive oxygen species (ROS), safeguard mitochondrial membrane potential, and regulate gene expression under oxidative stress. However, its role in abiotic stress tolerance in plants needs to be explored. Therefore, the current study investigated the role of pyruvate and its metabolism in response to different abiotic stresses in the model plant Arabidopsis thaliana. We retrieved transcript profiling data for pyruvate metabolism and transportation genes (D-LDH, AlaAT, PK, MPC, PDC, PDH, NAD-ME) from public databases. The study's findings indicate that these genes' expression is regulated in response to different abiotic stresses. Moreover, the promoter region of these genes contained multiple cis-acting elements like ABRE, ARE, P-box, and MBS, which are associated with plants' abiotic stress response. Furthermore, colorimetric analysis showed higher pyruvate content under different abiotic stresses. Therefore, exogenous pyruvate treatment was given before and after different abiotic stresses, which could combat the toxicity of pro-oxidant molecules by pyruvate intake. The semiquantitative RT-PCR analysis revealed that exogenous pyruvate treatment enhances the expression of important transcription factors WRKY2, GH3.3, DREB2A, and bZIP1, and stress-responsive genes e.g., APX1, ERD5, ADC2, and HSP70 in addition to abiotic stresses. Moreover, Arabidopsis plants pre-treated with pyruvate before oxidative stress showed less RBOHD expression. Additionally, pyruvate's cytoprotective role was compared to other well-known antioxidants such as NAC, Trolox, and GSH. Finally, untargeted GC-MS/MS analysis of abiotic stress-treated Arabidopsis plants showed a higher metabolite level of β-hydroxy-pyruvic acid, indicating the crucial role of pyruvate during abiotic stress.
Collapse
Affiliation(s)
- Nazmir Binta Alam
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| | - Sangay Pelzang
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| | - Arushi Jain
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India.
| |
Collapse
|
2
|
Zhang J, Li B, Zuo B, Li X. Potential Strategies Applied by Metschnikowia bicuspidata to Survive the Immunity of Its Crustacean Hosts. Pathogens 2025; 14:95. [PMID: 39861056 PMCID: PMC11768211 DOI: 10.3390/pathogens14010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Metschnikowia bicuspidata is the specific pathogen for "milky disease" in the Chinese mitten crab (Eriocheir sinensis), accounting for huge losses to the industry. And yet, there is no precise study describing the pathogenesis of M. bicuspidata, largely hindering the development of novel control methods against its causing diseases. Here, we compared the transcriptomes of M. bicuspidata cells collected from a control group (cultured without E. sinensis hemocytes) and a treatment group (cultured with E. sinensis hemocytes), using RNA sequencing. Through comprehensively analyzing the differentially expressed genes (DEGs), both the most regulated ones and the ones involved in crucial enriched KEGG pathways, we found that certain processes might be required for M. bicuspidata's survival under hemocyte stress. Key genes involved in oxidative phosphorylation, fatty acid metabolism, upper glycolysis, and gluconeogenesis were upregulated, and those for β-glucan unmasking, autophagy, and cell polarity were downregulated, in the treatment group. Our results suggest that M. bicuspidata colonizes and therefore establishes an infection in E. sinensis via enhancing aerobic respiration, glucose-6-phosphate accumulation, and cell-wall masking. In addition, we applied multiple means to evaluate a series of candidate reference genes and found that PMA1 in combination with ACT1 is the most suitable choice for accurate normalization in quantitative real-time PCR (qRT-PCR) assays. Thus, we used this combination as the reference and performed qRT-PCR verification of several DEGs. It is shown that the expression trends of these tested DEGs in qRT-PCR assays are the same as those in RNA-Seq assays. This study not only provides insights into strategies facilitating M. bicuspidata's survival within E. sinensis, initially elucidating the pathogenesis of this yeast, but also recommends a useful molecular tool regarding qRT-PCR assays in this pathogen.
Collapse
Affiliation(s)
- Ji Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (J.Z.); (B.Z.)
| | - Bingyu Li
- College of Aquaculture and Life Sciences, Dalian Ocean University, Dalian 116023, China
| | - Bingnan Zuo
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (J.Z.); (B.Z.)
| | - Xiaodong Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (J.Z.); (B.Z.)
| |
Collapse
|
3
|
Abbiati F, Orlandi I, Pagliari S, Campone L, Vai M. Glucosinolates from Seed-Press Cake of Camelina sativa (L.) Crantz Extend Yeast Chronological Lifespan by Modulating Carbon Metabolism and Respiration. Antioxidants (Basel) 2025; 14:80. [PMID: 39857414 PMCID: PMC11759863 DOI: 10.3390/antiox14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Glucosinolates (GSLs) are nitrogen/sulfur-containing glycosides widely present in the order of Brassicales, particularly in the Brassicaceae family. Camelina (Camelina sativa (L.) Crantz) is an oilseed plant belonging to this family. Its seeds, in addition to a distinctive fatty acid composition, contain three aliphatic GSLs: glucoarabin, glucocamelinin, and homoglucocamelinin. Our study explored the impact of these GSLs purified from Camelina press cake, a by-product of Camelina oil production, on yeast chronological aging, which is the established model for simulating the aging of post-mitotic quiescent mammalian cells. Supplementing yeast cells with GSLs extends the chronological lifespan (CLS) in a dose-dependent manner. This enhancement relies on an improved mitochondrial respiration efficiency, resulting in a drastic decrease of superoxide anion levels and an increase in ATP production. Furthermore, GSL supplementation affects carbon metabolism. In particular, GSLs support the pro-longevity preservation of TCA cycle enzymatic activities and enhanced glycerol catabolism. These changes contribute positively to the phosphorylating respiration and to an increase in trehalose storage: both of which are longevity-promoting prerequisites.
Collapse
Affiliation(s)
- Francesco Abbiati
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (I.O.); (S.P.); (L.C.)
| | - Ivan Orlandi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (I.O.); (S.P.); (L.C.)
- SYSBIO Centre of Systems Biology, 20126 Milano, Italy
| | - Stefania Pagliari
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (I.O.); (S.P.); (L.C.)
| | - Luca Campone
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (I.O.); (S.P.); (L.C.)
| | - Marina Vai
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (I.O.); (S.P.); (L.C.)
- SYSBIO Centre of Systems Biology, 20126 Milano, Italy
| |
Collapse
|
4
|
Jiang L, Chen Y, Zhao T, Li P, Liao L, Liu Y. Analysis of differential metabolites in Liuyang douchi at different fermentation stages based on untargeted metabolomics approach. Food Chem X 2025; 25:102097. [PMID: 39844959 PMCID: PMC11751413 DOI: 10.1016/j.fochx.2024.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/24/2025] Open
Abstract
The quality and flavor of Liuyang Douchi are usually closely related to the metabolites compostion. This work described the metabolic profiles of Liuyang douchi during fermentation. Obvious hydrolysis of carbohydrates, proteins and slight lipids degradation were observed. Notably, the qu-making and pile-fermentation stage of douchi could be easily distinguished according to their metabolites profile, and pile-fermentation stage showed the most abundant metabolites. Specifically, organic acid, such as succinic acid and lactic acid, accumulated during pile-fermentation, as well as amino acids and derivatives. Especially glutamate (Glu), which contributed to the umami taste, increased form 0.82 mg/g to 15.90 mg/g after fermentation. Meanwhile, metabolisms related to amino acids were also the main enrichment metabolic pathways. Among them, some flavor compunds such as phenylacetaldehyde might drived from phenylalanine metabolism. These results could provide a new understanding on the metabolic characteristics during Liuyang douchi fermentation.
Collapse
Affiliation(s)
- Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Changsha Innovation Institute for Food, Changsha 410128, China
| | - Yi Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Changsha Innovation Institute for Food, Changsha 410128, China
| | - Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Pao Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Changsha Innovation Institute for Food, Changsha 410128, China
| | - Luyan Liao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Changsha Innovation Institute for Food, Changsha 410128, China
| | - Yang Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Kwon YY, Lee HJ, Lee MJ, Lee YS, Lee CK. The ICL1 and MLS1 Genes, Integral to the Glyoxylate Cycle, are Essential and Specific for Caloric Restriction-Mediated Extension of Lifespan in Budding Yeast. Adv Biol (Weinh) 2024; 8:e2400083. [PMID: 38717792 DOI: 10.1002/adbi.202400083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/19/2024] [Indexed: 10/26/2024]
Abstract
The regulation of complex energy metabolism is intricately linked to cellular energy demands. Caloric restriction (CR) plays a pivotal role in modulating the expression of genes associated with key metabolic pathways, including glycolysis, the tricarboxylic acid (TCA) cycle, and the glyoxylate cycle. In this study, the chronological lifespan (CLS) of 35 viable single-gene deletion mutants under both non-restricted and CR conditions, focusing on genes related to these metabolic pathways is evaluated. CR is found to increase CLS predominantly in mutants associated with the glycolysis and TCA cycle. However, this beneficial effect of CR is not observed in mutants of the glyoxylate cycle, particularly those lacking genes for critical enzymes like isocitrate lyase 1 (icl1Δ) and malate synthase 1 (mls1Δ). This analysis revealed an increase in isocitrate lyase activity, a key enzyme of the glyoxylate cycle, under CR, unlike the activity of isocitrate dehydrogenase, which remains unchanged and is specific to the TCA cycle. Interestingly, rapamycin, a compound known for extending lifespan, does not increase the activity of the glyoxylate cycle enzyme. This suggests that CR affects lifespan through a distinct metabolic mechanism.
Collapse
Affiliation(s)
- Young-Yon Kwon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Han-Jun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Myung-Jin Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Cheol-Koo Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
6
|
Hemedan AA, Schneider R, Ostaszewski M. Applications of Boolean modeling to study the dynamics of a complex disease and therapeutics responses. FRONTIERS IN BIOINFORMATICS 2023; 3:1189723. [PMID: 37325771 PMCID: PMC10267406 DOI: 10.3389/fbinf.2023.1189723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Computational modeling has emerged as a critical tool in investigating the complex molecular processes involved in biological systems and diseases. In this study, we apply Boolean modeling to uncover the molecular mechanisms underlying Parkinson's disease (PD), one of the most prevalent neurodegenerative disorders. Our approach is based on the PD-map, a comprehensive molecular interaction diagram that captures the key mechanisms involved in the initiation and progression of PD. Using Boolean modeling, we aim to gain a deeper understanding of the disease dynamics, identify potential drug targets, and simulate the response to treatments. Our analysis demonstrates the effectiveness of this approach in uncovering the intricacies of PD. Our results confirm existing knowledge about the disease and provide valuable insights into the underlying mechanisms, ultimately suggesting potential targets for therapeutic intervention. Moreover, our approach allows us to parametrize the models based on omics data for further disease stratification. Our study highlights the value of computational modeling in advancing our understanding of complex biological systems and diseases, emphasizing the importance of continued research in this field. Furthermore, our findings have potential implications for the development of novel therapies for PD, which is a pressing public health concern. Overall, this study represents a significant step forward in the application of computational modeling to the investigation of neurodegenerative diseases, and underscores the power of interdisciplinary approaches in tackling challenging biomedical problems.
Collapse
|
7
|
Xu S, Qiao W, Wang Z, Fu X, Liu Z, Shi S. Exploiting a heterologous construction of the 3-hydroxypropionic acid carbon fixation pathway with mesaconate as an indicator in Saccharomyces cerevisiae. BIORESOUR BIOPROCESS 2023; 10:33. [PMID: 38647598 PMCID: PMC10991142 DOI: 10.1186/s40643-023-00652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/14/2023] [Indexed: 04/25/2024] Open
Abstract
The 3-Hydroxypropionic acid (3-HP) pathway is one of the six known natural carbon fixation pathways, in which the carbon species used is bicarbonate. It has been considered to be the most suitable pathway for aerobic CO2 fixation among the six natural carbon fixation pathways. Mesaconate is a high value-added derivative in the 3-HP pathway and can be used as a co-monomer to produce fire-retardant materials and hydrogels. In this study, we use mesaconate as a reporting compound to evaluate the construction and optimization of the sub-part of the 3-HP pathway in Saccharomyces cerevisiae. Combined with fine-tuning of the malonyl-CoA reductase (MCR-C and MCR-N) expression level and optimization of 3-Hydroxypropionyl-CoA synthase, the 3-HP sub-pathway was optimized using glucose or ethanol as the substrate, with the productions of mesaconate reaching 90.78 and 61.2 mg/L, respectively.
Collapse
Affiliation(s)
- Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weibo Qiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zuanwen Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoying Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
8
|
Nishio K, Kawarasaki T, Sugiura Y, Matsumoto S, Konoshima A, Takano Y, Hayashi M, Okumura F, Kamura T, Mizushima T, Nakatsukasa K. Defective import of mitochondrial metabolic enzyme elicits ectopic metabolic stress. SCIENCE ADVANCES 2023; 9:eadf1956. [PMID: 37058555 PMCID: PMC10104474 DOI: 10.1126/sciadv.adf1956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Deficiencies in mitochondrial protein import are associated with a number of diseases. However, although nonimported mitochondrial proteins are at great risk of aggregation, it remains largely unclear how their accumulation causes cell dysfunction. Here, we show that nonimported citrate synthase is targeted for proteasomal degradation by the ubiquitin ligase SCFUcc1. Unexpectedly, our structural and genetic analyses revealed that nonimported citrate synthase appears to form an enzymatically active conformation in the cytosol. Its excess accumulation caused ectopic citrate synthesis, which, in turn, led to an imbalance in carbon flux of sugar, a reduction of the pool of amino acids and nucleotides, and a growth defect. Under these conditions, translation repression is induced and acts as a protective mechanism that mitigates the growth defect. We propose that the consequence of mitochondrial import failure is not limited to proteotoxic insults, but that the accumulation of a nonimported metabolic enzyme elicits ectopic metabolic stress.
Collapse
Affiliation(s)
- Kazuya Nishio
- Department of Life Science, Graduate School of Science, University of Hyogo, 2167 Shosha, Himeji 671-2280, Japan
| | - Tomoyuki Kawarasaki
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Yuki Sugiura
- Department of Biochemistry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Shunsuke Matsumoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ayano Konoshima
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Yuki Takano
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Mayuko Hayashi
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Fumihiko Okumura
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women’s University, Fukuoka 813-8582, Japan
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Tsunehiro Mizushima
- Department of Life Science, Graduate School of Science, University of Hyogo, 2167 Shosha, Himeji 671-2280, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kunio Nakatsukasa
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| |
Collapse
|
9
|
Bittner E, Stehlik T, Freitag J. Sharing the wealth: The versatility of proteins targeted to peroxisomes and other organelles. Front Cell Dev Biol 2022; 10:934331. [PMID: 36225313 PMCID: PMC9549241 DOI: 10.3389/fcell.2022.934331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are eukaryotic organelles with critical functions in cellular energy and lipid metabolism. Depending on the organism, cell type, and developmental stage, they are involved in numerous other metabolic and regulatory pathways. Many peroxisomal functions require factors also relevant to other cellular compartments. Here, we review proteins shared by peroxisomes and at least one different site within the cell. We discuss the mechanisms to achieve dual targeting, their regulation, and functional consequences. Characterization of dual targeting is fundamental to understand how peroxisomes are integrated into the metabolic and regulatory circuits of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
10
|
Abstract
Saccharomyces cerevisiae, whose evolutionary past includes a whole-genome duplication event, is characterized by a mosaic genome configuration with substantial apparent genetic redundancy. This apparent redundancy raises questions about the evolutionary driving force for genomic fixation of “minor” paralogs and complicates modular and combinatorial metabolic engineering strategies. While isoenzymes might be important in specific environments, they could be dispensable in controlled laboratory or industrial contexts. The present study explores the extent to which the genetic complexity of the central carbon metabolism (CCM) in S. cerevisiae, here defined as the combination of glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, and a limited number of related pathways and reactions, can be reduced by elimination of (iso)enzymes without major negative impacts on strain physiology. Cas9-mediated, groupwise deletion of 35 of the 111 genes yielded a “minimal CCM” strain which, despite the elimination of 32% of CCM-related proteins, showed only a minimal change in phenotype on glucose-containing synthetic medium in controlled bioreactor cultures relative to a congenic reference strain. Analysis under a wide range of other growth and stress conditions revealed remarkably few phenotypic changes from the reduction of genetic complexity. Still, a well-documented context-dependent role of GPD1 in osmotolerance was confirmed. The minimal CCM strain provides a model system for further research into genetic redundancy of yeast genes and a platform for strategies aimed at large-scale, combinatorial remodeling of yeast CCM.
Collapse
|
11
|
Bairwa NK, Shoket H, Pandita M, Sharma M. A Simple Assay for the Detection of Late-Stage Apoptosis Features in Saccharomyces cerevisiae. Curr Protoc 2022; 2:e525. [PMID: 36069669 DOI: 10.1002/cpz1.525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Unicellular eukaryotic organisms such as yeast and protozoa serve as useful models for studying the impact of chemicals on cell physiology, cellular growth, and genome duplication. The yeast Saccharomyces cerevisiae has been widely used to assess apoptosis induced by chemicals due to its genetic tractability, ease of evaluation, and readily available impact assessment tools. Apoptosis in S. cerevisiae is characterized by many features, including increased cell death, loss of membrane integrity, release of caspases, chromatin condensation, and nuclear fragmentation, which are similar to the ones observed in mammalian cells. Current methods of apoptosis assessment typically require specialized equipment and reagents, which limits wide adoption. Here, we describe a rapid, inexpensive, and easy-to-perform assay in yeast for the analysis of late-stage apoptotic features in cells treated with a chemical. We describe a protocol for assessing loss of cell survival and changes in the nucleus. We demonstrate the approach by using acetic acid and hydrogen peroxide as test chemicals. This assay for the study of late-stage apoptotic features in S. cerevisiae can be performed reliably and rapidly by any laboratory with basic equipment and may be extended for studying apoptosis in similar single-cell organisms after treatment with toxicological agents. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Culture of Saccharomyces cerevisiae, treatment with acetic acid or hydrogen peroxide, and semi-quantitative growth assay Basic Protocol 2: DAPI staining and fluorescence microscopy for the assessment of change in nucleus-to-cytoplasm ratio and nuclear integrity.
Collapse
Affiliation(s)
- Narendra K Bairwa
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Heena Shoket
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Monika Pandita
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Meenu Sharma
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| |
Collapse
|
12
|
Schrevens S, Durandau E, Tran VDT, Sanglard D. Using in vivo transcriptomics and RNA enrichment to identify genes involved in virulence of Candida glabrata. Virulence 2022; 13:1285-1303. [PMID: 35795910 PMCID: PMC9348041 DOI: 10.1080/21505594.2022.2095716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Candida species are the most commonly isolated opportunistic fungal pathogens in humans. Candida albicans causes most of the diagnosed infections, closely followed by Candida glabrata. C. albicans is well studied, and many genes have been shown to be important for infection and colonization of the host. It is however less clear how C. glabrata infects the host. With the help of fungal RNA enrichment, we here investigated for the first time the transcriptomic profile of C. glabrata during urinary tract infection (UTI) in mice. In the UTI model, bladders and kidneys are major target organs and therefore fungal transcriptomes were addressed in these organs. Our results showed that, next to adhesins and proteases, nitrogen metabolism and regulation play a vital role during C. glabrata UTI. Genes involved in nitrogen metabolism were upregulated and among them we show that DUR1,2 (urea amidolyase) and GAP1 (amino acid permease) were important for virulence. Furthermore, we confirmed the importance of the glyoxylate cycle in the host and identified MLS1 (malate synthase) as an important gene necessary for C. glabrata virulence. In conclusion, our study shows with the support of in vivo transcriptomics how C. glabrata adapts to host conditions.
Collapse
Affiliation(s)
- Sanne Schrevens
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - Eric Durandau
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - Van Du T Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| |
Collapse
|
13
|
Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast. Nat Commun 2021; 12:4975. [PMID: 34404791 PMCID: PMC8371099 DOI: 10.1038/s41467-021-25241-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
Plant cell wall hydrolysates contain not only sugars but also substantial amounts of acetate, a fermentation inhibitor that hinders bioconversion of lignocellulose. Despite the toxic and non-consumable nature of acetate during glucose metabolism, we demonstrate that acetate can be rapidly co-consumed with xylose by engineered Saccharomyces cerevisiae. The co-consumption leads to a metabolic re-configuration that boosts the synthesis of acetyl-CoA derived bioproducts, including triacetic acid lactone (TAL) and vitamin A, in engineered strains. Notably, by co-feeding xylose and acetate, an enginered strain produces 23.91 g/L TAL with a productivity of 0.29 g/L/h in bioreactor fermentation. This strain also completely converts a hemicellulose hydrolysate of switchgrass into 3.55 g/L TAL. These findings establish a versatile strategy that not only transforms an inhibitor into a valuable substrate but also expands the capacity of acetyl-CoA supply in S. cerevisiae for efficient bioconversion of cellulosic biomass. Cellulosic hydrolysates contain substantial amounts of acetate, which is toxic to fermenting microorganisms. Here, the authors engineer Baker’s yeast to co-consume xylose and acetate for triacetic acid lactone production from a hemicellulose hydrolysate of switchgrass.
Collapse
|
14
|
Xu Y, Li Z. Utilization of ethanol for itaconic acid biosynthesis by engineered Saccharomyces cerevisiae. FEMS Yeast Res 2021; 21:6329683. [PMID: 34320205 DOI: 10.1093/femsyr/foab043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/27/2021] [Indexed: 11/14/2022] Open
Abstract
In Saccharomyces cerevisiae, ethanol can serve as both a carbon source and NADH donor for the production of acetyl-CoA derivatives. Here we investigated the metabolic regulation of ethanol utilization for itaconic acid production by S. cerevisiae. To understand the interconnection between the TCA cycle and the glyoxylate pathway, mitochondrial membrane transporter proteins SFC1, YHM2, CTP1, DIC1, and MPC1 were knocked out and results showed that SFC1 functions as an important entrance of the glyoxylate pathway into the TCA cycle, and YHM2 is helpful to IA production but not the primary pathway for citric acid supply. To decrease the accumulation of acetic acid, the major ADP/ATP carrier of the mitochondrial inner membrane, AAC2, was upregulated and determined to accelerate ethanol utilization and itaconic acid production. RNA sequencing results showed that AAC2 overexpression enhanced IA titer by upregulating the ethanol-acetyl-CoA pathway and NADH oxidase in the mitochondrial membrane. RNA-seq analysis also suggested that aconitase ACO1 may be a rate-limiting step of IA production. However, the expression of exogenous aconitase didn't increase IA production but enhanced the rate of ethanol utilization and decreased cell growth.
Collapse
Affiliation(s)
- Yaying Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
15
|
Shoket H, Pandita M, Sharma M, Kumar R, Rakwal A, Wazir S, Verma V, Salunke DB, Bairwa NK. Genetic interaction between F-box motif encoding YDR131C and retrograde signaling-related RTG1 regulates the stress response and apoptosis in Saccharomyces cerevisiae. J Biochem Mol Toxicol 2021; 35:e22864. [PMID: 34309121 DOI: 10.1002/jbt.22864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
The retrograde signaling pathway is well conserved from yeast to humans, which regulates cell adaptation during stress conditions and prevents cell death. One of its components, RTG1 encoded Rtg1p in association with Rtg3p communicates between mitochondria, nucleus, and peroxisome during stress for adaptation, by regulation of transcription. The F-box motif protein encoded by YDR131C constitutes a part of SCF Ydr131c -E3 ligase complex, with unknown function; however, it is known that retrograde signaling is modulated by the E3 ligase complex. This study reports epistasis interaction between YDR131C and RTG1, which regulates cell growth, response to genotoxic stress, decreased apoptosis, resistance to petite mutation, and cell wall integrity. The cells of ydr131cΔrtg1Δ genetic background exhibits growth rate improvement however, sensitivity to hydroxyurea, itraconazole antifungal agent and synthetic indoloquinazoline-based alkaloid (8-fluorotryptanthrin, RK64), which disrupts the cell wall integrity in Saccharomyces cerevisiae. The epistatic interaction between YDR131C and RTG1 indicates a link between protein degradation and retrograde signaling pathways.
Collapse
Affiliation(s)
- Heena Shoket
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Monika Pandita
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Meenu Sharma
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Ravinder Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Ayushi Rakwal
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Shreya Wazir
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Vijeshwar Verma
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India.,National Interdisciplinary Centre of Vaccine, Immunotherapeutic and Antimicrobials, Panjab University, Chandigarh, India
| | - Narendra K Bairwa
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| |
Collapse
|
16
|
Pandita M, Shoket H, Rakewal A, Wazir S, Kumar P, Kumar R, Bairwa NK. Genetic interaction between glyoxylate pathway regulator UCC1 and La-motif-encoding SRO9 regulates stress response and growth rate improvement in Saccharomyces cerevisiae. J Biochem Mol Toxicol 2021; 35:e22781. [PMID: 33797855 DOI: 10.1002/jbt.22781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/12/2021] [Accepted: 03/22/2021] [Indexed: 11/11/2022]
Abstract
Nonavailability of glucose as a carbon source results in glyoxylate pathway activation, which metabolizes nonfermentable carbon for energy generation in Saccharomyces cerevisiae. Ucc1p of S. cerevisiae inhibits activation of the glyoxylate pathway by targeting Cit2p, a key glyoxylate enzyme for ubiquitin-mediated proteasomal degradation when glucose is available as a carbon source. Sro9p, a La-motif protein involved in RNA biogenesis, interacts physically with the messenger RNA of UCC1; however, its functional relevance is yet to be discovered. This study presents binary epistatic interaction between UCC1 and SRO9, with functional implication on the growth rate, response to genotoxic stress, resistance to apoptosis, and petite mutation. Cells with ucc1Δsro9Δ, as their genetic background, exhibit alteration in morphology, improvement in growth rate, resistance to apoptosis, and petite mutation. Moreover, the study indicates a cross-link between ubiquitin-proteasome system and RNA biogenesis and metabolism, with applications in industrial fermentation and screening for cancer therapeutics.
Collapse
Affiliation(s)
- Monika Pandita
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Heena Shoket
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Aayushi Rakewal
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Shreya Wazir
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Prabhat Kumar
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Rakesh Kumar
- Cancer Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Narendra K Bairwa
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| |
Collapse
|
17
|
Schummer A, Maier R, Gabay-Maskit S, Hansen T, Mühlhäuser WWD, Suppanz I, Fadel A, Schuldiner M, Girzalsky W, Oeljeklaus S, Zalckvar E, Erdmann R, Warscheid B. Pex14p Phosphorylation Modulates Import of Citrate Synthase 2 Into Peroxisomes in Saccharomyces cerevisiae. Front Cell Dev Biol 2020; 8:549451. [PMID: 33042991 PMCID: PMC7522779 DOI: 10.3389/fcell.2020.549451] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
The peroxisomal biogenesis factor Pex14p is an essential component of the peroxisomal matrix protein import machinery. Together with Pex13p and Pex17p, it is part of the membrane-associated peroxisomal docking complex in yeast, facilitating the binding of cargo-loaded receptor proteins for translocation of cargo proteins into the peroxisome. Furthermore, Pex14p is part of peroxisomal import pores. The central role of Pex14p in peroxisomal matrix protein import processes renders it an obvious target for regulatory mechanisms such as protein phosphorylation. To explore this possibility, we examined the state of Pex14p phosphorylation in Saccharomyces cerevisiae. Phos-tag-SDS-PAGE of Pex14p affinity-purified from solubilized membranes revealed Pex14p as multi-phosphorylated protein. Using mass spectrometry, we identified 16 phosphorylation sites, with phosphorylation hot spots located in the N- and C-terminal regions of Pex14p. Analysis of phosphomimicking and non-phosphorylatable variants of Pex14p revealed a decreased import of GFP carrying a peroxisomal targeting signal type 1, indicating a functional relevance of Pex14p phosphorylation in peroxisomal matrix protein import. We show that this effect can be ascribed to the phosphomimicking mutation at serine 266 of Pex14p (Pex14p-S266D). We further screened the subcellular distribution of 23 native GFP-tagged peroxisomal matrix proteins by high-content fluorescence microscopy. Only Cit2p, the peroxisomal isoform of citrate synthase, was affected in the Pex14p-S266D mutant, showing increased cytosolic localization. Cit2p is part of the glyoxylate cycle, which is required for the production of essential carbohydrates when yeast is grown on non-fermentable carbon sources. Pex14p-S266 phosphosite mutants showed reversed growth phenotypes in oleic acid and ethanol with acetyl-CoA formed in peroxisomes and the cytosol, respectively. Overexpression of Cit2p rescued the growth phenotype of yeast cells expressing Pex14p-S266D in oleic acid. Our data indicate that phosphorylation of Pex14p at S266 provides a mechanism for controlling the peroxisomal import of Cit2p, which helps S. cerevisiae cells to adjust their carbohydrate metabolism according to the nutritional conditions.
Collapse
Affiliation(s)
- Andreas Schummer
- Faculty of Biology, Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Renate Maier
- Faculty of Biology, Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Shiran Gabay-Maskit
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tobias Hansen
- Faculty of Medicine, System Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Wignand W D Mühlhäuser
- Faculty of Biology, Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Ida Suppanz
- Faculty of Biology, Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Amir Fadel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Wolfgang Girzalsky
- Faculty of Medicine, System Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Silke Oeljeklaus
- Faculty of Biology, Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ralf Erdmann
- Faculty of Medicine, System Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Bettina Warscheid
- Faculty of Biology, Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Gallo V, Srivastava V, Bulone V, Zappettini A, Villani M, Marmiroli N, Marmiroli M. Proteomic Analysis Identifies Markers of Exposure to Cadmium Sulphide Quantum Dots (CdS QDs). NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1214. [PMID: 32580447 PMCID: PMC7353101 DOI: 10.3390/nano10061214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
The use of cadmium sulphide quantum dot (CdS QD)-enabled products has become increasingly widespread. The prospect of their release in the environment is raising concerns. Here we have used the yeast model Saccharomyces cerevisiae to determine the potential impact of CdS QD nanoparticles on living organisms. Proteomic analyses and cell viability assays performed after 9 h exposure revealed expression of proteins involved in oxidative stress and reduced lethality, respectively, whereas oxidative stress declined, and lethality increased after 24 h incubation in the presence of CdS QDs. Quantitative proteomics using the iTRAQ approach (isobaric tags for relative and absolute quantitation) revealed that key proteins involved in essential biological pathways were differentially regulated over the time course of the experiment. At 9 h, most of the glycolytic functions increased, and the abundance of the number of heat shock proteins increased. This contrasts with the situation at 24 h where glycolytic functions, some heat shock proteins as well as oxidative phosphorylation and ATP synthesis were down-regulated. It can be concluded from our data that cell exposure to CdS QDs provokes a metabolic shift from respiration to fermentation, comparable to the situation reported in some cancer cell lines.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
| | - Vaibhav Srivastava
- Royal Institute of Technology (KTH), Department of Chemistry, Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, SE-106 91 Stockholm, Sweden; (V.S.); (V.B.)
| | - Vincent Bulone
- Royal Institute of Technology (KTH), Department of Chemistry, Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, SE-106 91 Stockholm, Sweden; (V.S.); (V.B.)
- ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Urbrae, SA 5064, Australia
| | - Andrea Zappettini
- Department of Nanomaterials, Institute of Materials for Electronics and Magnetism (IMEM)Department of Nanomaterials, National Research Council (CNR), 43124 Parma, Italy; (A.Z.); (M.V.)
| | - Marco Villani
- Department of Nanomaterials, Institute of Materials for Electronics and Magnetism (IMEM)Department of Nanomaterials, National Research Council (CNR), 43124 Parma, Italy; (A.Z.); (M.V.)
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
- The Italian National Interuniversity Consortium for Environmental Sciences (CINSA), 43124 Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
| |
Collapse
|
19
|
La A, Du H, Taidi B, Perré P. A predictive dynamic yeast model based on component, energy, and electron carrier balances. Biotechnol Bioeng 2020; 117:2728-2740. [PMID: 32458414 DOI: 10.1002/bit.27442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/18/2020] [Accepted: 05/26/2020] [Indexed: 11/10/2022]
Abstract
The present study describes a novel yeast model for the prediction of yeast fermentation. The proposed model considers the possible metabolic pathways of yeast. For each pathway, the time evolution of components, energy (ATP/ADP), and electron carriers (NAD+ /NADH) are expressed with limitation factors for all quantities consumed by each respective pathway. In this manner, the model can predict the partition of these pathways based on the growth conditions and their evolution over time. Several biological pathways and their stoichiometric coefficients are well known from literature. It is important to note that most of the kinetic parameters have no effect as the actual kinetics are controlled by the balance of limiting factors. The few remaining parameters were adjusted and compared with the literature when the data set was available. The model fits our experimental data from yeast fermentation on glucose in a nonaerated batch system. The predictive ability of the model and its capacity to represent the intensity of each pathway over time facilitate an improved understanding of the interactions between the pathways. The key role of energy (ATP) and electron carrier (NAD+ ) to trigger the different metabolic pathways during yeast growth is highlighted, whereas the involvement of mitochondrial respiration not being associated with the TCA cycle is also shown.
Collapse
Affiliation(s)
- Angéla La
- LGPM, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France.,LGPM, CentraleSupélec, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Pomacle, France
| | - Huan Du
- LGPM, CentraleSupélec, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Pomacle, France
| | - Behnam Taidi
- LGPM, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France.,LGPM, CentraleSupélec, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Pomacle, France
| | - Patrick Perré
- LGPM, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France.,LGPM, CentraleSupélec, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Pomacle, France
| |
Collapse
|
20
|
Toleco MR, Naake T, Zhang Y, Heazlewood JL, R. Fernie A. Plant Mitochondrial Carriers: Molecular Gatekeepers That Help to Regulate Plant Central Carbon Metabolism. PLANTS 2020; 9:plants9010117. [PMID: 31963509 PMCID: PMC7020223 DOI: 10.3390/plants9010117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
The evolution of membrane-bound organelles among eukaryotes led to a highly compartmentalized metabolism. As a compartment of the central carbon metabolism, mitochondria must be connected to the cytosol by molecular gates that facilitate a myriad of cellular processes. Members of the mitochondrial carrier family function to mediate the transport of metabolites across the impermeable inner mitochondrial membrane and, thus, are potentially crucial for metabolic control and regulation. Here, we focus on members of this family that might impact intracellular central plant carbon metabolism. We summarize and review what is currently known about these transporters from in vitro transport assays and in planta physiological functions, whenever available. From the biochemical and molecular data, we hypothesize how these relevant transporters might play a role in the shuttling of organic acids in the various flux modes of the TCA cycle. Furthermore, we also review relevant mitochondrial carriers that may be vital in mitochondrial oxidative phosphorylation. Lastly, we survey novel experimental approaches that could possibly extend and/or complement the widely accepted proteoliposome reconstitution approach.
Collapse
Affiliation(s)
- M. Rey Toleco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- School of BioSciences, the University of Melbourne, Victoria 3010, Australia;
| | - Thomas Naake
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|
21
|
Genetic Analysis of Peroxisomal Genes Required for Longevity in a Yeast Model of Citrin Deficiency. Diseases 2020; 8:diseases8010002. [PMID: 31936501 PMCID: PMC7151034 DOI: 10.3390/diseases8010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 12/02/2022] Open
Abstract
Citrin is a liver-specific mitochondrial aspartate–glutamate carrier encoded by SLC25A13. Citrin deficiency caused by SLC25A13 mutation results in carbohydrate toxicity, citrullinemia type II, and fatty liver diseases, the mechanisms of some of which remain unknown. Citrin shows a functional homolog in yeast aspartate-glutamate carrier (Agc1p) and agc1Δ yeasts are used as a model organism of citrin deficiency. Here, we found that agc1Δ yeasts decreased fat utilization, impaired NADH balance in peroxisomes, and decreased chronological lifespan. The activation of GPD1-mediated NAD+ regeneration in peroxisomes by GPD1 over-expression or activation of the malate–oxaloacetate NADH peroxisomal shuttle, by increasing flux in this NADH shuttle and over-expression of MDH3, resulted in lifespan extension of agc1Δ yeasts. In addition, over-expression of PEX34 restored longevity of agc1Δ yeasts as well as wild-type cells. The effect of PEX34-mediated longevity required the presence of the GPD1-mediated NADH peroxisomal shuttle, which was independent of the presence of the peroxisomal malate–oxaloacetate NADH shuttle and PEX34-induced peroxisome proliferation. These data confirm that impaired NAD+ regeneration in peroxisomes is a key defect in the yeast model of citrin deficiency, and enhancing peroxisome function or inducing NAD+ regeneration in peroxisomes is suggested for further study in patients’ hepatocytes.
Collapse
|
22
|
Xiberras J, Klein M, Nevoigt E. Glycerol as a substrate for Saccharomyces cerevisiae based bioprocesses - Knowledge gaps regarding the central carbon catabolism of this 'non-fermentable' carbon source. Biotechnol Adv 2019; 37:107378. [PMID: 30930107 DOI: 10.1016/j.biotechadv.2019.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Glycerol is an interesting alternative carbon source in industrial bioprocesses due to its higher degree of reduction per carbon atom compared to sugars. During the last few years, significant progress has been made in improving the well-known industrial platform organism Saccharomyces cerevisiae with regard to its glycerol utilization capability, particularly in synthetic medium. This provided a basis for future metabolic engineering focusing on the production of valuable chemicals from glycerol. However, profound knowledge about the central carbon catabolism in synthetic glycerol medium is a prerequisite for such incentives. As a matter of fact, the current assumptions about the actual in vivo fluxes active on glycerol as the sole carbon source have mainly been based on omics data collected in complex media or were even deduced from studies with other non-fermentable carbon sources, such as ethanol or acetate. A number of uncertainties have been identified which particularly regard the role of the glyoxylate cycle, the subcellular localization of the respective enzymes, the contributions of mitochondrial transporters and the active anaplerotic reactions under these conditions. The review scrutinizes the current knowledge, highlights the necessity to collect novel experimental data using cells growing in synthetic glycerol medium and summarizes the current state of the art with regard to the production of valuable fermentation products from a carbon source that has been considered so far as 'non-fermentable' for the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Joeline Xiberras
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
23
|
Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ YPL062W) in Metabolically Engineered Terpenoid-Producing Saccharomyces cerevisiae. Appl Environ Microbiol 2019; 85:AEM.01990-18. [PMID: 30683746 DOI: 10.1128/aem.01990-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/16/2019] [Indexed: 01/06/2023] Open
Abstract
Saccharomyces cerevisiae is an established cell factory for production of terpenoid pharmaceuticals and chemicals. Numerous studies have demonstrated that deletion or overexpression of off-pathway genes in yeast can improve terpenoid production. The deletion of YPL062W in S. cerevisiae, in particular, has benefitted carotenoid production by channeling carbon toward carotenoid precursors acetyl coenzyme A (acetyl-CoA) and mevalonate. The genetic function of YPL062W and the molecular mechanisms for these benefits are unknown. In this study, we systematically examined this gene deletion to uncover the gene function and its molecular mechanism. RNA sequencing (RNA-seq) analysis uncovered that YPL062W deletion upregulated the pyruvate dehydrogenase bypass, the mevalonate pathway, heterologous expression of galactose (GAL) promoter-regulated genes, energy metabolism, and membrane composition synthesis. Bioinformatics analysis and serial promoter deletion assay revealed that YPL062W functions as a core promoter for ALD6 and that the expression level of ALD6 is negatively correlated to terpenoid productivity. We demonstrate that ΔYPL062W increases the production of all major terpenoid classes (C10, C15, C20, C30, and C40). Our study not only elucidated the biological function of YPL062W but also provided a detailed methodology for understanding the mechanistic aspects of strain improvement.IMPORTANCE Although computational and reverse metabolic engineering approaches often lead to improved gene deletion mutants for cell factory engineering, the systems level effects of such gene deletions on the production phenotypes have not been extensively studied. Understanding the genetic and molecular function of such gene alterations on production strains will minimize the risk inherent in the development of large-scale fermentation processes, which is a daunting challenge in the field of industrial biotechnology. Therefore, we established a detailed experimental and systems biology approach to uncover the molecular mechanisms of YPL062W deletion in S. cerevisiae, which is shown to improve the production of all terpenoid classes. This study redefines the genetic function of YPL062W, demonstrates a strong correlation between YPL062W and terpenoid production, and provides a useful modification for the creation of terpenoid production platform strains. Further, this study underscores the benefits of detailed and systematic characterization of the metabolic effects of genetic alterations on engineered biosynthetic factories.
Collapse
|
24
|
Raja V, Salsaa M, Joshi AS, Li Y, van Roermund CWT, Saadat N, Lazcano P, Schmidtke M, Hüttemann M, Gupta SV, Wanders RJA, Greenberg ML. Cardiolipin-deficient cells depend on anaplerotic pathways to ameliorate defective TCA cycle function. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:654-661. [PMID: 30731133 DOI: 10.1016/j.bbalip.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/22/2018] [Accepted: 02/02/2019] [Indexed: 01/01/2023]
Abstract
Previous studies have shown that the cardiolipin (CL)-deficient yeast mutant, crd1Δ, has decreased levels of acetyl-CoA and decreased activities of the TCA cycle enzymes aconitase and succinate dehydrogenase. These biochemical phenotypes are expected to lead to defective TCA cycle function. In this study, we report that signaling and anaplerotic metabolic pathways that supplement defects in the TCA cycle are essential in crd1Δ mutant cells. The crd1Δ mutant is synthetically lethal with mutants in the TCA cycle, retrograde (RTG) pathway, glyoxylate cycle, and pyruvate carboxylase 1. Glutamate levels were decreased, and the mutant exhibited glutamate auxotrophy. Glyoxylate cycle genes were up-regulated, and the levels of glyoxylate metabolites succinate and citrate were increased in crd1Δ. Import of acetyl-CoA from the cytosol into mitochondria is essential in crd1Δ, as deletion of the carnitine-acetylcarnitine translocase led to lethality in the CL mutant. β-oxidation was functional in the mutant, and oleate supplementation rescued growth defects. These findings suggest that TCA cycle deficiency caused by the absence of CL necessitates activation of anaplerotic pathways to replenish acetyl-CoA and TCA cycle intermediates. Implications for Barth syndrome, a genetic disorder of CL metabolism, are discussed.
Collapse
Affiliation(s)
- Vaishnavi Raja
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Michael Salsaa
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Amit S Joshi
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Yiran Li
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, the Netherlands
| | - Nadia Saadat
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, United States of America
| | - Pablo Lazcano
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Michael Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Smiti V Gupta
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, United States of America
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, the Netherlands
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America.
| |
Collapse
|
25
|
Orlandi I, Stamerra G, Vai M. Altered Expression of Mitochondrial NAD + Carriers Influences Yeast Chronological Lifespan by Modulating Cytosolic and Mitochondrial Metabolism. Front Genet 2018; 9:676. [PMID: 30619489 PMCID: PMC6305841 DOI: 10.3389/fgene.2018.00676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) represents an essential cofactor in sustaining cellular bioenergetics and maintaining cellular fitness, and has emerged as a therapeutic target to counteract aging and age-related diseases. Besides NAD+ involvement in multiple redox reactions, it is also required as co-substrate for the activity of Sirtuins, a family of evolutionary conserved NAD+-dependent deacetylases that regulate both metabolism and aging. The founding member of this family is Sir2 of Saccharomyces cerevisiae, a well-established model system for studying aging of post-mitotic mammalian cells. In this context, it refers to chronological aging, in which the chronological lifespan (CLS) is measured. In this paper, we investigated the effects of changes in the cellular content of NAD+ on CLS by altering the expression of mitochondrial NAD+ carriers, namely Ndt1 and Ndt2. We found that the deletion or overexpression of these carriers alters the intracellular levels of NAD+ with opposite outcomes on CLS. In particular, lack of both carriers decreases NAD+ content and extends CLS, whereas NDT1 overexpression increases NAD+ content and reduces CLS. This correlates with opposite cytosolic and mitochondrial metabolic assets shown by the two types of mutants. In the former, an increase in the efficiency of oxidative phosphorylation is observed together with an enhancement of a pro-longevity anabolic metabolism toward gluconeogenesis and trehalose storage. On the contrary, NDT1 overexpression brings about on the one hand, a decrease in the respiratory efficiency generating harmful superoxide anions, and on the other, a decrease in gluconeogenesis and trehalose stores: all this is reflected into a time-dependent loss of mitochondrial functionality during chronological aging.
Collapse
Affiliation(s)
- Ivan Orlandi
- SYSBIO Centre for Systems Biology, Milan, Italy.,Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Giulia Stamerra
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Marina Vai
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
26
|
He Q, Yang Y, Yang S, Donohoe BS, Van Wychen S, Zhang M, Himmel ME, Knoshaug EP. Oleaginicity of the yeast strain Saccharomyces cerevisiae D5A. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:258. [PMID: 30258492 PMCID: PMC6151946 DOI: 10.1186/s13068-018-1256-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/10/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND The model yeast, Saccharomyces cerevisiae, is not known to be oleaginous. However, an industrial wild-type strain, D5A, was shown to accumulate over 20% storage lipids from glucose when growth is nitrogen-limited compared to no more than 7% lipid accumulation without nitrogen stress. METHODS AND RESULTS To elucidate the mechanisms of S. cerevisiae D5A oleaginicity, we compared physiological and metabolic changes; as well as the transcriptional profiles of the oleaginous industrial strain, D5A, and a non-oleaginous laboratory strain, BY4741, under normal and nitrogen-limited conditions using analytic techniques and next-generation sequencing-based RNA-Seq transcriptomics. Transcriptional levels for genes associated with fatty acid biosynthesis, nitrogen metabolism, amino acid catabolism, as well as the pentose phosphate pathway and ethanol oxidation in central carbon (C) metabolism, were up-regulated in D5A during nitrogen deprivation. Despite increased carbon flux to lipids, most gene-encoding enzymes involved in triacylglycerol (TAG) assembly were expressed at similar levels regardless of the varying nitrogen concentrations in the growth media and strain backgrounds. Phospholipid turnover also contributed to TAG accumulation through increased precursor production with the down-regulation of subsequent phospholipid synthesis steps. Our results also demonstrated that nitrogen assimilation via the glutamate-glutamine pathway and amino acid metabolism, as well as the fluxes of carbon and reductants from central C metabolism, are integral to the general oleaginicity of D5A, which resulted in the enhanced lipid storage during nitrogen deprivation. CONCLUSION This work demonstrated the disequilibrium and rebalance of carbon and nitrogen contribution to the accumulation of lipids in the oleaginous yeast S. cerevisiae D5A. Rather than TAG assembly from acyl groups, the major switches for the enhanced lipid accumulation of D5A (i.e., fatty acid biosynthesis) are the increases of cytosolic pools of acetyl-CoA and NADPH, as well as alternative nitrogen assimilation.
Collapse
Affiliation(s)
- Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | | | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Eric P. Knoshaug
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| |
Collapse
|
27
|
Song HS, Seo HM, Jeon JM, Moon YM, Hong JW, Hong YG, Bhatia SK, Ahn J, Lee H, Kim W, Park YC, Choi KY, Kim YG, Yang YH. Enhanced isobutanol production from acetate by combinatorial overexpression of acetyl-CoA synthetase and anaplerotic enzymes in engineered Escherichia coli. Biotechnol Bioeng 2018; 115:1971-1978. [DOI: 10.1002/bit.26710] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/03/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Hun-Suk Song
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul Korea
| | - Hyung-Min Seo
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul Korea
| | - Jong-Min Jeon
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul Korea
| | - Yu-Mi Moon
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul Korea
| | - Ju Won Hong
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul Korea
| | - Yoon Gi Hong
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul Korea
- Institute for Ubiquitous Information Technology and Applications (CBRU); Konkuk University; Seoul South Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center; Korea Research Institute Bioscience Biotechnology (KRIBB); Daejeon Korea
| | - Hongweon Lee
- Biotechnology Process Engineering Center; Korea Research Institute Bioscience Biotechnology (KRIBB); Daejeon Korea
| | - Wooseong Kim
- Division of Infectious Diseases; Rhode Island Hospital; Alpert Medical School of Brown University; Providence Rhode Island
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology; Kookmin University; Seoul Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering; Ajou University; Suwon Gyeonggi-do Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering; Soongsil University; Seoul Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul Korea
- Institute for Ubiquitous Information Technology and Applications (CBRU); Konkuk University; Seoul South Korea
| |
Collapse
|
28
|
Toh M, Liu SQ. Impact of coculturing Bifidobacterium animalis subsp. lactis HN019 with yeasts on microbial viability and metabolite formation. J Appl Microbiol 2017; 123:956-968. [PMID: 28833937 DOI: 10.1111/jam.13571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 11/28/2022]
Abstract
AIMS To evaluate the impact of coculturing Bifidobacterium animalis subsp. lactis HN019 with yeasts on microbial viability and metabolite production. METHODS AND RESULTS Monocultures and bacteria-yeast cocultures of B. lactis HN019 and 10 different yeast strains belonging to different species in skim milk media were fermented at 37°C. The presence of yeasts enhanced the growth rate and metabolic activities of B. lactis HN019, which might be attributed to their antioxidative properties. The viability of yeasts, when cocultured with bifidobacteria, was either unaffected or suppressed, depending on the strain. When the B. lactis HN019 monoculture and cocultures with Saccharomyces cerevisiae EC-1118, Pichia kluyveri FrootZen and Kluyveromyces lactis KL71 were fermented to pH 4·7, there were no significant differences in their organic acid composition. On the other hand, cocultures produced significantly higher quantities of alcohols and/or esters than the monoculture. Coculturing B. lactis HN019 with yeasts did not improve the viability of the probiotic during storage at 10°C for 8 weeks, as the bifidobacteria itself demonstrated satisfactory survival in the fermented SMM. CONCLUSIONS Coculturing B. lactis HN019 with yeasts accelerated the growth of the bifidobacteria and increased the production aroma-active volatile metabolites. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates the potential of utilizing specific yeast species as starter or adjunct cultures to simultaneously improve the growth of fastidious bifidobacteria and modulate the organoleptic properties of fermented food products.
Collapse
Affiliation(s)
- M Toh
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Singapore
| | - S-Q Liu
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| |
Collapse
|
29
|
Kawazoe N, Kimata Y, Izawa S. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae. Front Microbiol 2017; 8:1192. [PMID: 28702017 PMCID: PMC5487434 DOI: 10.3389/fmicb.2017.01192] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 02/02/2023] Open
Abstract
Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER) and unfolded protein response (UPR) has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v). Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid) and mild ethanol stress (5% ethanol) induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.
Collapse
Affiliation(s)
- Nozomi Kawazoe
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of TechnologyKyoto, Japan
| | - Yukio Kimata
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyNara, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of TechnologyKyoto, Japan
| |
Collapse
|
30
|
Geng P, Zhang L, Shi GY. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2017; 33:94. [PMID: 28405910 DOI: 10.1007/s11274-017-2259-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 04/01/2017] [Indexed: 12/31/2022]
Abstract
Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.
Collapse
Affiliation(s)
- Peng Geng
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Liang Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Gui Yang Shi
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
31
|
Tomimoto K, Akao T, Fukuda H. Phenotypes and brewing characteristics of sake yeast Kyokai no. 7 mutants resistant to valproate. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kazuya Tomimoto
- Brewing Microbiology Division; National Research Institute of Brewing; 3-7-1, Higashi-hiroshima Hiroshima 739-0046 Japan
| | - Takeshi Akao
- Brewing Microbiology Division; National Research Institute of Brewing; 3-7-1, Higashi-hiroshima Hiroshima 739-0046 Japan
| | - Hisashi Fukuda
- Planning and Management Division; National Research Institute of Brewing; 3-7-1, Higashi-hiroshima Hiroshima 739-0046 Japan
| |
Collapse
|
32
|
Lin KW, Yang CJ, Lian HY, Cai P. Exposure of ELF-EMF and RF-EMF Increase the Rate of Glucose Transport and TCA Cycle in Budding Yeast. Front Microbiol 2016; 7:1378. [PMID: 27630630 PMCID: PMC5005349 DOI: 10.3389/fmicb.2016.01378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022] Open
Abstract
In this study, we investigated the transcriptional response to 50 Hz extremely low frequency electromagnetic field (ELF-EMF) and 2.0 GHz radio frequency electromagnetic field (RF-EMF) exposure by Illumina sequencing technology using budding yeast as the model organism. The transcription levels of 28 genes were upregulated and those of four genes were downregulated under ELF-EMF exposure, while the transcription levels of 29 genes were upregulated and those of 24 genes were downregulated under RF-EMF exposure. After validation by reverse transcription quantitative polymerase chain reaction (RT-qPCR), a concordant direction of change both in differential gene expression (DGE) and RT-qPCR was demonstrated for nine genes under ELF-EMF exposure and for 10 genes under RF-EMF exposure. The RT-qPCR results revealed that ELF-EMF and RF-EMF exposure can upregulate the expression of genes involved in glucose transportation and the tricarboxylic acid (TCA) cycle, but not the glycolysis pathway. Energy metabolism is closely related with the cell response to environmental stress including EMF exposure. Our findings may throw light on the mechanism underlying the biological effects of EMF.
Collapse
Affiliation(s)
- Kang-Wei Lin
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of SciencesXiamen, China; College of Resources and Environment, University of the Chinese Academy of SciencesBeijing, China
| | - Chuan-Jun Yang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences Xiamen, China
| | - Hui-Yong Lian
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences Xiamen, China
| | - Peng Cai
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences Xiamen, China
| |
Collapse
|
33
|
Guo W, Chen Y, Wei N, Feng X. Investigate the Metabolic Reprogramming of Saccharomyces cerevisiae for Enhanced Resistance to Mixed Fermentation Inhibitors via 13C Metabolic Flux Analysis. PLoS One 2016; 11:e0161448. [PMID: 27532329 PMCID: PMC4988770 DOI: 10.1371/journal.pone.0161448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/07/2016] [Indexed: 11/18/2022] Open
Abstract
The fermentation inhibitors from the pretreatment of lignocellulosic materials, e.g., acetic acid and furfural, are notorious due to their negative effects on the cell growth and chemical production. However, the metabolic reprogramming of the cells under these stress conditions, especially metabolic response for resistance to mixed inhibitors, has not been systematically investigated and remains mysterious. Therefore, in this study, 13C metabolic flux analysis (13C-MFA), a powerful tool to elucidate the intracellular carbon flux distributions, has been applied to two Saccharomyces cerevisiae strains with different tolerances to the inhibitors under acetic acid, furfural, and mixed (i.e., acetic acid and furfural) stress conditions to unravel the key metabolic responses. By analyzing the intracellular carbon fluxes as well as the energy and cofactor utilization under different conditions, we uncovered varied metabolic responses to different inhibitors. Under acetate stress, ATP and NADH production was slightly impaired, while NADPH tended towards overproduction. Under furfural stress, ATP and cofactors (including both NADH and NADPH) tended to be overproduced. However, under dual-stress condition, production of ATP and cofactors was severely impaired due to synergistic stress caused by the simultaneous addition of two fermentation inhibitors. Such phenomenon indicated the pivotal role of the energy and cofactor utilization in resisting the mixed inhibitors of acetic acid and furfural. Based on the discoveries, valuable insights are provided to improve the tolerance of S. cerevisiae strain and further enhance lignocellulosic fermentation.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States of America
| | - Yingying Chen
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Na Wei
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States of America
- * E-mail: (NW); (XF)
| | - Xueyang Feng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States of America
- * E-mail: (NW); (XF)
| |
Collapse
|
34
|
Erkut C, Gade VR, Laxman S, Kurzchalia TV. The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast. eLife 2016; 5. [PMID: 27090086 PMCID: PMC4880444 DOI: 10.7554/elife.13614] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/18/2016] [Indexed: 02/04/2023] Open
Abstract
Many organisms, including species from all kingdoms of life, can survive desiccation by entering a state with no detectable metabolism. To survive, C. elegans dauer larvae and stationary phase S. cerevisiae require elevated amounts of the disaccharide trehalose. We found that dauer larvae and stationary phase yeast switched into a gluconeogenic mode in which metabolism was reoriented toward production of sugars from non-carbohydrate sources. This mode depended on full activity of the glyoxylate shunt (GS), which enables synthesis of trehalose from acetate. The GS was especially critical during preparation of worms for harsh desiccation (preconditioning) and during the entry of yeast into stationary phase. Loss of the GS dramatically decreased desiccation tolerance in both organisms. Our results reveal a novel physiological role for the GS and elucidate a conserved metabolic rewiring that confers desiccation tolerance on organisms as diverse as worm and yeast.
Collapse
Affiliation(s)
- Cihan Erkut
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Vamshidhar R Gade
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sunil Laxman
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | | |
Collapse
|
35
|
The Ubiquitin Ligase SCF(Ucc1) Acts as a Metabolic Switch for the Glyoxylate Cycle. Mol Cell 2015; 59:22-34. [PMID: 25982115 DOI: 10.1016/j.molcel.2015.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/03/2015] [Accepted: 04/07/2015] [Indexed: 01/14/2023]
Abstract
Despite the crucial role played by the glyoxylate cycle in the virulence of pathogens, seed germination in plants, and sexual development in fungi, we still have much to learn about its regulation. Here, we show that a previously uncharacterized SCF(Ucc1) ubiquitin ligase mediates proteasomal degradation of citrate synthase in the glyoxylate cycle to maintain metabolic homeostasis in glucose-grown cells. Conversely, transcription of the F box subunit Ucc1 is downregulated in C2-compound-grown cells, which require increased metabolic flux for gluconeogenesis. Moreover, in vitro analysis demonstrates that oxaloacetate regenerated through the glyoxylate cycle induces a conformational change in citrate synthase and inhibits its recognition and ubiquitination by SCF(Ucc1), suggesting the existence of an oxaloacetate-dependent positive feedback loop that stabilizes citrate synthase. We propose that SCF(Ucc1)-mediated regulation of citrate synthase acts as a metabolic switch for the glyoxylate cycle in response to changes in carbon source, thereby ensuring metabolic versatility and flexibility.
Collapse
|
36
|
Becker E, Liu Y, Lardenois A, Walther T, Horecka J, Stuparevic I, Law MJ, Lavigne R, Evrard B, Demougin P, Riffle M, Strich R, Davis RW, Pineau C, Primig M. Integrated RNA- and protein profiling of fermentation and respiration in diploid budding yeast provides insight into nutrient control of cell growth and development. J Proteomics 2015; 119:30-44. [PMID: 25662576 DOI: 10.1016/j.jprot.2015.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/16/2015] [Accepted: 01/25/2015] [Indexed: 12/29/2022]
Abstract
UNLABELLED Diploid budding yeast undergoes rapid mitosis when it ferments glucose, and in the presence of a non-fermentable carbon source and the absence of a nitrogen source it triggers sporulation. Rich medium with acetate is a commonly used pre-sporulation medium, but our understanding of the molecular events underlying the acetate-driven transition from mitosis to meiosis is still incomplete. We identified 263 proteins for which mRNA and protein synthesis are linked or uncoupled in fermenting and respiring cells. Using motif predictions, interaction data and RNA profiling we find among them 28 likely targets for Ume6, a subunit of the conserved Rpd3/Sin3 histone deacetylase-complex regulating genes involved in metabolism, stress response and meiosis. Finally, we identify 14 genes for which both RNA and proteins are detected exclusively in respiring cells but not in fermenting cells in our sample set, including CSM4, SPR1, SPS4 and RIM4, which were thought to be meiosis-specific. Our work reveals intertwined transcriptional and post-transcriptional control mechanisms acting when a MATa/α strain responds to nutritional signals, and provides molecular clues how the carbon source primes yeast cells for entering meiosis. BIOLOGICAL SIGNIFICANCE Our integrated genomics study provides insight into the interplay between the transcriptome and the proteome in diploid yeast cells undergoing vegetative growth in the presence of glucose (fermentation) or acetate (respiration). Furthermore, it reveals novel target genes involved in these processes for Ume6, the DNA binding subunit of the conserved histone deacetylase Rpd3 and the co-repressor Sin3. We have combined data from an RNA profiling experiment using tiling arrays that cover the entire yeast genome, and a large-scale protein detection analysis based on mass spectrometry in diploid MATa/α cells. This distinguishes our study from most others in the field-which investigate haploid yeast strains-because only diploid cells can undergo meiotic development in the simultaneous absence of a non-fermentable carbon source and nitrogen. Indeed, we report molecular clues how respiration of acetate might prime diploid cells for efficient spore formation, a phenomenon that is well known but poorly understood.
Collapse
Affiliation(s)
| | - Yuchen Liu
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France
| | | | - Thomas Walther
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France
| | - Joe Horecka
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | - Igor Stuparevic
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France
| | - Michael J Law
- Rowan University, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Régis Lavigne
- Inserm U1085 IRSET, Proteomics Core Facility Biogenouest, Université de Rennes 1, 35042 Rennes, France
| | - Bertrand Evrard
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France
| | | | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Randy Strich
- Rowan University, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Ronald W Davis
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Charles Pineau
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France; Inserm U1085 IRSET, Proteomics Core Facility Biogenouest, Université de Rennes 1, 35042 Rennes, France
| | - Michael Primig
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France.
| |
Collapse
|
37
|
Orlandi I, Coppola DP, Vai M. Rewiring yeast acetate metabolism through MPC1 loss of function leads to mitochondrial damage and decreases chronological lifespan. ACTA ACUST UNITED AC 2014; 1:393-405. [PMID: 28357219 PMCID: PMC5349135 DOI: 10.15698/mic2014.12.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During growth on fermentable substrates, such as glucose, pyruvate, which is the
end-product of glycolysis, can be used to generate acetyl-CoA in the cytosol via
acetaldehyde and acetate, or in mitochondria by direct oxidative
decarboxylation. In the latter case, the mitochondrial pyruvate carrier (MPC) is
responsible for pyruvate transport into mitochondrial matrix space. During
chronological aging, yeast cells which lack the major structural subunit Mpc1
display a reduced lifespan accompanied by an age-dependent loss of autophagy.
Here, we show that the impairment of pyruvate import into mitochondria linked to
Mpc1 loss is compensated by a flux redirection of TCA cycle intermediates
through the malic enzyme-dependent alternative route. In such a way, the TCA
cycle operates in a “branched” fashion to generate pyruvate and is depleted of
intermediates. Mutant cells cope with this depletion by increasing the activity
of glyoxylate cycle and of the pathway which provides the nucleocytosolic
acetyl-CoA. Moreover, cellular respiration decreases and ROS accumulate in the
mitochondria which, in turn, undergo severe damage. These acquired traits in
concert with the reduced autophagy restrict cell survival of the mpc1∆ mutant
during chronological aging. Conversely, the activation of the carnitine shuttle
by supplying acetyl-CoA to the mitochondria is sufficient to abrogate the
short-lived phenotype of the mutant.
Collapse
Affiliation(s)
- Ivan Orlandi
- SYSBIO Centre for Systems Biology Milano, Italy. ; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Damiano Pellegrino Coppola
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marina Vai
- SYSBIO Centre for Systems Biology Milano, Italy. ; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
38
|
Tang X, Feng H, Zhang J, Chen WN. Comparative proteomics analysis of engineered Saccharomyces cerevisiae with enhanced biofuel precursor production. PLoS One 2013; 8:e84661. [PMID: 24376832 PMCID: PMC3871657 DOI: 10.1371/journal.pone.0084661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/15/2013] [Indexed: 11/18/2022] Open
Abstract
The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strains. More than 300 proteins were identified. Among these proteins, 37 were found differentially expressed in engineered strains and they were classified into specific categories based on their enzyme functions. Most of the proteins involved in glycolytic and pyruvate branch-point pathways were found to be up-regulated and the proteins involved in respiration and glyoxylate pathway were however found to be down-regulated in engineered strains. Moreover, the metabolic modification of S. cerevisiae cells resulted in a number of up-regulated proteins involved in stress response and differentially expressed proteins involved in amino acid metabolism and protein biosynthesis pathways. These LC-MS/MS based proteomics analysis results not only offered extensive information in identifying potential protein-protein interactions, signal pathways and ubiquitous cellular changes elicited by the engineered pathways, but also provided a meaningful biological information platform serving further modification of yeast cells for enhanced biofuel production.
Collapse
Affiliation(s)
- Xiaoling Tang
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Huixing Feng
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jianhua Zhang
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
39
|
Peraza-Reyes L, Berteaux-Lecellier V. Peroxisomes and sexual development in fungi. Front Physiol 2013; 4:244. [PMID: 24046747 PMCID: PMC3764329 DOI: 10.3389/fphys.2013.00244] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/19/2013] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are versatile and dynamic organelles that are essential for the development of most eukaryotic organisms. In fungi, many developmental processes, such as sexual development, require the activity of peroxisomes. Sexual reproduction in fungi involves the formation of meiotic-derived sexual spores, often takes place inside multicellular fruiting bodies and requires precise coordination between the differentiation of multiple cell types and the progression of karyogamy and meiosis. Different peroxisomal functions contribute to the orchestration of this complex developmental process. Peroxisomes are required to sustain the formation of fruiting bodies and the maturation and germination of sexual spores. They facilitate the mobilization of reserve compounds via fatty acid β-oxidation and the glyoxylate cycle, allowing the generation of energy and biosynthetic precursors. Additionally, peroxisomes are implicated in the progression of meiotic development. During meiotic development in Podospora anserina, there is a precise modulation of peroxisome assembly and dynamics. This modulation includes changes in peroxisome size, number and localization, and involves a differential activity of the protein-machinery that drives the import of proteins into peroxisomes. Furthermore, karyogamy, entry into meiosis and sorting of meiotic-derived nuclei into sexual spores all require the activity of peroxisomes. These processes rely on different peroxisomal functions and likely depend on different pathways for peroxisome assembly. Indeed, emerging studies support the existence of distinct import channels for peroxisomal proteins that contribute to different developmental stages.
Collapse
Affiliation(s)
- Leonardo Peraza-Reyes
- CNRS, Institut de Génétique et Microbiologie, University Paris-Sud, UMR8621 Orsay, France
| | | |
Collapse
|
40
|
Giannattasio S, Guaragnella N, Ždralević M, Marra E. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Front Microbiol 2013; 4:33. [PMID: 23430312 PMCID: PMC3576806 DOI: 10.3389/fmicb.2013.00033] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/05/2013] [Indexed: 01/07/2023] Open
Abstract
Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications.
Collapse
Affiliation(s)
- Sergio Giannattasio
- Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle RicercheBari, Italy
| | | | | | | |
Collapse
|
41
|
Kocharin K, Chen Y, Siewers V, Nielsen J. Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae. AMB Express 2012; 2:52. [PMID: 23009357 PMCID: PMC3519744 DOI: 10.1186/2191-0855-2-52] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 09/12/2012] [Indexed: 11/10/2022] Open
Abstract
Through metabolic engineering microorganisms can be engineered to produce new products and further produce these with higher yield and productivities. Here, we expressed the bacterial polyhydroxybutyrate (PHB) pathway in the yeast Saccharomyces cerevisiae and we further evaluated the effect of engineering the formation of acetyl coenzyme A (acetyl-CoA), an intermediate of the central carbon metabolism and precursor of the PHB pathway, on heterologous PHB production by yeast. We engineered the acetyl-CoA metabolism by co-transformation of a plasmid containing genes for native S. cerevisiae alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6), acetyl-CoA acetyltransferase (ERG10) and a Salmonella enterica acetyl-CoA synthetase variant (acsL641P), resulting in acetoacetyl-CoA overproduction, together with a plasmid containing the PHB pathway genes coding for acetyl-CoA acetyltransferase (phaA), NADPH-linked acetoacetyl-CoA reductase (phaB) and poly(3-hydroxybutyrate) polymerase (phaC) from Ralstonia eutropha H16. Introduction of the acetyl-CoA plasmid together with the PHB plasmid, improved the productivity of PHB more than 16 times compared to the reference strain used in this study, as well as it reduced the specific product formation of side products.
Collapse
Affiliation(s)
- Kanokarn Kocharin
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Göteborg, Sweden
| | - Yun Chen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Göteborg, Sweden
| | - Verena Siewers
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Göteborg, Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Göteborg, Sweden
| |
Collapse
|
42
|
Chen Y, Siewers V, Nielsen J. Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae. PLoS One 2012; 7:e42475. [PMID: 22876324 PMCID: PMC3411639 DOI: 10.1371/journal.pone.0042475] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/06/2012] [Indexed: 11/18/2022] Open
Abstract
As a key intracellular metabolite, acetyl-coenzyme A (acetyl-CoA) plays a major role in various metabolic pathways that link anabolism and catabolism. In the yeast Saccharomyces cerevisiae, acetyl-CoA involving metabolism is compartmentalized, and may vary with the nutrient supply of a cell. Membranes separating intracellular compartments are impermeable to acetyl-CoA and no direct transport between the compartments occurs. Thus, without carnitine supply the glyoxylate shunt is the sole possible route for transferring acetyl-CoA from the cytosol or the peroxisomes into the mitochondria. Here, we investigate the physiological profiling of different deletion mutants of ACS1, ACS2, CIT2 and MLS1 individually or in combination under alternative carbon sources, and study how various mutations alter carbon distribution. Based on our results a detailed model of carbon distribution about cytosolic and peroxisomal acetyl-CoA metabolism in yeast is suggested. This will be useful to further develop yeast as a cell factory for the biosynthesis of acetyl-CoA-derived products.
Collapse
Affiliation(s)
| | | | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
- * E-mail:
| |
Collapse
|
43
|
Kabran P, Rossignol T, Gaillardin C, Nicaud JM, Neuvéglise C. Alternative splicing regulates targeting of malate dehydrogenase in Yarrowia lipolytica. DNA Res 2012; 19:231-44. [PMID: 22368181 PMCID: PMC3372373 DOI: 10.1093/dnares/dss007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alternative pre-mRNA splicing is a major mechanism contributing to the proteome complexity of most eukaryotes, especially mammals. In less complex organisms, such as yeasts, the numbers of genes that contain introns are low and cases of alternative splicing (AS) with functional implications are rare. We report the first case of AS with functional consequences in the yeast Yarrowia lipolytica. The splicing pattern was found to govern the cellular localization of malate dehydrogenase, an enzyme of the central carbon metabolism. This ubiquitous enzyme is involved in the tricarboxylic acid cycle in mitochondria and in the glyoxylate cycle, which takes place in peroxisomes and the cytosol. In Saccharomyces cerevisiae, three genes encode three compartment-specific enzymes. In contrast, only two genes exist in Y. lipolytica. One gene (YlMDH1, YALI0D16753g) encodes a predicted mitochondrial protein, whereas the second gene (YlMDH2, YALI0E14190g) generates the cytosolic and peroxisomal forms through the alternative use of two 3'-splice sites in the second intron. Both splicing variants were detected in cDNA libraries obtained from cells grown under different conditions. Mutants expressing the individual YlMdh2p isoforms tagged with fluorescent proteins confirmed that they localized to either the cytosolic or the peroxisomal compartment.
Collapse
|
44
|
Kim YM, Lee SE, Park BS, Son MK, Jung YM, Yang SO, Choi HK, Hur SH, Yum JH. Proteomic analysis on acetate metabolism in Citrobacter sp. BL-4. Int J Biol Sci 2011; 8:66-78. [PMID: 22211106 PMCID: PMC3248649 DOI: 10.7150/ijbs.8.66] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/26/2011] [Indexed: 11/05/2022] Open
Abstract
Mass production of glucosamine (GlcN) using microbial cells is a worthy approach to increase added values and keep safety problems in GlcN production process. Prior to set up a microbial cellular platform, this study was to assess acetate metabolism in Citrobacter sp. BL-4 (BL-4) which has produced a polyglucosamine PGB-2. The LC-MS analysis was conducted after protein separation on the 1D-PAGE to accomplish the purpose of this study. 280 proteins were totally identified and 188 proteins were separated as acetate-related proteins in BL-4. Acetate was converted to acetyl-CoA by acetyl-CoA synthetase up-regulated in the acetate medium. The glyoxylate bypass in the acetate medium was up-regulated with over-expression of isocitrate lyases and 2D-PAGE confirmed this differential expression. Using 1H-NMR analysis, the product of isocitrate lyases, succinate, increased about 15 times in the acetate medium. During acetate metabolism proteins involved in the lipid metabolism and hexosamine biosynthesis were over-expressed in the acetate medium, while proteins involved in TCA cycle, pentose phosphate cycle and purine metabolism were down-regulated. Taken together, the results from the proteomic analysis can be applied to improve GlcN production and to develop metabolic engineering in BL-4.
Collapse
Affiliation(s)
- Young-Man Kim
- Department of Food Science and Nutrition, Dong-eui University, Busan 614-714, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|