1
|
Baldensperger T, Preissler M, Becker CFW. Non-enzymatic posttranslational protein modifications in protein aggregation and neurodegenerative diseases. RSC Chem Biol 2025; 6:129-149. [PMID: 39722676 PMCID: PMC11667106 DOI: 10.1039/d4cb00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Highly reactive metabolic intermediates and other small molecules frequently react with amino acid side chains, leading to non-enzymatic posttranslational modifications (nPTMs) of proteins. The abundance of these modifications increases under high metabolic activity or stress conditions and can dramatically impact protein structure and function. Although protein quality control mechanisms typically mitigate the effects of these impaired proteins, in long-lived and degradation-resistant proteins, nPTMs accumulate. In some cases, such as cataract development and diabetes, clear links between nPTMs, aging, and disease progression have been established. In neurodegenerative diseases such as Alzheimer's and Parkinson's disease, a key question is whether accumulation of nPTMs is a cause or consequence of protein aggregation. This review focuses on major nPTMs found on proteins with central roles in neurodegenerative diseases such as α-synuclein, β-amyloid, and tau. We summarize current knowledge on the formation of these modifications and discuss their potential impact on disease onset and progression. Additionally, we examine what is known to date about how nPTMs impair cellular detoxification, repair, and degradation systems. Finally, we critically discuss the available methodologies to systematically investigate nPTMs at the molecular level and outline suitable approaches to study their effects on protein aggregation. We aim to foster more research into the role of nPTMs in neurodegeneration by adapting methodologies that have proven successful in studying enzymatic posttranslational modifications. Specifically, we advocate for site-specific incorporation of these modifications into target proteins using advanced chemical and molecular biology techniques.
Collapse
Affiliation(s)
- Tim Baldensperger
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| | - Miriam Preissler
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Währinger Str. 42 1090 Vienna Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| |
Collapse
|
2
|
Xu W, Zhao Z, Su M, Jain AD, Lloyd HC, Feng EY, Cox N, Woo CM. Genesis and regulation of C-terminal cyclic imides from protein damage. Proc Natl Acad Sci U S A 2025; 122:e2415976121. [PMID: 39793072 PMCID: PMC11725857 DOI: 10.1073/pnas.2415976121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/12/2024] [Indexed: 01/12/2025] Open
Abstract
C-Terminal cyclic imides are posttranslational modifications that can arise from spontaneous intramolecular cleavage of asparagine or glutamine residues resulting in a form of irreversible protein damage. These protein damage events are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN), indicating that these aging-related modifications may require cellular quality control mechanisms to prevent deleterious effects. However, the factors that determine protein or peptide susceptibility to C-terminal cyclic imide formation or their effect on protein stability have not been explored in detail. Here, we characterize the primary and secondary structures of peptides and proteins that promote intrinsic formation of C-terminal cyclic imides in comparison to deamidation, a related form of protein damage. Extrinsic effects from solution properties and stressors on the cellular proteome additionally promote C-terminal cyclic imide formation on proteins like glutathione synthetase that are susceptible to aggregation if the protein damage products are not removed by CRBN. This systematic investigation provides insight into the regions of the proteome that are prone to these unexpectedly frequent modifications, the effects of this form of protein damage on protein stability, and the biological role of CRBN.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Zhenguang Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Matthew Su
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | | | - Hannah C. Lloyd
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Ethan Yang Feng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Nick Cox
- Novo Nordisk R&D US,Lexington, MA02421
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
3
|
Okyem S, Sweedler JV. Recent Advancements in the Characterization of D-Amino Acid and Isoaspartate Post-Translational Modifications. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39558451 DOI: 10.1002/mas.21916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
One of the great triumphs of mass spectrometry-based peptide and protein characterization is the characterization of their modifications as most modifications have a characteristic mass shift. What happens when the modification does not change the mass of the peptide? Here, the characterization of several peptide and proteins modifications that do not involve a mass shift are highlighted. Protein and peptide synthesis on ribosomes involves L-amino acids; however, posttranslational modifications (PTMs) can convert these L-amino acids into their D-isomers. As another example, nonenzymatic PTM of aspartate leads to the formation of three different isomers, with isoaspartate being the most prevalent. Both modifications do not alter the mass of the peptide and yet can have profound impact on the physicochemical characteristics of the peptide. Several MS and ion mobility techniques are highlighted, as are other methods such as chromatography, enzymatic enrichment, and labeling. The challenges inherent to these analytical methods and prospective developments in bioinformatics and computational strategies are discussed for these zero-dalton PTMs.
Collapse
Affiliation(s)
- Samuel Okyem
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V Sweedler
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Ushakova V, Zorkina Y, Abramova O, Kuanaeva R, Barykin E, Vaneev A, Timoshenko R, Gorelkin P, Erofeev A, Zubkov E, Valikhov M, Gurina O, Mitkevich V, Chekhonin V, Morozova A. Beta-Amyloid and Its Asp7 Isoform: Morphological and Aggregation Properties and Effects of Intracerebroventricular Administration. Brain Sci 2024; 14:1042. [PMID: 39452054 PMCID: PMC11506273 DOI: 10.3390/brainsci14101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES One of the hallmarks of Alzheimer's disease (AD) is the accumulation of aggregated beta-amyloid (Aβ) protein in the form of senile plaques within brain tissue. Senile plaques contain various post-translational modifications of Aβ, including prevalent isomerization of Asp7 residue. The Asp7 isomer has been shown to exhibit increased neurotoxicity and induce amyloidogenesis in brain tissue of transgenic mice. The toxicity of Aβ peptides may be partly mediated by their structure and morphology. In this respect, in this study we analyzed the structural and aggregation characteristics of the Asp7 isoform of Aβ42 and compared them to those of synthetic Aβ42. We also investigated the effects of intracerebroventricular (i.c.v.) administration of these peptides, a method often used to induce AD-like symptoms in rodent models. METHODS Atomic force microscopy (AFM) was conducted to compare the morphological and aggregation properties of Aβ42 and Asp7 iso-Aβ42. The effects of i.c.v. stereotaxic administration of the proteins were assessed via behavioral analysis and reactive oxygen species (ROS) estimation in vivo using a scanning ion-conductance microscope with a confocal module. RESULTS AFM measurements revealed structural differences between the two peptides, most notably in their soluble toxic oligomeric forms. The i.c.v. administration of Asp7 iso-Aβ42 induced spatial memory deficits in rats and elevated oxidative stress levels in vivo, suggesting a potential of ROS in the pathogenic mechanism of the peptide. CONCLUSIONS The findings support the further investigation of Asp7 iso-Aβ42 in translational research on AD and suggest its involvement in neurodegenerative processes.
Collapse
Affiliation(s)
- Valeriya Ushakova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
- Department of Higher Nervous Function, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yana Zorkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| | - Olga Abramova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| | - Regina Kuanaeva
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
| | - Evgeny Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.B.)
| | - Alexander Vaneev
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman Timoshenko
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
| | - Peter Gorelkin
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
| | - Alexander Erofeev
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugene Zubkov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| | - Marat Valikhov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.B.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.B.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
- Department of Medical Nanobiotechnology, N. I. Pirogov Russian National Research Medical University, the Ministry of Health of the Russian Federation, 117513 Moscow, Russia
| | - Anna Morozova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| |
Collapse
|
5
|
Kolobova E, Petrushanko I, Mitkevich V, Makarov AA, Grigorova IL. β-Amyloids and Immune Responses Associated with Alzheimer's Disease. Cells 2024; 13:1624. [PMID: 39404388 PMCID: PMC11475064 DOI: 10.3390/cells13191624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is associated with the accumulation of β-amyloids (Aβs) and the formation of Aβ plaques in the brain. Various structural forms and isoforms of Aβs that have variable propensities for oligomerization and toxicity and may differentially affect the development of AD have been identified. In addition, there is evidence that β-amyloids are engaged in complex interactions with the innate and adaptive immune systems, both of which may also play a role in the regulation of AD onset and progression. In this review, we discuss what is currently known about the intricate interplay between β-amyloids and the immune response to Aβs with a more in-depth focus on the possible roles of B cells in the pathogenesis of AD.
Collapse
Affiliation(s)
- Elizaveta Kolobova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Irina Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Irina L Grigorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| |
Collapse
|
6
|
Köppen J, Kleinschmidt M, Morawski M, Rahfeld JU, Wermann M, Cynis H, Hegenbart U, Daniel C, Roßner S, Schilling S, Schulze A. Identification of isoaspartate-modified transthyretin as potential target for selective immunotherapy of transthyretin amyloidosis. Amyloid 2024; 31:184-194. [PMID: 38801321 DOI: 10.1080/13506129.2024.2358121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Numerous studies suggest a progressive accumulation of post-translationally modified peptides within amyloid fibrils, including isoaspartate (isoD) modifications. Here, we generated and characterised novel monoclonal antibodies targeting isoD-modified transthyretin (TTR). The antibodies were used to investigate the presence of isoD-modified TTR in deposits from transthyretin amyloidosis patients and to mediate antibody-dependent phagocytosis of TTR fibrils. METHODS Monoclonal antibodies were generated by immunisation of mice using an isoD-modified peptide and subsequent hybridoma generation. The antibodies were characterised in terms of affinity and specificity to isoD-modified TTR using surface plasmon resonance, transmission electron microscopy and immunohistochemical staining of human cardiac tissue. The potential to elicit antibody-dependent phagocytosis of TTR fibrils was assessed using THP-1 cells. RESULTS We developed two mouse monoclonal antibodies, 2F2 and 4D4, with high nanomolar affinity for isoD-modified TTR and strong selectivity over the unmodified epitope. Both antibodies show presence of isoD-modified TTR in human cardiac tissue, but not in freshly purified recombinant TTR, suggesting isoD modification only present in aged fibrillar deposits. Likewise, the antibodies only facilitated phagocytosis of TTR fibrils and not TTR monomers by THP-1 cells. CONCLUSIONS These antibodies label aged, non-native TTR deposits, leaving native TTR unattended and thereby potentially enabling new therapeutic approaches.
Collapse
Affiliation(s)
- Janett Köppen
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Martin Kleinschmidt
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Markus Morawski
- Paul Flechsig Institute - Center of Neuropathology and Brain Research, Leipzig, Germany
| | - Jens-Ulrich Rahfeld
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Michael Wermann
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
- Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ute Hegenbart
- Department of Hematology, Oncology and Rheumatology, Amyloidosis Center, University Hospital, Heidelberg, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Steffen Roßner
- Paul Flechsig Institute - Center of Neuropathology and Brain Research, Leipzig, Germany
| | - Stephan Schilling
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
- Faculty of Applied Biosciences and Bioprocess Technology, Anhalt University of Applied Sciences, Köthen, Germany
| | - Anja Schulze
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
- Faculty of Applied Biosciences and Bioprocess Technology, Anhalt University of Applied Sciences, Köthen, Germany
| |
Collapse
|
7
|
Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer's disease states. Mol Brain 2024; 17:44. [PMID: 39020435 PMCID: PMC11256416 DOI: 10.1186/s13041-024-01118-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological condition that gradually impairs cognitive abilities, disrupts memory retention, and impedes daily functioning by impacting the cells of the brain. A key characteristic of AD is the accumulation of amyloid-beta (Aβ) plaques, which play pivotal roles in disease progression. These plaques initiate a cascade of events including neuroinflammation, synaptic dysfunction, tau pathology, oxidative stress, impaired protein clearance, mitochondrial dysfunction, and disrupted calcium homeostasis. Aβ accumulation is also closely associated with other hallmark features of AD, underscoring its significance. Aβ is generated through cleavage of the amyloid precursor protein (APP) and plays a dual role depending on its processing pathway. The non-amyloidogenic pathway reduces Aβ production and has neuroprotective and anti-inflammatory effects, whereas the amyloidogenic pathway leads to the production of Aβ peptides, including Aβ40 and Aβ42, which contribute to neurodegeneration and toxic effects in AD. Understanding the multifaceted role of Aβ, particularly in AD, is crucial for developing effective therapeutic strategies that target Aβ metabolism, aggregation, and clearance with the aim of mitigating the detrimental consequences of the disease. This review aims to explore the mechanisms and functions of Aβ under normal and abnormal conditions, particularly in AD, by examining both its beneficial and detrimental effects.
Collapse
|
8
|
Babalola JA, Stracke A, Loeffler T, Schilcher I, Sideromenos S, Flunkert S, Neddens J, Lignell A, Prokesch M, Pazenboeck U, Strobl H, Tadic J, Leitinger G, Lass A, Hutter-Paier B, Hoefler G. Effect of astaxanthin in type-2 diabetes -induced APPxhQC transgenic and NTG mice. Mol Metab 2024; 85:101959. [PMID: 38763496 PMCID: PMC11153249 DOI: 10.1016/j.molmet.2024.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVES Aggregation and misfolding of amyloid beta (Aβ) and tau proteins, suggested to arise from post-translational modification processes, are thought to be the main cause of Alzheimer's disease (AD). Additionally, a plethora of evidence exists that links metabolic dysfunctions such as obesity, type 2 diabetes (T2D), and dyslipidemia to the pathogenesis of AD. We thus investigated the combinatory effect of T2D and human glutaminyl cyclase activity (pyroglutamylation), on the pathology of AD and whether astaxanthin (ASX) treatment ameliorates accompanying pathophysiological manifestations. METHODS Male transgenic AD mice, APPxhQC, expressing human APP751 with the Swedish and the London mutation and human glutaminyl cyclase (hQC) enzyme and their non-transgenic (NTG) littermates were used. Both APPxhQC and NTG mice were allocated to 3 groups, control, T2D-control, and T2D-ASX. Mice were fed control or high fat diet ± ASX for 13 weeks starting at an age of 11-12 months. High fat diet fed mice were further treated with streptozocin for T2D induction. Effects of genotype, T2D induction, and ASX treatment were evaluated by analysing glycemic readouts, lipid concentration, Aβ deposition, hippocampus-dependent cognitive function and nutrient sensing using immunosorbent assay, ELISA-based assays, western blotting, immunofluorescence staining, and behavioral testing via Morris water maze (MWM), respectively. RESULTS APPxhQC mice presented a higher glucose sensitivity compared to NTG mice. T2D-induced brain dysfunction was more severe in NTG compared to the APPxhQC mice. T2D induction impaired memory functions while increasing hepatic LC3B, ABCA1, and p65 levels in NTG mice. T2D induction resulted in a progressive shift of Aβ from the soluble to insoluble form in APPxhQC mice. ASX treatment reversed T2D-induced memory dysfunction in NTG mice and in parallel increased hepatic pAKT while decreasing p65 and increasing cerebral p-S6rp and p65 levels. ASX treatment reduced soluble Aβ38 and Aβ40 and insoluble Aβ40 levels in T2D-induced APPxhQC mice. CONCLUSIONS We demonstrate that T2D induction in APPxhQC mice poses additional risk for AD pathology as seen by increased Aβ deposition. Although ASX treatment reduced Aβ expression in T2D-induced APPxhQC mice and rescued T2D-induced memory impairment in NTG mice, ASX treatment alone may not be effective in cases of T2D comorbidity and AD.
Collapse
Affiliation(s)
| | - Anika Stracke
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | | | | | - Spyridon Sideromenos
- QPS Austria GmbH, Grambach, Austria; Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Ute Pazenboeck
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, University of Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Austria
| | | | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology Medical University of Graz, Graz, Austria.
| |
Collapse
|
9
|
Campagne S. U1 snRNP Biogenesis Defects in Neurodegenerative Diseases. Chembiochem 2024; 25:e202300864. [PMID: 38459794 DOI: 10.1002/cbic.202300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
The U1 small ribonucleoprotein (U1 snRNP) plays a pivotal role in the intricate process of gene expression, specifically within nuclear RNA processing. By initiating the splicing reaction and modulating 3'-end processing, U1 snRNP exerts precise control over RNA metabolism and gene expression. This ribonucleoparticle is abundantly present, and its complex biogenesis necessitates shuttling between the nuclear and cytoplasmic compartments. Over the past three decades, extensive research has illuminated the crucial connection between disrupted U snRNP biogenesis and several prominent human diseases, notably various neurodegenerative conditions. The perturbation of U1 snRNP homeostasis has been firmly established in diseases such as Spinal Muscular Atrophy, Pontocerebellar hypoplasia, and FUS-mediated Amyotrophic Lateral Sclerosis. Intriguingly, compelling evidence suggests a potential correlation in Fronto-temporal dementia and Alzheimer's disease as well. Although the U snRNP biogenesis pathway is conserved across all eukaryotic cells, neurons, in particular, appear to be highly susceptible to alterations in spliceosome homeostasis. In contrast, other cell types exhibit a greater resilience to such disturbances. This vulnerability underscores the intricate relationship between U1 snRNP dynamics and the health of neuronal cells, shedding light on potential avenues for understanding and addressing neurodegenerative disorders.
Collapse
Affiliation(s)
- Sebastien Campagne
- University of Bordeaux, INSERM U1212, CNRS UMR5320, ARNA unit 146, rue Leo Saignat, 33077, Bordeaux
- Institut Européen de Chimie et de Biologie, 2, rue Robert Escarpit, 33600, Pessac
| |
Collapse
|
10
|
Chen YC, Wu HY, Lin LC, Chang CW, Liao PC. Characterizing the D-Amino Acid Position in Peptide Epimers by Using Higher-Energy Collisional Dissociation Tandem Mass Spectrometry: A Case Study of Liraglutide. Int J Mol Sci 2024; 25:1379. [PMID: 38338662 PMCID: PMC10855602 DOI: 10.3390/ijms25031379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
D-amino acid-containing peptides (DAACPs) occur in biological and artificial environments. Since the importance of DAACPs has been recognized, various mass spectrometry-based analytical approaches have been developed. However, the capability of higher-energy collisional dissociation (HCD) fragmentation to characterize DAACP sites has not been evaluated. In this study, we compared the normalized spectra intensity under different conditions of HCD and used liraglutide along with its DAACPs as examples. Our results indicated that the difference in the intensity of y ions between DAACPs and all-L liraglutide could not only distinguish them but also localize the sites of D-amino acids in the DAACPs. Our data demonstrate the potential of using HCD for the site characterization of DAACPs, which may have great impact in biological studies and peptide drug development.
Collapse
Affiliation(s)
- Yuan-Chih Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan
| | | | - Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
11
|
Kozin SA, Kechko OI, Adzhubei AA, Makarov AA, Mitkevich VA. Switching On/Off Amyloid Plaque Formation in Transgenic Animal Models of Alzheimer's Disease. Int J Mol Sci 2023; 25:72. [PMID: 38203242 PMCID: PMC10778642 DOI: 10.3390/ijms25010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
A hallmark of Alzheimer's disease (AD) are the proteinaceous aggregates formed by the amyloid-beta peptide (Aβ) that is deposited inside the brain as amyloid plaques. The accumulation of aggregated Aβ may initiate or enhance pathologic processes in AD. According to the amyloid hypothesis, any agent that has the capability to inhibit Aβ aggregation and/or destroy amyloid plaques represents a potential disease-modifying drug. In 2023, a humanized IgG1 monoclonal antibody (lecanemab) against the Aβ-soluble protofibrils was approved by the US FDA for AD therapy, thus providing compelling support to the amyloid hypothesis. To acquire a deeper insight on the in vivo Aβ aggregation, various animal models, including aged herbivores and carnivores, non-human primates, transgenic rodents, fish and worms were widely exploited. This review is based on the recent data obtained using transgenic animal AD models and presents experimental verification of the critical role in Aβ aggregation seeding of the interactions between zinc ions, Aβ with the isomerized Asp7 (isoD7-Aβ) and the α4β2 nicotinic acetylcholine receptor.
Collapse
Affiliation(s)
- Sergey A. Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.I.K.); (A.A.A.); (A.A.M.)
| | | | | | | | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.I.K.); (A.A.A.); (A.A.M.)
| |
Collapse
|
12
|
Zhou S, Zhou Y, Zhong W, Su Z, Qin Z. Involvement of protein L-isoaspartyl methyltransferase in the physiopathology of neurodegenerative diseases: Possible substrates associated with synaptic function. Neurochem Int 2023; 170:105606. [PMID: 37657764 DOI: 10.1016/j.neuint.2023.105606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Synaptic dysfunction is a typical pathophysiologic change in neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Hintington's disease (HD) and amyotrophic lateral sclerosis (ALS), which involves protein post-translational modifications (PTMs) including L-isoaspartate (L-isoAsp) formed by isomerization of aspartate or deamidation of asparagine. The formation of L-isoAsp could be repaired by protein L-isoaspartyl methyltransferase (PIMT). Some synaptic proteins have been identified as PIMT potential substrates and play an essential role in ensuring synaptic function. In this review, we discuss the role of certain synaptic proteins as PIMT substrates in neurodegenerative disease, thus providing therapeutic synapse-centered targets for the treatment of NDs.
Collapse
Affiliation(s)
- Sirui Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yancheng Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wanyu Zhong
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhonghao Su
- Department of Febrile Disease, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhenxia Qin
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
13
|
Cruceta L, Sun Y, Kenyaga JM, Ostrovsky D, Rodgers A, Vugmeyster L, Yao L, Qiang W. Modulation of aggregation and structural polymorphisms of β-amyloid fibrils in cellular environments by pyroglutamate-3 variant cross-seeding. J Biol Chem 2023; 299:105196. [PMID: 37633335 PMCID: PMC10518720 DOI: 10.1016/j.jbc.2023.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023] Open
Abstract
Amyloidogenic deposition of β-amyloid (Aβ) peptides in human brain involves not only the wild-type Aβ (wt-Aβ) sequences, but also posttranslationally modified Aβ (PTM-Aβ) variants. Recent studies hypothesizes that the PTM-Aβ variants may trigger the deposition of wt-Aβ, which underlies the pathology of Sporadic Alzheimer's disease. Among PTM-Aβ variants, the pyroglutamate-3-Aβ (pyroE3-Aβ) has attracted much attention because of their significant abundances and broad distributions in senile plaques and dispersible and soluble oligomers. pyroE3-specific antibodies are being tested as potential anti-Aβ drugs in clinical trials. However, evidence that support the triggering effect of pyroE3-Aβ on wt-Aβ in cells remain lacking, which diminishes its pathological relevance. We show here that cross-seeding with pyroE3-Aβ40 leads to accelerated extracellular and intracellular aggregation of wt-Aβ40 in different neuronal cells. Cytotoxicity levels are elevated through the cross-seeded aggregation, comparing with the self-seeded aggregation of wt-Aβ40 or the static presence of pyroE3-Aβ40 seeds. For the extracellular deposition in mouse neuroblastoma Neuro2a (N2a) cells, the cytotoxicity elevation correlates positively with the seeding efficiency. Besides aggregation rates, cross-seeding with pyroE3-Aβ40 also modulates the molecular level structural polymorphisms of the resultant wt-Aβ40 fibrils. Using solid-state nuclear magnetic resonance (ssNMR) spectroscopy, we identified key structural differences between the parent pyroE3/ΔE3 and wt-Aβ40 fibrils within their fibrillar cores. Structural propagation from seeds to daughter fibrils is demonstrated to be more pronounced in the extracellular seeding in N2a cells by comparing the ssNMR spectra from different seeded wt-Aβ40 fibrils, but less significant in the intracellular seeding process in human neuroblastoma SH-SY5Y cells.
Collapse
Affiliation(s)
- Letticia Cruceta
- Department of Chemistry, Binghamton University, State University of New York, Vestal, New York, USA
| | - Yan Sun
- Small Scale System Integration and Packaging (S(3)IP), Binghamton University, Vestal, New York, USA
| | - June M Kenyaga
- Department of Chemistry, Binghamton University, State University of New York, Vestal, New York, USA
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver Colorado, USA
| | - Aryana Rodgers
- Department of Chemistry, University of Colorado Denver, Denver Colorado, USA
| | - Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver Colorado, USA
| | - Lan Yao
- Small Scale System Integration and Packaging (S(3)IP), Binghamton University, Vestal, New York, USA
| | - Wei Qiang
- Department of Chemistry, Binghamton University, State University of New York, Vestal, New York, USA.
| |
Collapse
|
14
|
Long CC, Antevska A, Mast DH, Okyem S, Sweedler JV, Do TD. Nonenzymatic Posttranslational Modifications and Peptide Cleavages Observed in Peptide Epimers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1898-1907. [PMID: 37102735 PMCID: PMC10524105 DOI: 10.1021/jasms.3c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Posttranslational modifications (PTMs) play vital roles in cellular homeostasis and are implicated in various pathological conditions. This work uses two ion mobility spectrometry-mass spectrometry (IMS-MS) modalities, drift-tube IMS (DT-IMS) and trapped IMS (TIMS), to characterize three important nonenzymatic PTMs that induce no mass loss: l/d isomerization, aspartate/isoaspartate isomerization, and cis/trans proline isomerization. These PTMs are assessed in a single peptide system, the recently discovered pleurin peptides, Plrn2, from Aplysia californica. We determine that the DT-IMS-MS/MS can capture and locate asparagine deamidation into aspartate and its subsequent isomerization to isoaspartate, a key biomarker for age-related diseases. Additionally, nonenzymatic peptide cleavage via in-source fragmentation is evaluated for differences in the intensities and patterns of fragment peaks between these PTMs. Peptide fragments resulting from in-source fragmentation, preceded by peptide denaturation by liquid chromatography (LC) mobile phase, exhibited cis/trans proline isomerization. Finally, the effects of differing the fragmentation voltage at the source and solution-based denaturation conditions on in-source fragmentation profiles are evaluated, confirming that LC denaturation and in-source fragmentation profoundly impact N-terminal peptide bond cleavages of Plrn2 and the structures of their fragment ions. With that, LC-IMS-MS/MS coupled with in-source fragmentation could be a robust method to identify three important posttranslational modifications: l/d isomerization, Asn-deamidation leading to Asp/IsoAsp isomerization, and cis/trans proline isomerization.
Collapse
Affiliation(s)
- Connor C. Long
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - David H. Mast
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Samuel Okyem
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Thanh D. Do
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
15
|
Du S, Wey M, Armstrong DW. d-Amino acids in biological systems. Chirality 2023; 35:508-534. [PMID: 37074214 DOI: 10.1002/chir.23562] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/20/2023]
Abstract
Investigations on the occurrence and biochemical roles of free D-amino acids and D-amino acid-containing peptides and proteins in living systems have increased in frequency and significance. Their occurrence and roles may vary substantially with progression from microbiotic to evermore advanced macrobiotic systems. We now understand many of the biosynthetic and regulatory pathways, which are outlined herein. Important uses for D-amino acids in plants, invertebrates, and vertebrates are reviewed. Given its importance, a separate section on the occurrence and role of D-amino acids in human disease is presented.
Collapse
Affiliation(s)
- Siqi Du
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Michael Wey
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
16
|
Bashyal A, Hui JO, Flick T, Dykstra AB, Zhang Q, Campuzano IDG, Brodbelt JS. Differentiation of Aspartic and Isoaspartic Acid Using 193 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2023; 95:11510-11517. [PMID: 37458293 PMCID: PMC10588209 DOI: 10.1021/acs.analchem.3c02025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Spontaneous conversion of aspartic acid (Asp) to isoaspartic acid (isoAsp) is a ubiquitous modification that influences the structure and function of proteins. This modification of Asp impacts the stability of biotherapeutics and has been linked to the development of neurodegenerative diseases. We explored the use of 193 nm ultraviolet photodissociation (UVPD) to distinguish Asp and isoAsp in the protonated and deprotonated peptides. The differences in the relative abundances of several fragment ions uniquely generated by UVPD were used to differentiate isomeric peptide standards containing Asp or isoAsp. These fragment ions result from the cleavage of bonds N-terminal to Asp/isoAsp residues in addition to the side-chain losses from Asp/isoAsp or the losses of COOH, CO2, CO, or H2O from y-ions. Fragmentation of Asp-containing tryptic peptides using UVPD resulted in more enhanced w/w + 1/y - 1/x ions, while isoAsp-containing peptides yielded more enhanced y - 18/y - 45/y - 46 ions. UVPD was also used to identify an isomerized peptide from a tryptic digest of a monoclonal antibody. Moreover, UVPD of a protonated nontryptic peptide resulted in more enhanced y ions N- and C-terminal to isoAsp and differences in b/y ion ratios that were used to identify the isoAsp peptide.
Collapse
Affiliation(s)
- Aarti Bashyal
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - John O Hui
- Amgen Research, Molecular Analytics, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Tawnya Flick
- Process Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Andrew B Dykstra
- Process Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Qingchun Zhang
- Process Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Iain D G Campuzano
- Amgen Research, Molecular Analytics, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Readel ER, Patel A, Putman JI, Du S, Armstrong DW. Antibody binding of amyloid beta peptide epimers/isomers and ramifications for immunotherapies and drug development. Sci Rep 2023; 13:12387. [PMID: 37524807 PMCID: PMC10390520 DOI: 10.1038/s41598-023-38788-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023] Open
Abstract
Extracellular deposition of amyloid beta (Aβ) peptide is a contributing factor of Alzheimer's disease (AD). Considerable effort has been expended to create effective antibodies, or immunotherapies, targeting Aβ peptides. A few immunotherapies are thought to provide some benefit. It is possible that a contributing factor to the responses of such therapies may be the presence of modified, or aberrant, Aβ peptides found in AD patients. These aberrations include the isomerization and epimerization of L-Asp and L-Ser residues to form D-Asp, L/D-isoAsp, and D-Ser residues, respectively. An effective methodology is essential to isolate all Aβ peptides and then to quantify and locate the aberrant amino acids. Modifications to Aβ peptides may elevate the deposition of Aβ plaques and/or contribute to the neurodegeneration in AD patients, and may alter the binding affinity to antibodies. Herein, we used immunoprecipitation to examine the binding affinity of four antibodies against 18 epimeric and/or isomeric Aβ peptides compared to wild type (all L) Aβ peptide. Tandem mass spectrometry was used as a detection method, which also was found to produce highly variable results for epimeric and/or isomeric Aβ.
Collapse
Affiliation(s)
- Elizabeth R Readel
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Arzoo Patel
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Joshua I Putman
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Siqi Du
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
18
|
Zhang S, Dong H, Bian J, Li D, Liu C. Targeting amyloid proteins for clinical diagnosis of neurodegenerative diseases. FUNDAMENTAL RESEARCH 2023; 3:505-519. [PMID: 38933553 PMCID: PMC11197785 DOI: 10.1016/j.fmre.2022.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Abnormal aggregation and accumulation of pathological amyloid proteins such as amyloid-β, Tau, and α-synuclein play key pathological roles and serve as histological hallmarks in different neurodegenerative diseases (NDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, various post-translational modifications (PTMs) have been identified on pathological amyloid proteins and are subjected to change during disease progression. Given the central role of amyloid proteins in NDs, tremendous efforts have been made to develop amyloid-targeting strategies for clinical diagnosis and molecular classification of NDs. In this review, we summarize two major strategies for targeting amyloid aggregates, with a focus on the trials in AD diagnosis. The first strategy is a positron emission tomography (PET) scan of protein aggregation in the brain. We mainly focus on introducing the development of small-molecule PET tracers for specifically recognizing pathological amyloid fibrils. The second strategy is the detection of PTM biomarkers on amyloid proteins in cerebrospinal fluid and plasma. We discuss the pathological roles of different PTMs in diseases and how we can use the PTM profile of amyloid proteins for clinical diagnosis. Finally, we point out the potential technical challenges of these two strategies, and outline other potential strategies, as well as a combination of multiple strategies, for molecular diagnosis of NDs.
Collapse
Affiliation(s)
- Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Bian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
19
|
Ozaki M, Shimotsuma M, Kuranaga T, Kakeya H, Hirose T. Separation of amyloid β fragment peptides with racemised and isomerised aspartic acid residues using an original chiral resolution labeling reagent. Analyst 2023; 148:1209-1213. [PMID: 36779274 DOI: 10.1039/d2an01885c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We developed a system to separate and identify racemised and isomerised aspartic acid (Asp) residues in amyloid β (Aβ) by labeling with an original chiral resolution labeling reagent, 1-fluoro-2,4-dinitrophenyl-5-D-leucine-N,N-dimethylethylenediamine-amide (D-FDLDA). The racemised and isomerised Asp residues labeled with D-FDLDA in Aβ fragments generated by digesting with trypsin and endoproteinase Glu-C were separated and identified by liquid chromatography-mass spectrometry (LC-MS) under simple gradient conditions. Furthermore, the labeled Aβ fragments did not aggregate and remained stable at least for 1 week at 4 °C.
Collapse
Affiliation(s)
- Makoto Ozaki
- Research and Development Department, Purification Section, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| | - Motoshi Shimotsuma
- Research and Development Department, Purification Section, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan.
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan.
| | - Tsunehisa Hirose
- Research and Development Department, Purification Section, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| |
Collapse
|
20
|
Kozin SA. Role of Interaction between Zinc and Amyloid Beta in Pathogenesis of Alzheimer’s Disease. BIOCHEMISTRY (MOSCOW) 2023; 88:S75-S87. [PMID: 37069115 DOI: 10.1134/s0006297923140055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Progression of Alzheimer's disease is accompanied by the appearance of extracellular deposits in the brain tissues of patients with characteristic supramolecular morphology (amyloid plaques) the main components of which are β-amyloid isoforms (Aβ) and biometal ions (zinc, copper, iron). For nearly 40 years and up to the present time, the vast majority of experimental data indicate critical role of formation and accumulation of amyloid plaques (cerebral amyloidogenesis) in pathogenesis of Alzheimer's disease, however, nature of the molecular agents that initiate cerebral amyloidogenesis, as well as causes of aggregation of the native Aβ molecules in vivo remained unknown for a long time. This review discusses the current level of fundamental knowledge about the molecular mechanisms of interactions of zinc ions with a number of Aβ isoforms present in amyloid plaques of the patients with Alzheimer's disease, and also shows how this knowledge made it possible to identify driving forces of the cerebral amyloidogenesis in Alzheimer's disease and made it possible to determine fundamentally new biomarkers and drug targets as part of development of innovative strategy for diagnosis and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
21
|
Pittalà MGG, Reina S, Nibali SC, Cucina A, Cubisino SAM, Cunsolo V, Amodeo GF, Foti S, De Pinto V, Saletti R, Messina A. Specific Post-Translational Modifications of VDAC3 in ALS-SOD1 Model Cells Identified by High-Resolution Mass Spectrometry. Int J Mol Sci 2022; 23:ijms232415853. [PMID: 36555496 PMCID: PMC9784795 DOI: 10.3390/ijms232415853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Damage induced by oxidative stress is a key driver of the selective motor neuron death in amyotrophic lateral sclerosis (ALS). Mitochondria are among the main producers of ROS, but they also suffer particularly from their harmful effects. Voltage-dependent anion-selective channels (VDACs) are the most represented proteins of the outer mitochondrial membrane where they form pores controlling the permeation of metabolites responsible for mitochondrial functions. For these reasons, VDACs contribute to mitochondrial quality control and the entire energy metabolism of the cell. In this work we assessed in an ALS cell model whether disease-related oxidative stress induces post-translational modifications (PTMs) in VDAC3, a member of the VDAC family of outer mitochondrial membrane channel proteins, known for its role in redox signaling. At this end, protein samples enriched in VDACs were prepared from mitochondria of an ALS model cell line, NSC34 expressing human SOD1G93A, and analyzed by nUHPLC/High-Resolution nESI-MS/MS. Specific over-oxidation, deamidation, succination events were found in VDAC3 from ALS-related NSC34-SOD1G93A but not in non-ALS cell lines. Additionally, we report evidence that some PTMs may affect VDAC3 functionality. In particular, deamidation of Asn215 alone alters single channel behavior in artificial membranes. Overall, our results suggest modifications of VDAC3 that can impact its protective role against ROS, which is particularly important in the ALS context. Data are available via ProteomeXchange with identifier PXD036728.
Collapse
Affiliation(s)
- Maria Gaetana Giovanna Pittalà
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Simona Reina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Stefano Conti Nibali
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Annamaria Cucina
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | | | - Vincenzo Cunsolo
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | | | - Salvatore Foti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Rosaria Saletti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-095-738-5026
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| |
Collapse
|
22
|
Wang J, Guo C, Meng Z, Zwan MD, Chen X, Seelow S, Lundström SL, Rodin S, Teunissen CE, Zubarev RA. Testing the link between isoaspartate and Alzheimer's disease etiology. Alzheimers Dement 2022; 19:1491-1502. [PMID: 35924765 DOI: 10.1002/alz.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Abstract
Isoaspartate (isoAsp) is a damaging amino acid residue formed in proteins as a result of spontaneous deamidation. IsoAsp disrupts protein structures, making them prone to aggregation. Here we strengthened the link between isoAsp and Alzheimer's disease (AD) by novel approaches to isoAsp analysis in human serum albumin (HSA), the most abundant blood protein and a major carrier of amyloid beta (Aβ) and phosphorylated tau (p-tau) in blood. We discovered a reduced amount of anti-isoAsp antibodies (P < 0.0001), an elevated isoAsp level in HSA (P < 0.001), more HSA aggregates (P < 0.0001), and increased levels of free Aβ (P < 0.01) in AD blood compared to controls. We also found that deamidation significantly reduces HSA capacity to bind with Aβ and p-tau (P < 0.05). These suggest the presence in AD of a bottleneck in clearance of Aβ and p-tau, leading to their increased concentrations in the brain and facilitating their aggregations there.
Collapse
Affiliation(s)
- Jijing Wang
- Department of Medical Biophysics and Biochemistry, Karolinska Institutet, Stockholm, Sweden
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai, China
| | - Zhaowei Meng
- Department of Medical Biophysics and Biochemistry, Karolinska Institutet, Stockholm, Sweden
| | - Marissa D Zwan
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Xin Chen
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai, China
| | - Sven Seelow
- Department of Medical Biophysics and Biochemistry, Karolinska Institutet, Stockholm, Sweden
| | - Susanna L Lundström
- Department of Medical Biophysics and Biochemistry, Karolinska Institutet, Stockholm, Sweden
| | - Sergey Rodin
- Department of Medical Biophysics and Biochemistry, Karolinska Institutet, Stockholm, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Roman A Zubarev
- Department of Medical Biophysics and Biochemistry, Karolinska Institutet, Stockholm, Sweden.,Endocrinology Research Centre, Moscow, Russian Federation.,Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
23
|
Pandey G, Julian RR. LC-MS Reveals Isomeric Inhibition of Proteolysis by Lysosomal Cathepsins. ANALYSIS & SENSING 2022; 2:e202200017. [PMID: 37621768 PMCID: PMC10449060 DOI: 10.1002/anse.202200017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 08/26/2023]
Abstract
Defects in autophagy are implicated in many age-related diseases that cause neurodegeneration including both Alzheimer's and Parkinson's. Within autophagy, the lysosome plays a crucial role by enabling the breakdown and recycling of a wide range of biomolecular species. Herein, the effects of isomerization of aspartic acid (Asp) on substrate recognition and degradation are investigated for a collection of lysosomal cathepsins using liquid chromatography coupled to mass spectrometry. By examining a series of synthetic peptides with sequences derived from long-lived proteins known to undergo Asp isomerization, we demonstrate that isomerized forms of Asp significantly perturb cathepsin activity by impeding digestion and shifting preferential sites of proteolysis. Although the sensitivity to isomerization varies for each cathepsin, none of the cathepsins were capable of digesting sites within several residues of the C-terminal side of the isomerized Asp. Under physiological conditions, the peptide fragments left behind after such incomplete digestion would not be suitable substrates for transporter recognition and could precipitate autophagic malfunction in the form of lysosomal storage.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
24
|
Enhanced ion mobility resolution of Abeta isomers from human brain using high-resolution demultiplexing software. Anal Bioanal Chem 2022; 414:5683-5693. [DOI: 10.1007/s00216-022-04055-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 03/31/2022] [Indexed: 01/03/2023]
|
25
|
Hubbard EE, Heil LR, Merrihew GE, Chhatwal JP, Farlow MR, McLean CA, Ghetti B, Newell KL, Frosch MP, Bateman RJ, Larson EB, Keene CD, Perrin RJ, Montine TJ, MacCoss MJ, Julian RR. Does Data-Independent Acquisition Data Contain Hidden Gems? A Case Study Related to Alzheimer's Disease. J Proteome Res 2022; 21:118-131. [PMID: 34818016 PMCID: PMC8741752 DOI: 10.1021/acs.jproteome.1c00558] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the potential benefits of using data-independent acquisition (DIA) proteomics protocols is that information not originally targeted by the study may be present and discovered by subsequent analysis. Herein, we reanalyzed DIA data originally recorded for global proteomic analysis to look for isomerized peptides, which occur as a result of spontaneous chemical modifications to long-lived proteins. Examination of a large set of human brain samples revealed a striking relationship between Alzheimer's disease (AD) status and isomerization of aspartic acid in a peptide from tau. Relative to controls, a surprising increase in isomer abundance was found in both autosomal dominant and sporadic AD samples. To explore potential mechanisms that might account for these observations, quantitative analysis of proteins related to isomerization repair and autophagy was performed. Differences consistent with reduced autophagic flux in AD-related samples relative to controls were found for numerous proteins, including most notably p62, a recognized indicator of autophagic inhibition. These results suggest, but do not conclusively demonstrate, that lower autophagic flux may be strongly associated with loss of function in AD brains. This study illustrates that DIA data may contain unforeseen results of interest and may be particularly useful for pilot studies investigating new research directions. In this case, a promising target for future investigations into the therapy and prevention of AD has been identified.
Collapse
Affiliation(s)
- Evan E. Hubbard
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Lilian R. Heil
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, United States
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, United States
| | - Jasmeer P. Chhatwal
- Harvard Medical School, Massachusetts General Hospital, Department of Neurology, 15 Parkman St, Suite 835, Boston MA 02114
| | - Martin R. Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | | | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Kathy L. Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Matthew P. Frosch
- C.S. Kubik Laboratory for Neuropathology, and Massachusetts Alzheimer Disease Research Center, Massachusetts General Hospital, Boston, MA 02114
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St. Louis, 63110, Missouri, USA
| | - Eric B. Larson
- Kaiser Permanente Washington Health Research Institute and Department of Medicine, University of Washington, Seattle WA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, 98195, United States
| | - Richard J. Perrin
- Department of Pathology and Immunology, Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Thomas J. Montine
- Department of Pathology, Stanford University, Stanford, CA, 94305, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States,corresponding author:
| |
Collapse
|
26
|
The Dynamics of β-Amyloid Proteoforms Accumulation in the Brain of a 5xFAD Mouse Model of Alzheimer’s Disease. Int J Mol Sci 2021; 23:ijms23010027. [PMID: 35008451 PMCID: PMC8745018 DOI: 10.3390/ijms23010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia among the elderly. Neuropathologically, AD is characterized by the deposition of a 39- to 42-amino acid long β-amyloid (Aβ) peptide in the form of senile plaques. Several post-translational modifications (PTMs) in the N-terminal domain have been shown to increase the aggregation and cytotoxicity of Aβ, and specific Aβ proteoforms (e.g., Aβ with isomerized D7 (isoD7-Aβ)) are abundant in the senile plaques of AD patients. Animal models are indispensable tools for the study of disease pathogenesis, as well as preclinical testing. In the presented work, the accumulation dynamics of Aβ proteoforms in the brain of one of the most widely used amyloid-based mouse models (the 5xFAD line) was monitored. Mass spectrometry (MS) approaches, based on ion mobility separation and the characteristic fragment ion formation, were applied. The results indicated a gradual increase in the Aβ fraction of isoD7-Aβ, starting from approximately 8% at 7 months to approximately 30% by 23 months of age. Other specific PTMs, in particular, pyroglutamylation, deamidation, and oxidation, as well as phosphorylation, were also monitored. The results for mice of different ages demonstrated that the accumulation of Aβ proteoforms correlate with the formation of Aβ deposits. Although the mouse model cannot be a complete analogue of the processes occurring in the human brain in AD, and several of the observed parameters differ significantly from human values supposedly due to the limited lifespan of the model animals, this dynamic study provides evidence on at least one of the possible mechanisms that can trigger amyloidosis in AD, i.e., the hypothesis on the relationship between the accumulation of isoD7-Aβ and the progression of AD-like pathology.
Collapse
|
27
|
Carosi JM, Fourrier C, Bensalem J, Sargeant TJ. The mTOR-lysosome axis at the centre of ageing. FEBS Open Bio 2021; 12:739-757. [PMID: 34878722 PMCID: PMC8972043 DOI: 10.1002/2211-5463.13347] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Age‐related diseases represent some of the largest unmet clinical needs of our time. While treatment of specific disease‐related signs has had some success (for example, the effect of statin drugs on slowing progression of atherosclerosis), slowing biological ageing itself represents a target that could significantly increase health span and reduce the prevalence of multiple age‐related diseases. Mechanistic target of rapamycin complex 1 (mTORC1) is known to control fundamental processes in ageing: inhibiting this signalling complex slows biological ageing, reduces age‐related disease pathology and increases lifespan in model organisms. How mTORC1 inhibition achieves this is still subject to ongoing research. However, one mechanism by which mTORC1 inhibition is thought to slow ageing is by activating the autophagy–lysosome pathway. In this review, we examine the special bidirectional relationship between mTORC1 and the lysosome. In cells, mTORC1 is located on lysosomes. From this advantageous position, it directly controls the autophagy–lysosome pathway. However, the lysosome also controls mTORC1 activity in numerous ways, creating a special two‐way relationship. We then explore specific examples of how inhibition of mTORC1 and activation of the autophagy–lysosome pathway slow the molecular hallmarks of ageing. This body of literature demonstrates that the autophagy–lysosome pathway represents an excellent target for treatments that seek to slow biological ageing and increase health span in humans.
Collapse
Affiliation(s)
- Julian M Carosi
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| | - Célia Fourrier
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| | - Julien Bensalem
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| | - Timothy J Sargeant
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| |
Collapse
|
28
|
VDACs Post-Translational Modifications Discovery by Mass Spectrometry: Impact on Their Hub Function. Int J Mol Sci 2021; 22:ijms222312833. [PMID: 34884639 PMCID: PMC8657666 DOI: 10.3390/ijms222312833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
VDAC (voltage-dependent anion selective channel) proteins, also known as mitochondrial porins, are the most abundant proteins of the outer mitochondrial membrane (OMM), where they play a vital role in various cellular processes, in the regulation of metabolism, and in survival pathways. There is increasing consensus about their function as a cellular hub, connecting bioenergetics functions to the rest of the cell. The structural characterization of VDACs presents challenging issues due to their very high hydrophobicity, low solubility, the difficulty to separate them from other mitochondrial proteins of similar hydrophobicity and the practical impossibility to isolate each single isoform. Consequently, it is necessary to analyze them as components of a relatively complex mixture. Due to the experimental difficulties in their structural characterization, post-translational modifications (PTMs) of VDAC proteins represent a little explored field. Only in recent years, the increasing number of tools aimed at identifying and quantifying PTMs has allowed to increase our knowledge in this field and in the mechanisms that regulate functions and interactions of mitochondrial porins. In particular, the development of nano-reversed phase ultra-high performance liquid chromatography (nanoRP-UHPLC) and ultra-sensitive high-resolution mass spectrometry (HRMS) methods has played a key role in this field. The findings obtained on VDAC PTMs using such methodologies, which permitted an in-depth characterization of these very hydrophobic trans-membrane pore proteins, are summarized in this review.
Collapse
|
29
|
Mukherjee S, Perez KA, Dubois C, Nisbet RM, Li QX, Varghese S, Jin L, Birchall I, Streltsov VA, Vella LJ, McLean C, Barham KJ, Roberts BR, Masters CL. Citrullination of Amyloid-β Peptides in Alzheimer's Disease. ACS Chem Neurosci 2021; 12:3719-3732. [PMID: 34519476 DOI: 10.1021/acschemneuro.1c00474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein citrullination (deimination of arginine residue) is a well-known biomarker of inflammation. Elevated protein citrullination has been shown to colocalize with extracellular amyloid plaques in postmortem AD patient brains. Amyloid-β (Aβ) peptides which aggregate and accumulate in the plaques of Alzheimer's disease (AD) have sequential N-terminal truncations and multiple post-translational modifications (PTM) such as isomerization, pyroglutamate formation, phosphorylation, nitration, and dityrosine cross-linking. However, no conclusive biochemical evidence exists whether citrullinated Aβ is present in AD brains. In this study, using high-resolution mass spectrometry, we have identified citrullination of Aβ in sporadic and familial AD brains by characterizing the tandem mass spectra of endogenous N-truncated citrullinated Aβ peptides. Our quantitative estimations demonstrate that ∼ 35% of pyroglutamate3-Aβ pool was citrullinated in plaques in the sporadic AD temporal cortex and ∼ 22% in the detergent-insoluble frontal cortex fractions. Similarly, hypercitrullinated pyroglutamate3-Aβ (∼ 30%) was observed in both the detergent-soluble as well as insoluble Aβ pool in familial AD cases. Our results indicate that a common mechanism for citrullination of Aβ exists in both the sporadic and familial AD. We establish that citrullination of Aβ is a remarkably common PTM, closely associated with pyroglutamate3-Aβ formation and its accumulation in AD. This may have implications for Aβ toxicity, autoantigenicity of Aβ, and may be relevant for the design of diagnostic assays and therapeutic targeting.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Keyla A. Perez
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Celine Dubois
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Rebecca M. Nisbet
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Qiao-Xin Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Shiji Varghese
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Liang Jin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ian Birchall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Victor A. Streltsov
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Laura J. Vella
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Catriona McLean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia
| | - Kevin J. Barham
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Blaine R. Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Colin L. Masters
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
30
|
Su Z, Ren N, Ling Z, Sheng L, Zhou S, Guo C, Ke Z, Xu T, Qin Z. Differential expression of microRNAs associated with neurodegenerative diseases and diabetic nephropathy in protein l-isoaspartyl methyltransferase-deficient mice. Cell Biol Int 2021; 45:2316-2330. [PMID: 34314072 DOI: 10.1002/cbin.11679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/15/2021] [Accepted: 07/24/2021] [Indexed: 11/05/2022]
Abstract
Protein l-isoaspartyl methyltransferase (PIMT/PCMT1), an enzyme repairing isoaspartate residues in peptides and proteins that result from the spontaneous decomposition of normal l-aspartyl and l-asparaginyl residues during aging, has been revealed to be involved in neurodegenerative diseases (NDDs) and diabetes. However, the molecular mechanisms for a putative association of PIMT dysfunction with these diseases have not been clarified. Our study aimed to identify differentially expressed microRNAs (miRNAs) in the brain and kidneys of PIMT-deficient mice and uncover the epigenetic mechanism of PIMT-involved NDDs and diabetic nephropathy (DN). Differentially expressed miRNAs by sequencing underwent target prediction and enrichment analysis in the brain and kidney of PIMT knockout (KO) mice and age-matched wild-type (WT) littermates. Sequence analysis revealed 40 differentially expressed miRNAs in the PIMT KO mouse brain including 25 upregulated miRNAs and 15 downregulated miRNAs. In the PIMT KO mouse kidney, there were 80 differentially expressed miRNAs including 40 upregulated miRNAs and 40 downregulated miRNAs. Enrichment analysis and a systematic literature review of differentially expressed miRNAs indicated the involvement of PIMT deficiency in the pathogenesis in NDDs and DN. Some overlapped differentially expressed miRNAs between the brain and kidney were quantitatively assessed in the brain, kidney, and serum-derived exosomes, respectively. Despite being preliminary, these results may aid in investigating the pathological hallmarks and identify the potential therapeutic targets and biomarkers for PIMT dysfunction-related NDDs and DN.
Collapse
Affiliation(s)
- Zhonghao Su
- Department of Febrile Disease, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Na Ren
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zicheng Ling
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lanyue Sheng
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sirui Zhou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxia Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tiefeng Xu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenxia Qin
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
31
|
Chatterjee T, Das G, Ghosh S, Chakrabarti P. Effect of gold nanoparticles on the structure and neuroprotective function of protein L-isoaspartyl methyltransferase (PIMT). Sci Rep 2021; 11:14296. [PMID: 34253804 PMCID: PMC8275801 DOI: 10.1038/s41598-021-93752-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Fibrillation of peptides and proteins is implicated in various neurodegenerative diseases and is a global concern. Aging leads to the formation of abnormal isoaspartate (isoAsp) residues from isomerization of normal aspartates in proteins, triggering fibril formation that leads to neurodegenerative diseases. Protein L-isoaspartyl methyltransferase (PIMT) is a repair enzyme which recognizes and converts altered isoAsp residues back to normal aspartate. Here we report the effect of gold nanoparticles (AuNPs) of different sizes on the structure and function of PIMT. Spherical AuNPs, viz. AuNS5, AuNS50 and AuNS100 (the number indicating the diameter in nm) stabilize PIMT, with AuNS100 exhibiting the best efficacy, as evident from various biophysical experiments. Isothermal titration calorimetry (ITC) revealed endothermic, but entropy driven mode of binding of PIMT with all the three AuNSs. Methyltransferase activity assay showed enhanced activity of PIMT in presence of all AuNSs, the maximum being with AuNS100. The efficacy of PIMT in presence of AuNS100 was further demonstrated by the reduction of fibrillation of Aβ42, the peptide that is implicated in Alzheimer's disease. The enhancement of anti-fibrillation activity of PIMT with AuNS100 was confirmed from cell survival assay with PC12 derived neuronal cells against Aβ42 induced neurotoxicity.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- grid.418423.80000 0004 1768 2239Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, 700054 India
| | - Gaurav Das
- grid.417635.20000 0001 2216 5074Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India ,grid.417635.20000 0001 2216 5074Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 India
| | - Surajit Ghosh
- grid.417635.20000 0001 2216 5074Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India ,grid.417635.20000 0001 2216 5074Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 India ,grid.462385.e0000 0004 1775 4538Present Address: Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan, 342037 India
| | - Pinak Chakrabarti
- grid.418423.80000 0004 1768 2239Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, 700054 India
| |
Collapse
|
32
|
Readel ER, Wey M, Armstrong DW. Rapid and selective separation of amyloid beta from its stereoisomeric point mutations implicated in neurodegenerative Alzheimer's disease. Anal Chim Acta 2021; 1163:338506. [PMID: 34024415 DOI: 10.1016/j.aca.2021.338506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022]
Abstract
Extracellular deposition of amyloid beta (Aβ) peptides are a hallmark of Alzheimer's disease. The isomerization and epimerization of Aβ peptides have been linked to the enhanced deposition of Aβ plaques. Therefore, considerable effort has been expended to create effective methods to distinguish such aberrant Aβ peptides from normal Aβ peptides. Herein, we have developed chromatographic retention U-shaped curves to investigate the hydrophobicity of Aβ 1-38, 1-40, 1-42 and fourteen aberrant Aβ 1-42 peptides. Using this information, we developed the first selective and comprehensive method that can easily detect both aberrant and normal Aβ peptides simultaneously using high performance liquid chromatography-mass spectrometry (HPLC-MS). We show for the first time that D-Ser modifications to Aβ cause the peptide to be more hydrophilic, as does D-Asp and L/D-iso-Asp.
Collapse
Affiliation(s)
- Elizabeth R Readel
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Michael Wey
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
33
|
Belkourchia F, Desrosiers RR. The enzyme L-isoaspartyl (D-aspartyl) methyltransferase promotes migration and invasion in human U-87 MG and U-251 MG glioblastoma cell lines. Biomed Pharmacother 2021; 140:111766. [PMID: 34082401 DOI: 10.1016/j.biopha.2021.111766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
The protein L-isoaspartyl (D-aspartyl) methyltransferase (PIMT) recognizes abnormal L-isoaspartyl and D-aspartyl residues in proteins. Among examined tissues, PIMT shows the highest level in the brain. The U-87 MG cell line is a commonly used cellular model to study the most frequent brain tumor, glioblastoma. Previously, we reported that PIMT amount increased when U-87 MG cells were detached from the extracellular matrix. Recently, we also showed that PIMT possessed pro-angiogenic properties. Together, these PIMT features led us to postulate that PIMT could play a critical role in glioblastoma growth. Here, we investigate PIMT role in U-87 MG cell viability, adhesion, migration, invasion, and colony formation and in the reorganization of the actin and tubulin cytoskeleton. PIMT inhibition by siRNA significantly reduced in vitro cell migration and invasion in various assays, including wound-healing assay, Boyden chambers coated with gelatin and Matrigel invasion assay. Conversely, in stably transfected U-87 MG cells overexpressing wild-type PIMT, cell migration, invasive capacity and colony formation significantly increased. However, in stably transfected cells with the gene encoding for mutated PIMT(D83V), despite of its overexpression, migration and invasion remained similar to those observed in control cells. In all these conditions, cell viability was unaffected. Importantly, overexpressed wild-type PIMT and mutated PIMT(D83V) have opposite effects on the organization of microtubules and actin cytoskeleton and thus on morphology of U-87 cells. These data highlighted the importance of PIMT level and its catalytic activity in migration and invasion of U-87 glioma cells and its possible contribution in cancer invasion during glioma growth.
Collapse
Affiliation(s)
- Fatima Belkourchia
- Université du Québec à Montréal, Département de chimie, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Richard R Desrosiers
- Université du Québec à Montréal, Département de chimie, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
34
|
Lobas AA, Solovyeva EM, Saparbaev E, Gorshkov MV, Boyarkin OV. Accelerating photofragmentation UV Spectroscopy-Mass spectrometry fingerprinting for quantification of isomeric peptides. Talanta 2021; 232:122412. [PMID: 34074402 DOI: 10.1016/j.talanta.2021.122412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Identification of isomeric biomolecules remains a challenging analytical problem. A recently developed spectroscopic method that combines UV photofragmentation and mass spectrometry for fingerprinting of cold ions (2D UV-MS), has already demonstrated its high performance in the library-based identification and quantification of different types of biomolecular isomers. The practical use of the method has been hindered by a slow rate of data acquisition, which makes the fingerprinting incompatible with high-throughput analysis and online liquid chromatography (LC) separation. Herein we demonstrate how the use of a few pre-selected wavelengths can accelerate the method by two orders of magnitude without a significant loss of accuracy. As a proof of principle, 2D UV-MS fingerprinting was coupled to online LC separation and tested for quantification of isomeric peptides containing either Asp or isoAsp residues. The relative concentrations of the peptides mixed in solution have been determined, on average, with better than 4% and 6% accuracy for resolving and non-resolving gradients of LC separation, respectively.
Collapse
Affiliation(s)
- Anna A Lobas
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland; V.L. Talrose Institute for Energy Problems of Chemical Physics, Federal Research Center of Chemical Physics, RAS, Moscow, Russia
| | - Elizaveta M Solovyeva
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland; V.L. Talrose Institute for Energy Problems of Chemical Physics, Federal Research Center of Chemical Physics, RAS, Moscow, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Erik Saparbaev
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Mikhail V Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Federal Research Center of Chemical Physics, RAS, Moscow, Russia
| | - Oleg V Boyarkin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
35
|
Tau Is Truncated in Five Regions of the Normal Adult Human Brain. Int J Mol Sci 2021; 22:ijms22073521. [PMID: 33805376 PMCID: PMC8036332 DOI: 10.3390/ijms22073521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
The truncation of Tau is thought to be important in promoting aggregation, with this feature characterising the pathology of dementias such as Alzheimer disease. Antibodies to the C-terminal and N-terminal regions of Tau were employed to examine Tau cleavage in five human brain regions: the entorhinal cortex, prefrontal cortex, motor cortex, hippocampus, and cerebellum. These were obtained from normal subjects ranging in age from 18 to 104 years. Tau fragments of approximately 40 kDa and 45 kDa with an intact N-terminus retained were found in soluble and insoluble brain fractions. In addition, smaller C-terminal Tau fragments ranging in mass from 17 kDa to 25 kDa were also detected. These findings are consistent with significant Tau cleavage taking place in brain regions from 18 years onwards. It appears that site-specific cleavage of Tau is widespread in the normal human brain, and that large Tau fragments that contain the N-terminus, as well as shorter C-terminal Tau fragments, are present in brain cells across the age range.
Collapse
|
36
|
Mukherjee S, Perez KA, Lago LC, Klatt S, McLean CA, Birchall IE, Barnham KJ, Masters CL, Roberts BR. Quantification of N-terminal amyloid-β isoforms reveals isomers are the most abundant form of the amyloid-β peptide in sporadic Alzheimer's disease. Brain Commun 2021; 3:fcab028. [PMID: 33928245 PMCID: PMC8062259 DOI: 10.1093/braincomms/fcab028] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Plaques that characterize Alzheimer's disease accumulate over 20 years as a result of decreased clearance of amyloid-β peptides. Such long-lived peptides are subjected to multiple post-translational modifications, in particular isomerization. Using liquid chromatography ion mobility separations mass spectrometry, we characterized the most common isomerized amyloid-β peptides present in the temporal cortex of sporadic Alzheimer's disease brains. Quantitative assessment of amyloid-β N-terminus revealed that > 80% of aspartates (Asp-1 and Asp-7) in the N-terminus was isomerized, making isomerization the most dominant post-translational modification of amyloid-β in Alzheimer's disease brain. Total amyloid-β1-15 was ∼85% isomerized at Asp-1 and/or Asp-7 residues, with only 15% unmodified amyloid-β1-15 left in Alzheimer's disease. While amyloid-β4-15 the next most abundant N-terminus found in Alzheimer's disease brain, was only ∼50% isomerized at Asp-7 in Alzheimer's disease. Further investigations into different biochemically defined amyloid-β-pools indicated a distinct pattern of accumulation of extensively isomerized amyloid-β in the insoluble fibrillar plaque and membrane-associated pools, while the extent of isomerization was lower in peripheral membrane/vesicular and soluble pools. This pattern correlated with the accumulation of aggregation-prone amyloid-β42 in Alzheimer's disease brains. Isomerization significantly alters the structure of the amyloid-β peptide, which not only has implications for its degradation, but also for oligomer assembly, and the binding of therapeutic antibodies that directly target the N-terminus, where these modifications are located.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Keyla A Perez
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Larissa C Lago
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stephan Klatt
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Catriona A McLean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Anatomical Pathology, Alfred Hospital, Prahran, VIC 3004, Australia
| | - Ian E Birchall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kevin J Barnham
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Blaine R Roberts
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
37
|
Boles GC, Kempkes LJM, Martens J, Berden G, Oomens J, Armentrout PB. Influence of a Hydroxyl Group on the Deamidation and Dehydration Reactions of Protonated Asparagine-Serine Investigated by Combined Spectroscopic, Guided Ion Beam, and Theoretical Approaches. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:786-805. [PMID: 33570934 DOI: 10.1021/jasms.0c00468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deamidation of asparaginyl (Asn) peptides is a spontaneous post-translational modification that plays a significant role in degenerative diseases and other biological processes under physiological conditions. In the gas phase, deamidation of protonated peptides is a major fragmentation channel upon activation by collision-induced dissociation. Here, we present a full description of the deamidation process from protonated asparagine-serine, [AsnSer+H]+, via infrared (IR) action spectroscopy and threshold collision-induced dissociation (TCID) experiments in combination with theoretical calculations. The IR results demonstrate that deamidation proceeds via bifurcating reaction pathways leading to furanone- and succinimide-type product ion structures, with a population analysis indicating the latter product dominates. Theory demonstrates that nucleophilic attack of the peptidyl amide oxygen onto the Asn side chain leads to furanone formation, whereas nucleophilic attack by the peptidyl amide nitrogen onto the Asn side-chain carbonyl carbon leads to the formation of the succinimide product structure. TCID experiments find that furanone formation has a threshold energy of 145 ± 12 kJ/mol and succinimide formation occurs with a threshold energy of 131 ± 12 kJ/mol, consistent with theoretical energies and with the spectroscopic results indicating that succinimide dominates. The results provide information regarding the inductive and steric effects of the Ser side chain on the deamidation process. The other major channel observed in the TCID experiments of [AsnSer+H]+ is dehydration, where a threshold energy of 104 ± 10 kJ/mol is determined. A complete IR and theoretical analysis of this pathway is also provided. As for deamidation, a bifurcating pathway is found with both dominant oxazoline and minor diketopiperazine products identified. Here, the Ser side chain is directly involved in both pathways.
Collapse
Affiliation(s)
- Georgia C Boles
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Lisanne J M Kempkes
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - P B Armentrout
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
38
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
39
|
Lee CH, Lou YC, Wang AHJ. DMTMM-Mediated Intramolecular Cyclization of Acidic Residues in Peptides/Proteins. ACS OMEGA 2021; 6:4708-4718. [PMID: 33644578 PMCID: PMC7905807 DOI: 10.1021/acsomega.0c05503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The formation of succinimide in proteins has attracted considerable attention in protein aging and biopharmaceutical research. The succinimide formation occurs spontaneously in proteins and is prone to hydrolysis to yield aspartate and isoaspartate, resulting in altered protein functions. Herein, we demonstrated that the coupling reagent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) can mediate intramolecular cyclization of aspartic acid to form succinimide efficiently in the LL37-derived short antimicrobial peptide KR12. The formation of succinimide in KR12 was confirmed by liquid chromatography tandem mass spectrometry and nuclear magnetic resonance. Moreover, the succinimide-containing KR12 displayed decreased antimicrobial activity, helicity, and serum stability in comparison with unmodified KR12. The succinimide formation usually changes the protein structure and function, and only in rare cases, it can help to maintain the protein stability. In addition to succinimide, DMTMM can also mediate intraresidue cyclization of N-terminal glutamate to form pyroglutamate. Our work thus provides a convenient and efficient method for preparation of succinimide/pyroglutamate-containing peptides, which can be used for studying their impact on peptide/protein function.
Collapse
Affiliation(s)
- Chi-Hua Lee
- Institute
of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yuan-Chao Lou
- Biomedical
Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Andrew H.-J. Wang
- Institute
of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
40
|
Soliman R, Cordero-Maldonado ML, Martins TG, Moein M, Conrotte JF, Warmack RA, Skupin A, Crawford AD, Clarke SG, Linster CL. l-Isoaspartyl Methyltransferase Deficiency in Zebrafish Leads to Impaired Calcium Signaling in the Brain. Front Genet 2021; 11:612343. [PMID: 33552132 PMCID: PMC7859441 DOI: 10.3389/fgene.2020.612343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Isomerization of l-aspartyl and l-asparaginyl residues to l-isoaspartyl residues is one type of protein damage that can occur under physiological conditions and leads to conformational changes, loss of function, and enhanced protein degradation. Protein l-isoaspartyl methyltransferase (PCMT) is a repair enzyme whose action initiates the reconversion of abnormal l-isoaspartyl residues to normal l-aspartyl residues in proteins. Many lines of evidence support a crucial role for PCMT in the brain, but the mechanisms involved remain poorly understood. Here, we investigated PCMT activity and function in zebrafish, a vertebrate model that is particularly well-suited to analyze brain function using a variety of techniques. We characterized the expression products of the zebrafish PCMT homologous genes pcmt and pcmtl. Both zebrafish proteins showed a robust l-isoaspartyl methyltransferase activity and highest mRNA transcript levels were found in brain and testes. Zebrafish morphant larvae with a knockdown in both the pcmt and pcmtl genes showed pronounced morphological abnormalities, decreased survival, and increased isoaspartyl levels. Interestingly, we identified a profound perturbation of brain calcium homeostasis in these morphants. An abnormal calcium response upon ATP stimulation was also observed in mouse hippocampal HT22 cells knocked out for Pcmt1. This work shows that zebrafish is a promising model to unravel further facets of PCMT function and demonstrates, for the first time in vivo, that PCMT plays a pivotal role in the regulation of calcium fluxes.
Collapse
Affiliation(s)
- Remon Soliman
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Teresa G Martins
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mahsa Moein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jean-François Conrotte
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rebeccah A Warmack
- Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,University of California, San Diego, La Jolla, CA, United States
| | - Alexander D Crawford
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Oslo, Norway.,Institute for Orphan Drug Discovery, Bremer Innovations- und Technologiezentrum, Bremen, Germany
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
41
|
Kumar S, Kapadia A, Theil S, Joshi P, Riffel F, Heneka MT, Walter J. Novel Phosphorylation-State Specific Antibodies Reveal Differential Deposition of Ser26 Phosphorylated Aβ Species in a Mouse Model of Alzheimer's Disease. Front Mol Neurosci 2021; 13:619639. [PMID: 33519377 PMCID: PMC7844098 DOI: 10.3389/fnmol.2020.619639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Aggregation and deposition of amyloid-β (Aβ) peptides in extracellular plaques and in the cerebral vasculature are prominent neuropathological features of Alzheimer's disease (AD) and closely associated with the pathogenesis of AD. Amyloid plaques in the brains of most AD patients and transgenic mouse models exhibit heterogeneity in the composition of Aβ deposits, due to the occurrence of elongated, truncated, and post-translationally modified Aβ peptides. Importantly, changes in the deposition of these different Aβ variants are associated with the clinical disease progression and considered to mark sequential phases of plaque and cerebral amyloid angiopathy (CAA) maturation at distinct stages of AD. We recently showed that Aβ phosphorylated at serine residue 26 (pSer26Aβ) has peculiar characteristics in aggregation, deposition, and neurotoxicity. In the current study, we developed and thoroughly validated novel monoclonal and polyclonal antibodies that recognize Aβ depending on the phosphorylation-state of Ser26. Our results demonstrate that selected phosphorylation state-specific antibodies were able to recognize Ser26 phosphorylated and non-phosphorylated Aβ with high specificity in enzyme-linked immunosorbent assay (ELISA) and Western Blotting (WB) assays. Furthermore, immunofluorescence analyses with these antibodies demonstrated the occurrence of pSer26Aβ in transgenic mouse brains that show differential deposition as compared to non-phosphorylated Aβ (npAβ) or other modified Aβ species. Notably, pSer26Aβ species were faintly detected in extracellular Aβ plaques but most prominently found intraneuronally and in cerebral blood vessels. In conclusion, we developed new antibodies to specifically differentiate Aβ peptides depending on the phosphorylation state of Ser26, which are applicable in ELISA, WB, and immunofluorescence staining of mouse brain tissues. These site- and phosphorylation state-specific Aβ antibodies represent novel tools to examine phosphorylated Aβ species to further understand and dissect the complexity in the age-related and spatio-temporal deposition of different Aβ variants in transgenic mouse models and human AD brains.
Collapse
Affiliation(s)
- Sathish Kumar
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Akshay Kapadia
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Sandra Theil
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Pranav Joshi
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Florian Riffel
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Michael T. Heneka
- Department of Neurodegenerative Diseases and Geropsychiatry, Neurology, University of Bonn Medical Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jochen Walter
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
42
|
Pittalà MGG, Reina S, Cubisino SAM, Cucina A, Formicola B, Cunsolo V, Foti S, Saletti R, Messina A. Post-Translational Modification Analysis of VDAC1 in ALS-SOD1 Model Cells Reveals Specific Asparagine and Glutamine Deamidation. Antioxidants (Basel) 2020; 9:E1218. [PMID: 33276691 PMCID: PMC7761621 DOI: 10.3390/antiox9121218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria from affected tissues of amyotrophic lateral sclerosis (ALS) patients show morphological and biochemical abnormalities. Mitochondrial dysfunction causes oxidative damage and the accumulation of ROS, and represents one of the major triggers of selective death of motor neurons in ALS. We aimed to assess whether oxidative stress in ALS induces post-translational modifications (PTMs) in VDAC1, the main protein of the outer mitochondrial membrane and known to interact with SOD1 mutants related to ALS. In this work, specific PTMs of the VDAC1 protein purified by hydroxyapatite from mitochondria of a NSC34 cell line expressing human SOD1G93A, a suitable ALS motor neuron model, were analyzed by tryptic and chymotryptic proteolysis and UHPLC/High-Resolution ESI-MS/MS. We found selective deamidations of asparagine and glutamine of VDAC1 in ALS-related NSC34-SOD1G93A cells but not in NSC34-SOD1WT or NSC34 cells. In addition, we identified differences in the over-oxidation of methionine and cysteines between VDAC1 purified from ALS model or non-ALS NSC34 cells. The specific range of PTMs identified exclusively in VDAC1 from NSC34-SOD1G93A cells but not from NSC34 control lines, suggests the appearance of important changes to the structure of the VDAC1 channel and therefore to the bioenergetics metabolism of ALS motor neurons. Data are available via ProteomeXchange with identifier .
Collapse
Affiliation(s)
- Maria Gaetana Giovanna Pittalà
- Department of Biological, Geological and Environmental Sciences, Molecular Biology Laboratory, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.G.G.P.); (S.R.); (S.A.M.C.)
| | - Simona Reina
- Department of Biological, Geological and Environmental Sciences, Molecular Biology Laboratory, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.G.G.P.); (S.R.); (S.A.M.C.)
- we.MitoBiotech.srl, c.so Italia 172, 95129 Catania, Italy
| | - Salvatore Antonio Maria Cubisino
- Department of Biological, Geological and Environmental Sciences, Molecular Biology Laboratory, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.G.G.P.); (S.R.); (S.A.M.C.)
| | - Annamaria Cucina
- Department of Chemical Sciences, Organic Mass Spectrometry Laboratory, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.C.); (V.C.); (S.F.)
| | - Beatrice Formicola
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Vincenzo Cunsolo
- Department of Chemical Sciences, Organic Mass Spectrometry Laboratory, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.C.); (V.C.); (S.F.)
| | - Salvatore Foti
- Department of Chemical Sciences, Organic Mass Spectrometry Laboratory, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.C.); (V.C.); (S.F.)
| | - Rosaria Saletti
- Department of Chemical Sciences, Organic Mass Spectrometry Laboratory, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.C.); (V.C.); (S.F.)
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, Molecular Biology Laboratory, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.G.G.P.); (S.R.); (S.A.M.C.)
- we.MitoBiotech.srl, c.so Italia 172, 95129 Catania, Italy
| |
Collapse
|
43
|
Gnoth K, Piechotta A, Kleinschmidt M, Konrath S, Schenk M, Taudte N, Ramsbeck D, Rieckmann V, Geissler S, Eichentopf R, Barendrecht S, Hartlage-Rübsamen M, Demuth HU, Roßner S, Cynis H, Rahfeld JU, Schilling S. Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer's disease-like pathology. ALZHEIMERS RESEARCH & THERAPY 2020; 12:149. [PMID: 33189132 PMCID: PMC7666770 DOI: 10.1186/s13195-020-00719-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/29/2020] [Indexed: 11/12/2022]
Abstract
Background Amyloid β (Aβ)-directed immunotherapy has shown promising results in preclinical and early clinical Alzheimer’s disease (AD) trials, but successful translation to late clinics has failed so far. Compelling evidence suggests that post-translationally modified Aβ peptides might play a decisive role in onset and progression of AD and first clinical trials targeting such Aβ variants have been initiated. Modified Aβ represents a small fraction of deposited material in plaques compared to pan-Aβ epitopes, opening up pathways for tailored approaches of immunotherapy. Here, we generated the first monoclonal antibodies that recognize l-isoaspartate-modified Aβ (isoD7-Aβ) and tested a lead antibody molecule in 5xFAD mice. Methods This work comprises a combination of chemical and biochemical techniques as well as behavioral analyses. Aβ peptides, containing l-isoaspartate at position 7, were chemically synthesized and used for immunization of mice and antibody screening methods. Biochemical methods included anti-isoD7-Aβ monoclonal antibody characterization by surface plasmon resonance, immunohistochemical staining of human and transgenic mouse brain, and the development and application of isoD7-Aβ ELISA as well as different non-modified Aβ ELISA. For antibody treatment studies, 12 mg/kg anti-isoD7-Aβ antibody K11_IgG2a was applied intraperitoneally to 5xFAD mice for 38 weeks. Treatment controls implemented were IgG2a isotype as negative and 3D6_IgG2a, the parent molecule of bapineuzumab, as positive control antibodies. Behavioral studies included elevated plus maze, pole test, and Morris water maze. Results Our advanced antibody K11 showed a KD in the low nM range and > 400fold selectivity for isoD7-Aβ compared to other Aβ variants. By using this antibody, we demonstrated that formation of isoD7-Aβ may occur after formation of aggregates; hence, the presence of the isoD7-modification differentiates aged Aβ from newly formed peptides. Importantly, we also show that the Tottori mutation responsible for early-onset AD in a Japanese pedigree is characterized by massively accelerated formation of isoD7-Aβ in cell culture. The presence of isoD7-Aβ was verified by K11 in post mortem human cortex and 5xFAD mouse brain tissue. Passive immunization of 5xFAD mice resulted in a significant reduction of isoD7-Aβ and total Aβ in brain. Amelioration of cognitive impairment was demonstrated by Morris water maze, elevated plus maze, pole, and contextual fear conditioning tests. Interestingly, despite the lower abundance of the isoD7-Aβ epitope, the application of anti-isoD7-Aβ antibodies showed comparable treatment efficacy in terms of reduction of brain amyloid and spatial learning but did not result in an increase of plasma Aβ concentration as observed with 3D6 treatment. Conclusions The present study demonstrates, for the first time, that the antibody-mediated targeting of isoD7-modified Aβ peptides leads to attenuation of AD-like amyloid pathology. In conjunction with previously published data on antibodies directed against pGlu-modified Aβ, the results highlight the crucial role of modified Aβ peptides in AD pathophysiology. Hence, the results also underscore the therapeutic potential of targeting modified amyloid species for defining tailored approaches in AD therapy. Supplementary information The online version contains supplementary material available at 10.1186/s13195-020-00719-x.
Collapse
Affiliation(s)
- Kathrin Gnoth
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Anke Piechotta
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Martin Kleinschmidt
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Sandra Konrath
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany.,Present address: Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Schenk
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Nadine Taudte
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany.,Present address: PerioTrap Pharmaceuticals GmbH, Halle (Saale), Germany
| | - Daniel Ramsbeck
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Vera Rieckmann
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Stefanie Geissler
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Rico Eichentopf
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany.,Present address: Fraunhofer Center for Chemical-Biotechnological Processes CBP, Leuna, Germany
| | - Susan Barendrecht
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | | | - Hans-Ulrich Demuth
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Steffen Roßner
- Paul Flechsig Institute of Brain Research, Leipzig University, Leipzig, Germany
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Jens-Ulrich Rahfeld
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany.
| | - Stephan Schilling
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| |
Collapse
|
44
|
Zhang T, Hansen K, Politis A, Müller MM. An Unusually Rapid Protein Backbone Modification Stabilizes the Essential Bacterial Enzyme MurA. Biochemistry 2020; 59:3683-3695. [PMID: 32930597 DOI: 10.1021/acs.biochem.0c00502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proteins are subject to spontaneous rearrangements of their backbones. Most prominently, asparagine and aspartate residues isomerize to their β-linked isomer, isoaspartate (isoAsp), on time scales ranging from days to centuries. Such modifications are typically considered "molecular wear-and-tear", destroying protein function. However, the observation that some proteins, including the essential bacterial enzyme MurA, harbor stoichiometric amounts of isoAsp suggests that this modification can confer advantageous properties. Here, we demonstrate that nature exploits an isoAsp residue within a hairpin to stabilize MurA. We found that isoAsp formation in MurA is unusually rapid and critically dependent on folding status. Moreover, perturbation of the isoAsp-containing hairpin via site-directed mutagenesis causes aggregation of MurA variants. Structural mass spectrometry revealed that this effect is caused by local protein unfolding in MurA mutants. Our findings demonstrate that MurA evolved to "mature" via a spontaneous post-translational incorporation of a β-amino acid, which raises the possibility that isoAsp-containing hairpins may serve as a structural motif of biological importance.
Collapse
Affiliation(s)
- Tianze Zhang
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Kjetil Hansen
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Argyris Politis
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Manuel M Müller
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| |
Collapse
|
45
|
Kumar S, Lemere CA, Walter J. Phosphorylated Aβ peptides in human Down syndrome brain and different Alzheimer's-like mouse models. Acta Neuropathol Commun 2020; 8:118. [PMID: 32727580 PMCID: PMC7388542 DOI: 10.1186/s40478-020-00959-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
The deposition of neurotoxic amyloid-β (Aβ) peptides in extracellular plaques in the brain parenchyma is one of the most prominent neuropathological features of Alzheimer's disease (AD), and considered to be closely related to the pathogenesis of this disease. A number of recent studies demonstrate the heterogeneity in the composition of Aβ deposits in AD brains, due to the occurrence of elongated, truncated and post-translationally modified Aβ peptides that have peculiar characteristics in aggregation behavior and biostability. Importantly, the detection of modified Aβ species has been explored to characterize distinct stages of AD, with phosphorylated Aβ being present in the clinical phase of AD. People with Down syndrome (DS) develop AD pathology by 40 years of age likely due to the overproduction of Aβ caused by the additional copy of the gene encoding the amyloid precursor protein on chromosome 21. In the current study, we analysed the deposition of phosphorylated and non-phosphorylated Aβ species in human DS, AD, and control brains. In addition, deposition of these Aβ species was analysed in brains of a series of established transgenic AD mouse models using phosphorylation-state specific Aβ antibodies. Significant amounts of Aβ phosphorylated at serine residue 8 (pSer8Aβ) and unmodified Aβ were detected in the brains of DS and AD cases. The brains of different transgenic mouse models with either only human mutant amyloid precursor protein (APP), or combinations of human mutant APP, Presenilin (PS), and tau transgenes showed distinct age-dependent and spatiotemporal deposition of pSer8Aβ in extracellular plaques and within the vasculature. Together, these results demonstrate the deposition of phosphorylated Aβ species in DS brains, further supporting the similarity of Aβ deposition in AD and DS. Thus, the detection of phosphorylated and other modified Aβ species could contribute to the understanding and dissection of the complexity in the age-related and spatiotemporal deposition of Aβ variants in AD and DS as well as in distinct mouse models.
Collapse
|
46
|
Mizuno H, Shindo T, Ito K, Sakane I, Miyazaki Y, Toyo'oka T, Todoroki K. Development of a selective and sensitive analytical method to detect isomerized aspartic acid residues in crystallin using a combination of derivatization and liquid chromatography mass spectrometry. J Chromatogr A 2020; 1623:461134. [PMID: 32345439 DOI: 10.1016/j.chroma.2020.461134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 11/24/2022]
Abstract
The isomerization of amino acids in peptides and proteins induces structural changes and aggregation. The isomerization rate of aspartic acid (Asp) is high and causes various serious diseases including Alzheimer's disease and cataract. Herein, a method for the comprehensive separation and sensitive detection of isomerized crystallin containing Asp (l-α-Asp, l-β-Asp, d-α-Asp, and d-β-Asp) was developed using chiral derivatization and reversed-phase UHPLC separation. Of three candidate derivatization reagents tested for the separation of peptides containing isomerized aspartic acid, 2,5-dioxopyrrolidin-1-yl-1-(4,6-dimethoxy-1,3,5-triazine-2-yl) pyrrolidine-2-carboxylate (DMT-(R)-Pro-OSu) was the most suitable reagent for separating isomerized peptides and improved the sensitivity of mass spectrometry by 50-fold. This method was applied to analyze heat-denatured crystallin. Asp58 and Asp151 residues in αA-crystallin (AAC) exhibited the highest isomerization rate in heated crystallin. Furthermore, the analysis of α-crystallin extracted from bovine eye lens identified isomerized Asp residues (Asp24/35, Asp58, and Asp151 in AAC and Asp140 in αB-crystallin (ABC)). These results indicate that the newly developed method using chiral derivatization provides selective and sensitive analysis of isomerized Asp sites in α-crystallin protein. This novel method will allow for the identification and quantification of isomerized amino acids in crystallin proteins.
Collapse
Affiliation(s)
- Hajime Mizuno
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takuya Shindo
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keisuke Ito
- Laboratory of Food Chemistry, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Iwao Sakane
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara, Shizuoka 421-0516, Japan
| | - Yasuto Miyazaki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshimasa Toyo'oka
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
47
|
Ying Y, Li H. Recent progress in the analysis of protein deamidation using mass spectrometry. Methods 2020; 200:42-57. [PMID: 32544593 DOI: 10.1016/j.ymeth.2020.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Deamidation is a nonenzymatic and spontaneous posttranslational modification (PTM) that introduces changes in both structure and charge of proteins, strongly associated with aging proteome instability and degenerative diseases. Deamidation is also a common PTM occurring in biopharmaceutical proteins, representing a major cause of degradation. Therefore, characterization of deamidation alongside its inter-related modifications, isomerization and racemization, is critically important to understand their roles in protein stability and diseases. Mass spectrometry (MS) has become an indispensable tool in site-specific identification of PTMs for proteomics and structural studies. In this review, we focus on the recent advances of MS analysis in protein deamidation. In particular, we provide an update on sample preparation, chromatographic separation, and MS technologies at multi-level scales, for accurate and reliable characterization of protein deamidation in both simple and complex biological samples, yielding important new insight on how deamidation together with isomerization and racemization occurs. These technological progresses will lead to a better understanding of how deamidation contributes to the pathology of aging and other degenerative diseases and the development of biopharmaceutical drugs.
Collapse
Affiliation(s)
- Yujia Ying
- School of Pharmaceutical Sciences, University of Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Huilin Li
- School of Pharmaceutical Sciences, University of Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
48
|
Gallart-Palau X, Guo X, Serra A, Sze SK. Alzheimer's disease progression characterized by alterations in the molecular profiles and biogenesis of brain extracellular vesicles. Alzheimers Res Ther 2020; 12:54. [PMID: 32384937 PMCID: PMC7210691 DOI: 10.1186/s13195-020-00623-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The contributions of brain intercellular communication mechanisms, specifically extracellular vesicles (EV), to the progression of Alzheimer's disease (AD) remain poorly understood. METHODS Here, we investigated the role(s) of brain EV in the progressive course of AD through unbiased proteome-wide analyses of temporal lobe-derived EV and proteome-label quantitation of complementary remaining brain portions. Furthermore, relevant proteins identified were further screened by multiple reaction monitoring. RESULTS Our data indicate that EV biogenesis was altered during preclinical AD with the genesis of a specific population of EV containing MHC class-type markers. The significant presence of the prion protein PrP was also manifested in these brain vesicles during preclinical AD. Similarly, sequestration of amyloid protein APP in brain EV coincided with the observed PrP patterns. In contrast, active incorporation of the mitophagy protein GABARAP in these brain vesicles was disrupted as AD progressed. Likewise, disrupted incorporation of LAMP1 in brain EV was evident from the initial manifestation of AD clinical symptoms, although the levels of the protein remained significantly upregulated in the temporal lobe of diseased brains. CONCLUSIONS Our findings indicate that impaired autophagy in preclinical AD coincides with the appearance of proinflammatory and neuropathological features in brain extracellular vesicles, facts that moderately remain throughout the entire AD progression. Thus, these data highlight the significance of brain EV in the establishment of AD neuropathology and represent a further leap toward therapeutic interventions with these vesicles in human dementias.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049, Madrid, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Institut Pere Mata, Reus, Tarragona, Spain
| | - Xue Guo
- Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Aida Serra
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049, Madrid, Spain.
| | - Siu Kwan Sze
- Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
49
|
Adhikari R, Yang M, Saikia N, Dutta C, Alharbi WFA, Shan Z, Pandey R, Tiwari A. Acetylation of Aβ42 at Lysine 16 Disrupts Amyloid Formation. ACS Chem Neurosci 2020; 11:1178-1191. [PMID: 32207962 PMCID: PMC7605495 DOI: 10.1021/acschemneuro.0c00069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The residue lysine 28 (K28) is known to form an important salt bridge that stabilizes the Aβ amyloid structure, and acetylation of lysine 28 (K28Ac) slows the Aβ42 fibrillization rate but does not affect fibril morphology. On the other hand, acetylation of lysine 16 (K16Ac) residue greatly diminishes the fibrillization property of Aβ42 peptide and also affects its toxicity. This is due to the fact that lysine 16 acetylated amyloid beta peptide forms amorphous aggregates instead of amyloid fibrils. This is likely a result of increased hydrophobicity of the K16-A21 region due to K16 acetylation, as confirmed by molecular dynamic simulation studies. The calculated results show that the hydrophobic patches of aggregates from acetylated peptides were different when compared to wild-type (WT) peptide. K16Ac and double acetylated (KKAc) peptide aggregates show significantly higher cytotoxicity compared to the WT or K28Ac peptide aggregates alone. However, the heterogeneous mixture of WT and acetylated Aβ42 peptide aggregates exhibited higher free radical formation as well as cytotoxicity, suggesting dynamic interactions between different species could be a critical contributor to Aβ pathology.
Collapse
Affiliation(s)
- Rashmi Adhikari
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Mu Yang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Nabanita Saikia
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Colina Dutta
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Wafa F A Alharbi
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ravindra Pandey
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ashutosh Tiwari
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
50
|
Du S, Readel ER, Wey M, Armstrong DW. Complete identification of all 20 relevant epimeric peptides in β-amyloid: a new HPLC-MS based analytical strategy for Alzheimer's research. Chem Commun (Camb) 2020; 56:1537-1540. [PMID: 31922154 DOI: 10.1039/c9cc09080k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although the underlying cause of Alzheimer's disease (AD) is not known, the extracellular deposition of β-amyloid (Aβ) is considered as a hallmark of AD brains. Evidence has shown the occurrence of d-Asp, isoAsp, and d-Ser residues in Aβ, which may be indicative of and/or contribute to the neurodegeneration in AD patients. Herein, we have developed the first high-throughput profiling technique for all 20 isobaric Aβ peptide epimers containing Asp, isoAsp, and Ser isomers using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). This new analytical strategy allows the direct detection and identification of all possible Asp, isoAsp, and Ser stereoisomers in Aβ, and may contribute to a better understanding of the pathogenesis of AD.
Collapse
Affiliation(s)
- Siqi Du
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA.
| | | | | | | |
Collapse
|