1
|
Miettinen K, Leelahakorn N, Almeida A, Zhao Y, Hansen LR, Nikolajsen IE, Andersen JB, Givskov M, Staerk D, Bak S, Kampranis SC. A GPCR-based yeast biosensor for biomedical, biotechnological, and point-of-use cannabinoid determination. Nat Commun 2022; 13:3664. [PMID: 35760809 PMCID: PMC9237071 DOI: 10.1038/s41467-022-31357-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic cells use G-protein coupled receptors to sense diverse signals, ranging from chemical compounds to light. Here, we exploit the remarkable sensing capacity of G-protein coupled receptors to construct yeast-based biosensors for real-life applications. To establish proof-of-concept, we focus on cannabinoids because of their neuromodulatory and immunomodulatory activities. We construct a CB2 receptor-based biosensor, optimize it to achieve high sensitivity and dynamic range, and prove its effectiveness in three applications of increasing difficulty. First, we screen a compound library to discover agonists and antagonists. Second, we analyze 54 plants to discover a new phytocannabinoid, dugesialactone. Finally, we develop a robust portable device, analyze body-fluid samples, and confidently detect designer drugs like JWH-018. These examples demonstrate the potential of yeast-based biosensors to enable diverse applications that can be implemented by non-specialists. Taking advantage of the extensive sensing repertoire of G-protein coupled receptors, this technology can be extended to detect numerous compounds. GPCRs are used for diverse sensing in eukaryotes. Here the authors use GPCRs to construct yeast-based biosensors, focussing on cannabinoids, and use these to screen agonists and antagonists, as well as generate a portable detection device.
Collapse
Affiliation(s)
- Karel Miettinen
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Nattawat Leelahakorn
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Aldo Almeida
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.,Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Carretera Torreón-Matamoros km. 7.5, Torreón, Coahuila, 27000, Mexico
| | - Yong Zhao
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Lukas R Hansen
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Iben E Nikolajsen
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Jens B Andersen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Michael Givskov
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Søren Bak
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Sotirios C Kampranis
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
2
|
Gissibl A, Care A, Sun A, Hobba G, Nevalainen H, Sunna A. Development of screening strategies for the identification of paramylon-degrading enzymes. J Ind Microbiol Biotechnol 2019; 46:769-781. [PMID: 30806871 DOI: 10.1007/s10295-019-02157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/17/2019] [Indexed: 10/27/2022]
Abstract
Enzymatic degradation of the β-1,3-glucan paramylon could enable the production of bioactive compounds for healthcare and renewable substrates for biofuels. However, few enzymes have been found to degrade paramylon efficiently and their enzymatic mechanisms remain poorly understood. Thus, the aim of this work was to find paramylon-degrading enzymes and ways to facilitate their identification. Towards this end, a Euglena gracilis-derived cDNA expression library was generated and introduced into Escherichia coli. A flow cytometry-based screening assay was developed to identify E. gracilis enzymes that could hydrolyse the fluorogenic substrate fluorescein di-β-D-glucopyranoside in combination with time-saving auto-induction medium. In parallel, four amino acid sequences of potential E. gracilis β-1,3-glucanases were identified from proteomic data. The open reading frame encoding one of these candidate sequences (light_m.20624) was heterologously expressed in E. coli. Finally, a Congo Red dye plate assay was developed for the screening of enzyme preparations potentially able to degrade paramylon. This assay was validated with enzymes assumed to have paramylon-degrading activity and then used to identify four commercial preparations with previously unknown paramylon degradation ability.
Collapse
Affiliation(s)
- Alexander Gissibl
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, 2109, Australia
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Angela Sun
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, 2109, Australia
| | - Graham Hobba
- Agritechnology Pty Ltd, 36 Underwood Road, Borenore, NSW, 2800, Australia
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, 2109, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, 2109, Australia.
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
3
|
Norcliffe JL, Mina JG, Alvarez E, Cantizani J, de Dios-Anton F, Colmenarejo G, Valle SGD, Marco M, Fiandor JM, Martin JJ, Steel PG, Denny PW. Identifying inhibitors of the Leishmania inositol phosphorylceramide synthase with antiprotozoal activity using a yeast-based assay and ultra-high throughput screening platform. Sci Rep 2018; 8:3938. [PMID: 29500420 PMCID: PMC5834442 DOI: 10.1038/s41598-018-22063-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/16/2018] [Indexed: 01/07/2023] Open
Abstract
Leishmaniasis is a Neglected Tropical Disease caused by the insect-vector borne protozoan parasite, Leishmania species. Infection affects millions of the world’s poorest, however vaccines are absent and drug therapy limited. Recently, public-private partnerships have developed to identify new modes of controlling leishmaniasis. Drug discovery is a significant part of these efforts and here we describe the development and utilization of a novel assay to identify antiprotozoal inhibitors of the Leishmania enzyme, inositol phosphorylceramide (IPC) synthase. IPC synthase is a membrane-bound protein with multiple transmembrane domains, meaning that a conventional in vitro assay using purified protein in solution is highly challenging. Therefore, we utilized Saccharomyces cerevisiae as a vehicle to facilitate ultra-high throughput screening of 1.8 million compounds. Antileishmanial benzazepanes were identified and shown to inhibit the enzyme at nanomolar concentrations. Further chemistry produced a benzazepane that demonstrated potent and specific inhibition of IPC synthase in the Leishmania cell.
Collapse
Affiliation(s)
- Jennifer L Norcliffe
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.,Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - John G Mina
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.,Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Emilio Alvarez
- GlaxoSmithKline Investigacion y Desarrollo, Parque Tecnologico de Madrid, 28760, Tres Cantos, Madrid, Spain
| | - Juan Cantizani
- GlaxoSmithKline Investigacion y Desarrollo, Parque Tecnologico de Madrid, 28760, Tres Cantos, Madrid, Spain
| | - Francisco de Dios-Anton
- GlaxoSmithKline Investigacion y Desarrollo, Parque Tecnologico de Madrid, 28760, Tres Cantos, Madrid, Spain
| | - Gonzalo Colmenarejo
- GlaxoSmithKline Investigacion y Desarrollo, Parque Tecnologico de Madrid, 28760, Tres Cantos, Madrid, Spain.,Biostatistics and Bioinformatics Unit, IMDEA Food Institute, CEI UAM and CSIC, Carretera de Cantoblanco 8, 28049, Madrid, Spain
| | - Silva Gonzalez-Del Valle
- GlaxoSmithKline Investigacion y Desarrollo, Parque Tecnologico de Madrid, 28760, Tres Cantos, Madrid, Spain
| | - Maria Marco
- GlaxoSmithKline Investigacion y Desarrollo, Parque Tecnologico de Madrid, 28760, Tres Cantos, Madrid, Spain
| | - José M Fiandor
- GlaxoSmithKline Investigacion y Desarrollo, Parque Tecnologico de Madrid, 28760, Tres Cantos, Madrid, Spain
| | - Julio J Martin
- GlaxoSmithKline Investigacion y Desarrollo, Parque Tecnologico de Madrid, 28760, Tres Cantos, Madrid, Spain
| | - Patrick G Steel
- Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| | - Paul W Denny
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
4
|
Abstract
The functional coupling of heterologous G protein-coupled receptors (GPCRs) to the pheromone-response pathway of the budding yeast Saccharomyces cerevisiae is well established as an experimental system for ligand identification and for characterizing receptor pharmacology and signal transduction mechanisms. A number of groups have developed yeast strains using various modifications to this signaling pathway, especially manipulation of the G protein alpha subunit Gpa1p, to facilitate coupling of a wide range of mammalian GPCRs. The attraction of these systems is the simplicity and low cost of yeast cell culture enabling the assays to be set up rapidly in academic or industrial labs without the requirement for expensive technical equipment. Furthermore, haploid yeasts contain only a single GPCR capable of activating the pathway, which can be deleted and replaced with a mammalian GPCR providing a cell-based functional assay in a eukaryotic host free from endogenous responses. The yeast strains used for this purpose are highly engineered and may be covered by intellectual property for commercial applications in some countries. However, they can usually be obtained from the host labs for research purposes covered by a Material Transfer Agreement and/or licence where appropriate. The protocols herein assume that such strains have been acquired and begin with introduction of the heterologous GPCR into the engineered yeast cell. Assays are configured such that agonism of the GPCR leads to induction of a reporter gene and/or growth of the yeast. A number of parameters may be optimized to generate robust experimental formats, in high-density microtiter plates, that may be used for ligand identification and pharmacological characterization.
Collapse
Affiliation(s)
- Simon J Dowell
- Department of Biological Reagent and Assay Development, GlaxoSmithKline, Hertfordshire, UK
| | | |
Collapse
|
5
|
Haar TVD, Jossé LJ, Byrne LJ. 8 Reporter Genes and Their Uses in Studying Yeast Gene Expression. J Microbiol Methods 2007. [DOI: 10.1016/s0580-9517(06)36008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Harashima S, Kaneko Y. Application of the PHO5-gene-fusion technology to molecular genetics and biotechnology in yeast. J Biosci Bioeng 2005; 91:325-38. [PMID: 16233000 DOI: 10.1263/jbb.91.325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2001] [Accepted: 02/02/2001] [Indexed: 11/17/2022]
Abstract
Modern biological scientists employ numerous approaches for solving their problems. Among these approaches, the gene fusion is surely one of the well-established valuable tools in various fields of biological sciences. A wide range of applications have been developed to analyze a variety of biological phenomena such as transcriptional regulation, pre-mRNA processing, mRNA decay, translation, protein localization and even protein transport in both prokaryotic and eukaryotic organisms. Gene fusions were also used for the study of protein purification, protein structure, protein folding, protein-protein interaction and protein-DNA interaction. Here, we describe applications of gene fusion technology using the Saccharomyces cerevisiae PHO5 gene encoding repressible acid phosphatase to molecular genetics and biotechnology in S. cerevisiae. Using the PHO5 gene fusion as a reporter, we have identified several cis- and trans-acting genes of S. cerevisiae which are involved in splicing of pre-mRNA, biosynthesis of amino acids, ubiquitin-dependent protein degradation, signal transduction of oxygen and unsaturated fatty acid, regulation of transcription by the nucleosome and chromatin. The PHO5 gene fusions exhibiting the mating-type specific expression were also generated to develop a breeding technique for industrial yeast. It is concluded that the PHO5 gene fusion is extremely useful and should be further exploited to investigate various cellular steps of the eukaryotic gene expression.
Collapse
Affiliation(s)
- S Harashima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| | | |
Collapse
|
7
|
Magee PT, Gale C, Berman J, Davis D. Molecular genetic and genomic approaches to the study of medically important fungi. Infect Immun 2003; 71:2299-309. [PMID: 12704098 PMCID: PMC153231 DOI: 10.1128/iai.71.5.2299-2309.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- P T Magee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
8
|
Harashima S, Kaneko Y. Application of the PHO5-gene-fusion technology to molecular genetics and biotechnology in yeast. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80147-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Abstract
The application of flow cytometry to microorganisms is as old as the technique itself, but it has historically been underexploited for microbial applications. This is now being reversed and microbiologists are ideally placed to benefit from recent technological advances. While earlier papers demonstrated the use of flow cytometry for studies of viability and taxonomy, recent developments in bioinformatics and reporter gene technologies are leading to novel applications in microbiology. Variants of green fluorescent protein have been used for the study of conditional microbial gene regulation in medically important host-pathogen interactions and fluorescence-activated cell sorting is being applied to the isolation of novel mutants in directed evolution studies. This paper reviews the reasons for the delay in the application of flow cytometry to microbial problems, the range of applications, and their limitations and considers the progress made in developing new strategies for use in microbiological investigations.
Collapse
Affiliation(s)
- M K Winson
- Institute of Biological Sciences, University of Wales, Aberystwyth, SY23 3DD, United Kingdom
| | | |
Collapse
|
10
|
Abstract
Classical microbiology techniques are relatively slow in comparison to other analytical techniques, in many cases due to the need to culture the microorganisms. Furthermore, classical approaches are difficult with unculturable microorganisms. More recently, the emergence of molecular biology techniques, particularly those on antibodies and nucleic acid probes combined with amplification techniques, has provided speediness and specificity to microbiological diagnosis. Flow cytometry (FCM) allows single- or multiple-microbe detection in clinical samples in an easy, reliable, and fast way. Microbes can be identified on the basis of their peculiar cytometric parameters or by means of certain fluorochromes that can be used either independently or bound to specific antibodies or oligonucleotides. FCM has permitted the development of quantitative procedures to assess antimicrobial susceptibility and drug cytotoxicity in a rapid, accurate, and highly reproducible way. Furthermore, this technique allows the monitoring of in vitro antimicrobial activity and of antimicrobial treatments ex vivo. The most outstanding contribution of FCM is the possibility of detecting the presence of heterogeneous populations with different responses to antimicrobial treatments. Despite these advantages, the application of FCM in clinical microbiology is not yet widespread, probably due to the lack of access to flow cytometers or the lack of knowledge about the potential of this technique. One of the goals of this review is to attempt to mitigate this latter circumstance. We are convinced that in the near future, the availability of commercial kits should increase the use of this technique in the clinical microbiology laboratory.
Collapse
|
11
|
Alvarez-Barrientos A, Arroyo J, Cantón R, Nombela C, Sánchez-Pérez M. Applications of flow cytometry to clinical microbiology. Clin Microbiol Rev 2000; 13:167-95. [PMID: 10755996 PMCID: PMC100149 DOI: 10.1128/cmr.13.2.167] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Classical microbiology techniques are relatively slow in comparison to other analytical techniques, in many cases due to the need to culture the microorganisms. Furthermore, classical approaches are difficult with unculturable microorganisms. More recently, the emergence of molecular biology techniques, particularly those on antibodies and nucleic acid probes combined with amplification techniques, has provided speediness and specificity to microbiological diagnosis. Flow cytometry (FCM) allows single- or multiple-microbe detection in clinical samples in an easy, reliable, and fast way. Microbes can be identified on the basis of their peculiar cytometric parameters or by means of certain fluorochromes that can be used either independently or bound to specific antibodies or oligonucleotides. FCM has permitted the development of quantitative procedures to assess antimicrobial susceptibility and drug cytotoxicity in a rapid, accurate, and highly reproducible way. Furthermore, this technique allows the monitoring of in vitro antimicrobial activity and of antimicrobial treatments ex vivo. The most outstanding contribution of FCM is the possibility of detecting the presence of heterogeneous populations with different responses to antimicrobial treatments. Despite these advantages, the application of FCM in clinical microbiology is not yet widespread, probably due to the lack of access to flow cytometers or the lack of knowledge about the potential of this technique. One of the goals of this review is to attempt to mitigate this latter circumstance. We are convinced that in the near future, the availability of commercial kits should increase the use of this technique in the clinical microbiology laboratory.
Collapse
Affiliation(s)
- A Alvarez-Barrientos
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | | | | | | |
Collapse
|
12
|
Molero G, Cid VJ, Vivar C, Nombela C, Sánchez-Pérez M. Candida albicans exoglucanase as a reporter gene in Schizosaccharomyces pombe. FEMS Microbiol Lett 1999; 175:143-8. [PMID: 10361719 DOI: 10.1111/j.1574-6968.1999.tb13613.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Candida albicans XOG1 gene, previously shown to be a good reporter gene in Saccharomyces cerevisiae and C. albicans, was tested in Schizosaccharomyces pombe. Unlike the budding yeast, S. pombe does not produce exoglucanase activity and hence this system would be applicable to any given strain of this organism. The XOG1 gene was located under the control of the nmt1 promoter and its functionality could be demonstrated even at high temperatures (37 degrees C). The exoglucanase activity can be measured both in vivo and in vitro by either a simple biochemical reaction (on cells or media) or by flow cytometry, because the cells remain viable after the assay.
Collapse
Affiliation(s)
- G Molero
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
13
|
Ferrer P, Diers I, Asenjo JA, Andrews BA. Yeast cell permeabilizing β-1,3-Glucanases: A tool for the integration of downstream processes and metabolic engineering applications to yeast. Biotechnol Bioeng 1998. [DOI: 10.1002/(sici)1097-0290(19980420)58:2/3<321::aid-bit32>3.0.co;2-c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Koloteva N, Hughes JM, McCarthy JE. 9 Reporter Genes and their Use in Studying Yeast Gene Expression. METHODS IN MICROBIOLOGY 1998. [DOI: 10.1016/s0580-9517(08)70330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Del Mar González M, Díez-Orejas R, Molero G, Álvarez AM, Pla J, Pla J, Nombela C, Sánchez-PéArez M. Phenotypic characterization of a Candida albicans strain deficient in its major exoglucanase. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 9):3023-3032. [PMID: 9308184 DOI: 10.1099/00221287-143-9-3023] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Both alleles of the XOG1 gene of Candida albicans, which encodes a protein with exoglucanase activity, were sequentially disrupted. Enzymic analysis of either cell extracts or culture supernatants of disrupted strains revealed that this gene is responsible for the major exoglucanase activity in C. albicans, although residual exoglucanase activity could still be detected. xog1 null mutants showed similar growth rates in both rich and minimal liquid medium as compared to the wild-type strain, indicating that the enzyme is not essential for C. albicans growth. In addition, no differences were observed between wild-type and xog1 null mutants with respect to their ability to undergo dimorphic transition. However, small but repeatable differences were found between the wild-type and the null mutant with respect to susceptibility to chitin and glucan synthesis inhibitors. Using a murine model of experimental infection, no significant differences in virulence were observed. The xog1 null strain is thus a suitable recipient for studying Candida gene expression using the exoglucanase as a reporter gene.
Collapse
Affiliation(s)
- María Del Mar González
- Department of Microbiology II, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Rosalía Díez-Orejas
- Department of Microbiology II, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Gloria Molero
- Department of Microbiology II, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Alberto M Álvarez
- Flow and Confocal Cytometry Unit (CCF), Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Jesús Pla
- Flow and Confocal Cytometry Unit (CCF), Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Jesús Pla
- Department of Microbiology II, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - CéAsar Nombela
- Department of Microbiology II, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Miguel Sánchez-PéArez
- Flow and Confocal Cytometry Unit (CCF), Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| |
Collapse
|
16
|
|
17
|
Affiliation(s)
- J Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The yeast SEC14 gene product is required for the transport of proteins from the Golgi complex. We have cloned the homologous Candida albicans SEC14 gene (CaSEC14) by functional complementation of a Saccharomyces cerevisiae thermosensitive mutant, sec14ts. Some putative TATA boxes have been identified in CaSEC14 and, contrary to S. cerevisiae SEC14, no introns were found in the Candida homologue. Sequence analysis revealed that CaSec14p is a 301 amino acid protein, 67% identical to S. cerevisiae and Kluyveromyces iactis Sec14p, and 61% identical to the 300 amino-terminal residues of Yarrowia lipolytica Sec14p. Hydrophatic profile analysis of CaSec14p suggests a soluble protein without transmembrane domains as has been described for the S. cerevisiae counterpart. While it was easy to disrupt one allele of SEC14 in C. albicans, repeated attempts to disrupt the second allele were unsuccessful, thus suggesting that the gene could be essential for vegetative growth in C. albicans.
Collapse
Affiliation(s)
- L Monteoliva
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Monteoliva L, Sánchez M, Pla J, Gil C, Nombela C. Cloning ofCandida albicans SEC14 gene homologue coding for a putative essential function. Yeast 1996. [DOI: 10.1002/(sici)1097-0061(19960915)12:11<1097::aid-yea990>3.0.co;2-e] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|