1
|
Burlage RS, Tillmann J. Biosensors of bacterial cells. J Microbiol Methods 2016; 138:2-11. [PMID: 28040457 DOI: 10.1016/j.mimet.2016.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/24/2016] [Accepted: 12/24/2016] [Indexed: 10/20/2022]
Abstract
Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described.
Collapse
Affiliation(s)
- Robert S Burlage
- Department of Pharmaceutical and Administrative Science, Concordia University School of Pharmacy, 12800 N. Lake Shore Dr., Mequon, WI 53097, United States.
| | - Joshua Tillmann
- Department of Pharmaceutical and Administrative Science, Concordia University School of Pharmacy, 12800 N. Lake Shore Dr., Mequon, WI 53097, United States
| |
Collapse
|
2
|
Kim YT, Heo HY, Oh SH, Lee SH, Kim DH, Seo TS. Microchip-based forensic short tandem repeat genotyping. Electrophoresis 2015; 36:1728-37. [DOI: 10.1002/elps.201400477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 03/06/2015] [Accepted: 04/20/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Yong Tae Kim
- Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Hyun Young Heo
- Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Shin Hye Oh
- DNA Analysis Laboratory, Division of Forensic DNA; Supreme Prosecutors’ Office; Seoul Republic of Korea
| | - Seung Hwan Lee
- DNA Analysis Laboratory, Division of Forensic DNA; Supreme Prosecutors’ Office; Seoul Republic of Korea
| | - Do Hyun Kim
- Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Tae Seok Seo
- Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| |
Collapse
|
3
|
Handal MI, Ugaz VM. DNA mutation detection and analysis using miniaturized microfluidic systems. Expert Rev Mol Diagn 2014; 6:29-38. [PMID: 16359265 DOI: 10.1586/14737159.6.1.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Identification of genetic sequence variations occurring on a population-wide scale is key to unraveling the complex interactions that are the underlying cause of many medical disorders and diseases. A critical need exists, however, for advanced technology to enable DNA mutation analysis to be performed with significantly higher throughput and at significantly lower cost than is currently attainable. Microfluidic systems offer an attractive platform to address these needs by combining the ability to perform rapid analysis with a simplified device format that can be inexpensively mass-produced. This paper will review recent progress toward developing these next-generation systems and discuss challenges associated with adapting these technologies for routine laboratory use.
Collapse
Affiliation(s)
- Maria I Handal
- Texas A&M University, Department of Chemical Engineering, College Station, TX 77843-3122, USA
| | | |
Collapse
|
4
|
|
5
|
Menegatti E, Berardi D, Messina M, Ferrante I, Giachino O, Spagnolo B, Restagno G, Cognolato L, Roccatello D. Lab-on-a-chip: emerging analytical platforms for immune-mediated diseases. Autoimmun Rev 2012; 12:814-20. [PMID: 23219952 DOI: 10.1016/j.autrev.2012.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Miniaturization of analytical procedures has a significant impact on diagnostic testing since it provides several advantages such as: reduced sample and reagent consumption, shorter analysis time and less sample handling. Lab-on-a-chip (LoC), usually silicon, glass, or silicon-glass, or polymer disposable cartridges, which are produced using techniques inherited from the microelectronics industry, could perform and integrate the operations needed to carry out biochemical analysis through the mechanical realization of a dedicated instrument. Analytical devices based on miniaturized platforms like LoC may provide an important contribution to the diagnosis of high prevalence and rare diseases. In this paper we review some of the uses of Lab-on-a-chip in the clinical diagnostics of immune-mediated diseases and we provide an overview of how specific applications of these technologies could improve and simplify several complex diagnostic procedures.
Collapse
Affiliation(s)
- Elisa Menegatti
- Department of Medicine and Experimental Oncology, Section of Clinical Pathology, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Quantitative analysis of molecular absorption into PDMS microfluidic channels. Ann Biomed Eng 2012; 40:1862-73. [PMID: 22484830 DOI: 10.1007/s10439-012-0562-z] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/27/2012] [Indexed: 01/07/2023]
Abstract
Microfluidic devices fabricated using poly(dimethylsiloxane) (PDMS) polymer are routinely used for in vitro cell culture for a wide range of cellular assays. These assays typically involve the incubation of cultured cells with a drug molecule or a fluorescent marker while monitoring a cellular response. The accuracy of these assays depends on achieving a consistent and reproducible concentration of solute molecules in solution. However, hydrophobic therapeutic and fluorescent molecules tend to diffuse into the PDMS walls of the microfluidic devices, which reduce their concentration in solution and consequently affect the accuracy and reliability of these assays. In this paper, we quantitatively investigate the relationship between the partition coefficient (log P) of a series of markers routinely used in in vitro cellular assays including [3H]-dexamethasone, [3H]-diazepam, [14C]-mannitol, [3H]-phenytoin, and rhodamine 6G and their absorption into PDMS microfluidic channels. Our results show that the absorption of a given solute into PDMS depends on the hydrophilic/hydrophobic balance defined by its log P value. Specifically, results demonstrate that molecules with log P less than 2.47 exhibit minimal absorption (<10%) into PDMS channels whereas molecules with log P larger than 2.62 exhibit extensive absorption (>90%) into PDMS channels. Further investigations showed that TiO(2) and glass coatings of PDMS channels reduced the absorption of hydrophobic molecules (log P > 2.62) by 2- and 4.5-folds, respectively.
Collapse
|
7
|
Rapid identification of gram-negative bacteria with and without CTX-M extended-spectrum β-lactamase from positive blood culture bottles by PCR followed by microchip gel electrophoresis. J Clin Microbiol 2011; 49:1483-8. [PMID: 21289149 DOI: 10.1128/jcm.01976-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the usefulness of PCR analysis of the 16S-23S rRNA gene internal transcribed spacer (ITS) and the CTX-M extended-spectrum β-lactamase (ESBL) followed by microchip gel electrophoresis (MGE) for direct identification and CTX-M detection of Gram-negative bacteria (GNB) from positive blood culture bottles. Of 251 GNB isolated from blood cultures containing a single bacterium, 225 (90%) were correctly identified at the species level directly from positive blood culture bottles by comparing the ITS-PCR patterns of the sample strain with those of the control strains. There were no cases of incorrect identification. Limitations encountered included the inability to detect mixed cultures (four bottles) as well as some species (Enterobacter species and Klebsiella oxytoca) demonstrating identical ITS-PCR patterns. A total of 109 ESBL-producing isolates from various clinical materials obtained between January 2005 and December 2008 were examined for bla(CTX-M), bla(SHV), and bla(TEM) genes by PCR and sequences of PCR products. CTX-M ESBL was detected in 105 isolates, and SHV ESBL was detected in two isolates. The remaining two isolates (K. oxytoca) were shown to harbor bla(OXY.) Twenty (19%) of 104 Escherichia coli isolates from blood cultures were suspected to produce ESBL by the combination disk method, and these isolates were shown to harbor CTX-M ESBL by PCR-MGE. The results were obtained within 1.5 h at a calculated cost of $6.50 per specimen. In conclusion, simultaneous detection of ITS length polymorphisms and bla(CTX)-(M) by single PCR followed by MGE is useful for rapid, cost-effective, and reliable species-level identification of CTX-M ESBL-producing GNB responsible for bloodstream infections.
Collapse
|
8
|
dcDegenerate oligonucleotide primed-PCR for multilocus, genome-wide analysis from limited quantities of DNA. ACTA ACUST UNITED AC 2009; 18:165-75. [PMID: 19704262 DOI: 10.1097/pdm.0b013e31818d34d1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study modified the degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR)-based whole genome amplification method for improvement of downstream genome-wide analysis of low copy number DNA samples (<or= 0.100 ng). Experiments involved altering the degeneracy of the DOP primer, nonspecific cycle number, and adding proofreading polymerases. Increasing the degeneracy of the primer and the number of cycles that use a low annealing temperature should improve the nonspecific amplification of the DOP-PCR reaction. The addition of proofreading enzymes should allow for longer amplification products, increasing the genome coverage of the reaction. Low-input DNA quantities were examined for the primer and the cycle number studies using standard DOP-PCR parameters. The optimized DOP-PCR technique was then implemented for the polymerase study. All DOP-PCR products were amplified by using a multiplex microsatellite amplification kit to evaluate products from multiple chromosomes, followed by separation and detection by capillary electrophoresis. The 10 N primer, 12 nonspecific cycles, and the addition of the DeepVent proofreading enzyme all significantly increased the number of short tandem repeat alleles successfully amplified. All modifications also lowered the rate of allele drop-in, or sporadic additional allele occurrence, when compared with DOP-PCR results published earlier. Further, an average of > 0.50 intralocus heterozygote peak ratios were observed for most DNA input quantities examined. These results show that modifications of the traditional DOP-PCR reaction (dcDOP-PCR) to include the use of a more degenerate primer (10 N), 12 nonspecific cycles, and a proofreading enzyme allows for a more complete, balanced chromosome amplification from limited and/or compromised clinical and biological samples.
Collapse
|
9
|
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 97, CZ-602 00 Brno, Czech Republic
| | - Petr Boček
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 97, CZ-602 00 Brno, Czech Republic
| |
Collapse
|
10
|
Reed J, Mishra B, Pittenger B, Magonov S, Troke J, Teitell MA, Gimzewski JK. Single molecule transcription profiling with AFM. NANOTECHNOLOGY 2007; 18:44032. [PMID: 20721301 PMCID: PMC2922717 DOI: 10.1088/0957-4484/18/4/044032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Established techniques for global gene expression profiling, such as microarrays, face fundamental sensitivity constraints. Due to greatly increasing interest in examining minute samples from micro-dissected tissues, including single cells, unorthodox approaches, including molecular nanotechnologies, are being explored in this application. Here, we examine the use of single molecule, ordered restriction mapping, combined with AFM, to measure gene transcription levels from very low abundance samples. We frame the problem mathematically, using coding theory, and present an analysis of the critical error sources that may serve as a guide to designing future studies. We follow with experiments detailing the construction of high density, single molecule, ordered restriction maps from plasmids and from cDNA molecules, using two different enzymes, a result not previously reported. We discuss these results in the context of our calculations.
Collapse
Affiliation(s)
- Jason Reed
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Bud Mishra
- Department of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | | | | | - Joshua Troke
- Department of Pathology and the Center for Cell Control, an NIH Nanomedicine Development Center, UCLA, Los Angeles, CA 90095, USA
| | - Michael A Teitell
- Department of Pathology and the Center for Cell Control, an NIH Nanomedicine Development Center, UCLA, Los Angeles, CA 90095, USA
- California Nanosystems Institute (CNSI), Los Angeles, CA 90095, USA
| | - James K Gimzewski
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
- California Nanosystems Institute (CNSI), Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Chapter 2 Chip Capillary Electrophoresis and Total Genetic Analysis Systems. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1871-0069(06)02002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
Nishikawa F, Arakawa H, Nishikawa S. Application of microchip electrophoresis in the analysis of RNA aptamer-protein interactions. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:369-82. [PMID: 16838832 DOI: 10.1080/15257770600683953] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
DNA and RNA can be separated by microchip electrophoresis (ME) and detected using an intercalating fluorescent dye. The advantages of this method are short sensing times (<3 min), avoidance of a radioisotope labeling detection system, relatively low costs, and reduced labor intensity. In the present study, RNA aptamer-protein or -peptide interactions were analyzed using ME and the regression of free aptamers corresponding to unbound RNA was detected as the target protein or peptide increased in a dose-dependent manner. Our results demonstrate the applicability of this method to simple, rapid ligand screening in the interactions between oligonucleotides and their targets.
Collapse
Affiliation(s)
- Fumiko Nishikawa
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
13
|
Cao W, Easley CJ, Ferrance JP, Landers JP. Chitosan as a Polymer for pH-Induced DNA Capture in a Totally Aqueous System. Anal Chem 2006; 78:7222-8. [PMID: 17037925 DOI: 10.1021/ac060391l] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel DNA solid-phase extraction protocol based on the pH-dependent charge of chitosan was developed specifically for low-volume DNA extraction on microchips. The method uses chitosan-coated beads to extract DNA at pH 5 and release it from the chitosan at pH 9. DNA extraction efficiency as high as 92% could be attained, even from complex samples such as human blood containing significant amounts of protein. Using this method, PCR inhibitors that are typically used in DNA extraction procedures (e.g., chaotropic salts, 2-propanol) can be avoided, making the method more conducive to downstream sample processing using PCR. A high-density multichannel microchip device was then fabricated and the microchannels coated with chitosan for DNA extraction in an open channel configuration without the need for an additional stationary phase. This design provided a relatively high surface area-to-volume ratio for extraction, while retaining the low flow resistance commensurate with open channels. With a flow rate of approximately 1 microL/min during the extraction, the total extraction time was less than 10 min, with most of the DNA recovered in the first 2 microL of elution buffer. Using the microchip device, extraction efficiencies for lambda-phage DNA and human genomic DNA were as high as 67 and 63%, respectively. Human genomic DNA from whole blood samples could be extracted in 10 min with an extraction efficiency of 75 +/- 4% (n = 3), and the purified DNA was suitable for PCR amplification of a fragment of the gelsolin gene. The combination of an entirely aqueous DNA extraction method with a high-density, low-flow resistance microchannel pattern sets the stage for future integration into microfluidic genomic analysis devices.
Collapse
Affiliation(s)
- Weidong Cao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | |
Collapse
|
14
|
Zhang C, Xu J, Ma W, Zheng W. PCR microfluidic devices for DNA amplification. Biotechnol Adv 2005; 24:243-84. [PMID: 16326063 DOI: 10.1016/j.biotechadv.2005.10.002] [Citation(s) in RCA: 444] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 10/02/2005] [Accepted: 10/24/2005] [Indexed: 11/23/2022]
Abstract
The miniaturization of biological and chemical analytical devices by micro-electro-mechanical-systems (MEMS) technology has posed a vital influence on such fields as medical diagnostics, microbial detection and other bio-analysis. Among many miniaturized analytical devices, the polymerase chain reaction (PCR) microchip/microdevices are studied extensively, and thus great progress has been made on aspects of on-chip micromachining (fabrication, bonding and sealing), choice of substrate materials, surface chemistry and architecture of reaction vessel, handling of necessary sample fluid, controlling of three or two-step temperature thermocycling, detection of amplified nucleic acid products, integration with other analytical functional units such as sample preparation, capillary electrophoresis (CE), DNA microarray hybridization, etc. However, little has been done on the review of above-mentioned facets of the PCR microchips/microdevices including the two formats of flow-through and stationary chamber in spite of several earlier reviews [Zorbas, H. Miniature continuous-flow polymerase chain reaction: a breakthrough? Angew Chem Int Ed 1999; 38 (8):1055-1058; Krishnan, M., Namasivayam, V., Lin, R., Pal, R., Burns, M.A. Microfabricated reaction and separation systems. Curr Opin Biotechnol 2001; 12:92-98; Schneegabeta, I., Köhler, J.M. Flow-through polymerase chain reactions in chip themocyclers. Rev Mol Biotechnol 2001; 82:101-121; deMello, A.J. DNA amplification: does 'small' really mean 'efficient'? Lab Chip 2001; 1: 24N-29N; Mariella, Jr. R. MEMS for bio-assays. Biomed Microdevices 2002; 4 (2):77-87; deMello AJ. Microfluidics: DNA amplification moves on. Nature 2003; 422:28-29; Kricka, L.J., Wilding, P. Microchip PCR. Anal BioAnal Chem 2003; 377:820-825]. In this review, we survey the advances of the above aspects among the PCR microfluidic devices in detail. Finally, we also illuminate the potential and practical applications of PCR microfluidics to some fields such as microbial detection and disease diagnosis, based on the DNA/RNA templates used in PCR microfluidics. It is noted, especially, that this review is to help a novice in the field of on-chip PCR amplification to more easily find the original papers, because this review covers almost all of the papers related to on-chip PCR microfluidics.
Collapse
Affiliation(s)
- Chunsun Zhang
- Micro-Energy System Laboratory, Guangzhou Institute of Energy Conversion, The Chinese Academy of Sciences, No. 1 Nengyuan Road, Wushan, Tianhe District, Guangzhou 510640, PR China
| | | | | | | |
Collapse
|
15
|
Hanson EK, Ballantyne J. Whole genome amplification strategy for forensic genetic analysis using single or few cell equivalents of genomic DNA. Anal Biochem 2005; 346:246-57. [PMID: 16212929 DOI: 10.1016/j.ab.2005.08.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/07/2005] [Accepted: 08/09/2005] [Indexed: 11/28/2022]
Abstract
Evidentiary items sometimes contain an insufficient quantity of DNA for routine forensic genetic analysis. These so-called low copy number DNA samples (< 100 pg of genomic DNA) often fall below the sensitivity limitations of routine DNA analysis methods. Theoretically, one way of making such intractable samples amenable to analysis would be to increase the number of starting genomes available for subsequent STR (short tandem repeat) analysis by a whole genome amplification strategy (WGA). Although numerous studies employing WGA have focused primarily on clinical applications, few in-depth studies have been conducted to evaluate the potential usefulness of these methods in forensic casework. After an initial evaluation of existing methods, a modified WGA strategy was developed that appears to have utility for low copy number forensic casework specimens. The method employs a slight, but important, modification of the "improved primer extension preamplification PCR" method (I-PEP-PCR), which we term mIPEP (modified-I-PEP-PCR). Complete autosomal STR and Y-STR (Y chromosome short tandem repeat) profiles were routinely obtained with 5 pg of template DNA, which is equivalent to 1-2 diploid cells. Remarkably, partial Y- and autosomal STR profiles were obtained from mIPEP-treated DNA recovered from bloodstains exposed to the outside environment for 1 year whereas non-mIPEP-treated samples did not produce profiles. STR profiles were obtained from contact DNA from single dermal ridge fingerprints when the DNA was subjected to prior mIPEP amplification but not when the mIPEP step was omitted.
Collapse
Affiliation(s)
- Erin K Hanson
- Graduate Program in Biomolecular Science, University of Central Florida, PO Box 162366, Orlando, FL 32816-2366, USA
| | | |
Collapse
|
16
|
Abstract
CE on microchip is an emerging separation technique that has attracted wide attention and gained considerable popularity. Because of miniaturization of the separation format, CE on chip typically offers shorter analysis time and lower reagent consumption with potential development of portable analytical instrumentation. This review with 143 references is focused on proteins and peptides analysis, DNA separation including fragment sizing, genotyping, mutation detection and sequencing, and also the analysis of low-molecular-weight compounds, namely explosive residues and warfare agents, pharmaceuticals and drugs of abuse, and various small molecules in body fluids.
Collapse
|
17
|
Abstract
High throughput and automation of nucleic acid analysis are required in order to exploit the information that has been accumulated from the Human Genome Project. Microfabricated analytical systems enable parallel sample processing, reduced analysis-times, low consumption of sample and reagents, portability, integration of various analytical procedures and automation. This review article discusses miniaturized analytical systems for nucleic acid amplification, separation by capillary electrophoresis, sequencing and hybridization. Microarrays are also covered as a new analytical tool for global analysis of gene expression. Thus. instead of studying the expression of a single gene or a few genes at a time we can now obtain the expression profiles of thousands of genes in a single experiment.
Collapse
Affiliation(s)
- Pierre J Obeid
- Department of Chemistry, University of Patras, Patras, Greece
| | | |
Collapse
|
18
|
Footz T, Somerville MJ, Tomaszewski R, Sprysak KA, Backhouse CJ. Heteroduplex-based genotyping with microchip electrophoresis and dHPLC. ACTA ACUST UNITED AC 2004; 7:283-93. [PMID: 15000804 DOI: 10.1089/109065703322783635] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work compares the methods of mutation detection via denaturing high-performance liquid chromatography (dHPLC) and a microchip-based heteroduplex analysis (HA) method. The mutations analyzed were 185delAG and 5382insC in BRCA1 and 6174delT in BRCA2 with, as additional examples, 188del11 and 5396 + 1G --> A in BRCA1. Our HA method is based upon the use of a replaceable, highly denaturing sieving matrix that has dynamic coating capabilities, rendering our method relatively insensitive to contamination. We have found significant advantages in the microchip analysis in terms of reagent consumption, ease of use, versatility, simplicity of the protocol, the lack of constraints upon sample preparation or content, and the lack of parameters that need be adjusted. Although HA methods have a lower sensitivity than that of dHPLC, the electropherograms of the present HA method appear to provide more information and may allow mutations within the same amplicon to be distinguished. Although the dHPLC method has a remarkably high sensitivity, with this sensitivity there come constraints that may prevent it, in its present form, from being used in some applications, particularly those involving higher levels of integration. The advantages of the present HA method, along with recent developments in microchip-based single-nucleotide polymorphism (SNP) detection and high-throughput arrays, suggest that microchip-based systems could provide compact and integrated platforms capable of large-scale genotyping or mutational screening.
Collapse
Affiliation(s)
- Tim Footz
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V4
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Developments toward a complete micro-total analysis system for Duchenne muscular dystrophy diagnosis. Anal Chim Acta 2003. [DOI: 10.1016/j.aca.2003.08.067] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
|
22
|
Qin J, Fung Y, Lin B. DNA diagnosis by capillary electrophoresis and microfabricated electrophoretic devices. Expert Rev Mol Diagn 2003; 3:387-94. [PMID: 12779012 DOI: 10.1586/14737159.3.3.387] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA diagnosis is experiencing an impressive progression towards the development of novel technology to identify various clinically relevant categories of genetic changes and to meet the exponential growth of genomics. The introduction of capillary electrophoresis has dramatically accelerated the completion of the first draft of the human DNA sequence in the Human Genome Project, and thus, has become the method of choice for analysis of various genetic variants. The recent development of microfabricated electrophoretic devices has led to the possibility of integrating multiple sample handling with the actual measurement steps required for automation of molecular diagnostics. This review highlights the most recent progress in capillary electrophoresis and electrophoretic microdevices for DNA-based diagnostics, including the important areas of genotyping for point mutation, single nucleotide polymorphisms, short tandem repeats and organism identification. The application of these techniques for infectious and genetic disease diagnosis, as well as forensic identification purpose, are covered. The promising development and the challenges for techinical problems are also discussed.
Collapse
Affiliation(s)
- Jianhua Qin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshang Road 457, 116023 Dalian, China
| | | | | |
Collapse
|
23
|
Breadmore MC, Wolfe KA, Arcibal IG, Leung WK, Dickson D, Giordano BC, Power ME, Ferrance JP, Feldman SH, Norris PM, Landers JP. Microchip-based purification of DNA from biological samples. Anal Chem 2003; 75:1880-6. [PMID: 12713046 DOI: 10.1021/ac0204855] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A microchip solid-phase extraction method for purification of DNA from biological samples, such as blood, is demonstrated. Silica beads were packed into glass microchips and the beads immobilized with sol-gel to provide a stable and reproducible solid phase onto which DNA could be adsorbed. Optimization of the DNA loading conditions established a higher DNA recovery at pH 6.1 than 7.6. This lower pH also allowed for the flow rate to be increased, resulting in a decrease in extraction time from 25 min to less than 15 min. Using this procedure, template genomic DNA from human whole blood was purified on the microchip platform with the only sample preparation being mixing of the blood with load buffer prior to loading on the microchip device. Comparison between the microchip SPE (microchipSPE) procedure and a commercial microcentrifuge method showed comparable amounts of PCR-amplifiable DNA could be isolated from cultures of Salmonella typhimurium. The greatest potential of the microchipSPE device was illustrated by purifying DNA from spores from the vaccine strain of Bacillus anthracis, where eventual integration of SPE, PCR, and separation on a single microdevice could potentially enable complete detection of the infectious agent in less than 30 min.
Collapse
Affiliation(s)
- Michael C Breadmore
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Auroux PA, Iossifidis D, Reyes DR, Manz A. Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 2002; 74:2637-52. [PMID: 12090654 DOI: 10.1021/ac020239t] [Citation(s) in RCA: 819] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Pierre-Alain Auroux
- Department of Chemistry, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | |
Collapse
|
25
|
Abstract
This review gives an overview of developments in the field of microchip analysis for clinical diagnostic and forensic applications. The approach chosen to review the literature is different from that in most microchip reviews to date, in that the information is presented in terms of analytes tested rather than microchip method. Analyte categories for which examples are presented include (i) drugs (quality control, seizures) and explosives residues, (ii) drugs and endogenous small molecules and ions in biofluids, (iii) proteins and peptides, and (iv) analysis of nucleic acids and oligonucleotides. Few cases of microchip analysis of physiological samples or other "real-world" matrices were found. However, many of the examples presented have potential application for these samples, especially with ongoing parallel developments involving integration of sample pretreatment onto chips and the use of fluid propulsion mechanisms other than electrokinetic pumping.
Collapse
Affiliation(s)
- Elisabeth Verpoorte
- Sensors, Actuators & Microsystems Laboratory, Institute of Microtechnology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
26
|
|
27
|
Wolfe KA, Breadmore MC, Ferrance JP, Power ME, Conroy JF, Norris PM, Landers JP. Toward a microchip-based solid-phase extraction method for isolation of nucleic acids. Electrophoresis 2002; 23:727-33. [PMID: 11891705 DOI: 10.1002/1522-2683(200203)23:5<727::aid-elps727>3.0.co;2-o] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A silica-based solid-phase extraction system suitable for incorporation into a microchip platform (nu-total analytical system; nu-TAS) would find utility in a variety of genetic analysis protocols, including DNA sequencing. The extraction procedure utilized is based on adsorption of the DNA onto bare silica. The procedure involves three steps: (i) DNA adsorption in the presence of a chaotropic salt, (ii) removal of contaminants with an alcohol/water solution, and (iii) elution of the adsorbed DNA in a small volume of buffer suitable for polymerase chain reaction (PCR) amplification. Multiple approaches for incorporation of this protocol into a microchip were examined with regard to extraction efficiency, reproducibility, stability, and the potential to provide PCR-amplifiable DNA. These included packing microchannels with silica beads only, generating a continuous silica network via sol-gel chemistry, and combinations of these. The optimal approach was found to involve immobilizing silica beads packed into the channel using a sol-gel network. This method allowed for successful extraction and elution of nanogram quantities of DNA in less than 25 min, with the DNA obtained in the elution buffer fraction. Evaluation of the eluted DNA indicated that it was of suitable quality for subsequent amplification by PCR.
Collapse
Affiliation(s)
- Kelley A Wolfe
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Ferrance J, Snow K, Landers JP. Evaluation of Microchip Electrophoresis as a Molecular Diagnostic Method for Duchenne Muscular Dystrophy. Clin Chem 2002. [DOI: 10.1093/clinchem/48.2.380] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jerome Ferrance
- Department of Chemistry, McCormick Road, University of Virginia, Charlottesville, VA 22901
| | - Karen Snow
- Molecular Genetics Laboratory, Mayo Clinic, Rochester, MN 55905
| | - James P Landers
- Department of Chemistry, McCormick Road, University of Virginia, Charlottesville, VA 22901
- Department of Pathology, University of Virginia Health Science Center, Charlottesville, VA 22901
| |
Collapse
|
29
|
Abstract
Microfabricated bioanalytical devices (also referred to as laboratory-on-a-chip or micro-TAS) offer highly efficient platforms for simultaneous analysis of a large number of biologically important molecules, possessing great potential for genome, proteome and metabolome studies. Development and implementation of microfluidic-based bioanalytical tools involves both established and evolving technologies, including microlithography, micromachining, micro-electromechanical systems technology and nanotechnology. This article provides an overview of the latest developments in the key device subject areas and the basic interdisciplinary technologies. Important aspects of DNA and protein analysis, interfacing issues and system integration are all thoroughly discussed, along with applications for this novel "synergized" technology in high-throughput separations of biologically important molecules. This review also gives a better understanding of how to utilize these technologies as well as to provide appropriate technical solutions to problems perceived as being more fundamental.
Collapse
|
30
|
Kittler R, Stoneking M, Kayser M. A whole genome amplification method to generate long fragments from low quantities of genomic DNA. Anal Biochem 2002; 300:237-44. [PMID: 11779116 DOI: 10.1006/abio.2001.5460] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several whole genome amplification strategies have been developed to preamplify the entire genome from minimal amounts of DNA for subsequent molecular genetic analysis. However, none of these techniques has proven to amplify long products from very low (nanogram or picogram) quantities of genomic DNA. Here we report a new whole genome amplification protocol using a degenerate primer (DOP-PCR) that generates products up to about 10 kb in length from less than 1 ng genomic template DNA. This new protocol (LL-DOP-PCR) allows in the subsequent PCR the specific amplification, with high fidelity, of DNA fragments that are more than 1 kb in length. LL-DOP-PCR provides significantly better coverage for microsatellites and unique sequences in comparison to a conventional DOP-PCR method.
Collapse
Affiliation(s)
- Ralf Kittler
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Inselstrasse 22, D-04103 Leipzig, Germany
| | | | | |
Collapse
|
31
|
Fujita SI, Senda Y, Nakaguchi S, Hashimoto T. Multiplex PCR using internal transcribed spacer 1 and 2 regions for rapid detection and identification of yeast strains. J Clin Microbiol 2001; 39:3617-22. [PMID: 11574582 PMCID: PMC88398 DOI: 10.1128/jcm.39.10.3617-3622.2001] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiplex PCR amplification followed by either agarose gel electrophoresis (PCR-AGE) or microchip electrophoresis (PCR-ME) was used to test a total of 120 fungal strains. The internal transcribed spacer 1 (ITS1) and ITS2 regions and the 5.8S ribosomal DNA (rDNA) region of the fungi were amplified by using universal primers ITS1 and ITS4. The ITS2 region was simultaneously amplified by using universal primers ITS3 and ITS4. Since Trichosporon asahi and T. asteroides showed similar lengths for two amplicons, 29 different gel patterns were demonstrated for 30 yeast species tested on the basis of differences in the lengths of one or two amplicons. Of 75 yeast isolates from clinical materials, 5 isolates (6.8%) which were incompletely identified or not identified by the phenotypic method were identified with our PCR-based method (2 isolates as Candida guilliermondii, 2 as C. krusei, and 1 as C. zeylanoides). No differences in discriminating power or sensitivity were observed between the PCR-AGE method and the PCR-ME method. These methods, prospectively applied to 24 yeast-positive blood culture bottles (16 patients), resulted in the correct detection of 24 yeast strains. In conclusion, multiplex PCR followed by electrophoresis seems to be a promising tool for the rapid identification of common and uncommon yeast strains from culture colonies and from yeast-positive blood culture bottles (5.5 h for the PCR-AGE method and 3 h for the PCR-ME method).
Collapse
Affiliation(s)
- S I Fujita
- Department of Laboratory Medicine, Graduate School of Medical Science, School of Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa, Japan.
| | | | | | | |
Collapse
|
32
|
Medintz IL, Paegel BM, Blazej RG, Emrich CA, Berti L, Scherer JR, Mathies RA. High-performance genetic analysis using microfabricated capillary array electrophoresis microplates. Electrophoresis 2001; 22:3845-56. [PMID: 11700713 DOI: 10.1002/1522-2683(200110)22:18<3845::aid-elps3845>3.0.co;2-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review focuses on some recent advances in realizing microfabricated capillary array electrophoresis (microCAE). In particular, the development of a novel rotary scanning confocal fluorescence detector has facilitated the high-speed collection of sequencing and genotyping data from radially formatted microCAE devices. The concomitant development of a convenient energy-transfer cassette labeling chemistry allows sensitive multicolor labeling of any DNA genotyping or sequencing analyte. High-performance hereditary haemochromatosis and short tandem repeat genotyping assays are demonstrated on these devices along with rapid mitochondrial DNA sequence polymorphism analysis. Progress in supporting technology such as robotic fluid dispensing and batched data analysis is also presented. The ultimate goal is to develop a parallel analysis platform capable of integrated sample preparation and automated electrophoretic analysis with a throughput 10-100 times that of current technology.
Collapse
Affiliation(s)
- I L Medintz
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
OTSUKA K. マイクロチップを用いる電気泳動分析. ELECTROCHEMISTRY 2001. [DOI: 10.5796/electrochemistry.69.624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Gawron AJ, Martin RS, Lunte SM. Microchip electrophoretic separation systems for biomedical and pharmaceutical analysis. Eur J Pharm Sci 2001; 14:1-12. [PMID: 11457644 DOI: 10.1016/s0928-0987(01)00153-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The application of microchip capillary electrophoresis (CE) systems to biomedical and pharmaceutical analysis is described and reviewed. Fabrication, instrumentation, and operation of the systems are discussed. An overview of applications is presented, covering four main areas: DNA sequencing, genetic analysis, immunoassays, and protein and peptide analysis. These systems have the potential to dramatically change the way that biochemical analyses are performed.
Collapse
Affiliation(s)
- A J Gawron
- Department of Pharmaceutical Chemistry and Center for Bioanalytical Research, University of Kansas, 2095 Constant Avenue, 66047, Lawrence, KS, USA
| | | | | |
Collapse
|
35
|
Esch MB, Locascio LE, Tarlov MJ, Durst RA. Detection of viable Cryptosporidium parvum using DNA-modified liposomes in a microfluidic chip. Anal Chem 2001; 73:2952-8. [PMID: 11467540 DOI: 10.1021/ac001508n] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes a microfluidic chip that enables the detection of viable Cryptosporidium parvum by detecting RNA amplified by nucleic-acid-sequence-based amplification (NASBA). The mRNA serving as the template for NASBA is produced by viable C. parvum as a response to heat shock. The chip utilizes sandwich hybridization by hybridizing the NASBA-generated amplicon between capture probes and reporter probes in a microfluidic channel. The reporter probes are tagged with carboxyfluorescein-filled liposomes. These liposomes, which generate fluorescence intensities not obtainable from single fluorophores, allow the detection of very low concentrations of targets. The limit of detection of the chip is 5 fmol of amplicon in 12.5 microL of sample solution. Samples of C. parvum that underwent heat shock, extraction, and amplification by NASBA were successfully detected and clearly distinguishable from controls. This was accomplished without having to separate the amplified RNA from the NASBA mixture. The microfluidic chip can easily be modified to detect other pathogens. We envision its use in mu-total analysis systems (mu-TAS) and in DNA-array chips utilized for environmental monitoring of pathogens.
Collapse
Affiliation(s)
- M B Esch
- Analytical Chemistry Laboratories, Cornell University, Geneva, New York 14456-0462, USA
| | | | | | | |
Collapse
|
36
|
Zhang CX, Manz A. Narrow sample channel injectors for capillary electrophoresis on microchips. Anal Chem 2001; 73:2656-62. [PMID: 11403313 DOI: 10.1021/ac010138f] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In microchip CE, sample injection is generally achieved through cross, double-tee, or tee injector structures. In these reported approaches, channel width and depth are uniform at the injection intersection. Here, we present cross and tee injectors having narrow sample channels. Using a cross injector with reduced sample channel width, resolution, column efficiency, and sensitivity are remarkably improved. Furthermore, no leakage control is required in both injection and separation phases, making the microchip CE system more user-friendly. Good resolution can also be obtained using tee injectors with narrow sample channels, which would otherwise be impossible using conventional tee injectors. Using the narrow sample channel tee injector instead of conventional cross and double-tee injectors, the number of reservoirs in multiplexed systems can be reduced to N + 2 (N, the number of paralleled CE systems), the real theoretical limit. The virtues of the novel injectors were demonstrated with poly(dimethylsiloxane)-glass chips incorporating eight parallel CE channels.
Collapse
Affiliation(s)
- C X Zhang
- Astra Zeneca/SmithKline Beecham Centre for Analytical Sciences, Department of Chemistry, Imperial College of Science, Technology & Medicine, London, UK
| | | |
Collapse
|
37
|
Kricka LJ. Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century. Clin Chim Acta 2001; 307:219-23. [PMID: 11369361 DOI: 10.1016/s0009-8981(01)00451-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Micro miniaturization of analytical procedures is having significant impact on diagnostic testing, and will enable highly complex clinical testing to be miniaturized and permit testing to move from the central laboratory into non-laboratory settings. The diverse range of micro analytical devices includes microchips, gene chips, bioelectronic chips. They have been applied to several clinically important assays (e.g., PCR, immunoassay). The main advantages of the new devices are integration of multiple steps in complex analytical procedures, diversity of application, sub-microliter consumption of reagents and sample, and portability. These devices form the basis of new and smaller analyzers (e.g., capillary electrophoresis) and may ultimately be used in even smaller devices useful in decentralized testing (lab-on-a-chip, personal laboratories). The impact of microchips on healthcare costs could be significant via timely intervention and monitoring, combined with improved treatments (e.g., microchip-based pharmacogenomic tests). Empowerment of health consumers to perform self-testing is limited, but microchips could accelerate this process and so produce a level of self-awareness of biochemical and genetic information hitherto unimaginable. The next level of miniaturization is the nanochip (nanometer-sized features) and the technological foundation for these futuristic devices is discernable in nanotubes and self-assembling molecular structures.
Collapse
Affiliation(s)
- L J Kricka
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Munro NJ, Hühmer AF, Landers JP. Robust polymeric microchannel coatings for microchip-based analysis of neat PCR products. Anal Chem 2001; 73:1784-94. [PMID: 11338592 DOI: 10.1021/ac001317k] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several silica coatings have been evaluated for replicate PCR product analysis in capillaries and electrophoretic microchips. Silica coatings are an essential component to many electrophoretic separations, and this importance is magnified in microchips, where separation distances are minimized. Increasing the resistance of coatings to separation conditions improves the reproducibility and longevity of the coated microchip, which allows for the full potential of these devices (rapid separations, high through-put, and longevity) to be realized. In this study, several coating parameters have been evaluated experimentally and through the literature to produce a coating with high resistance to the separation conditions of interest, neat PCR product separations. Coating degradation induced under these conditions was tested for several coatings, and the influence of surface hydroxylation, surface hydration, silanization solvent, silanizing reagent, catalysis, endcapping, and polymerization procedure are discussed. Under the testing conditions, a coating (coating E) prepared by silanization with chlorodimethyloctylsilane in toluene with a polymer layer of poly(vinylpyrrolidone) attached by a hydrogen abstraction method [Srinivasan, K.; Pohl, C.; Avdalovic, N. Anal. Chem. 1997, 69, 2798-2805] was most resistant. This coating was tested for longevity on electrophoretic microchips and was compared to the traditional coating of polyacrylamide. The coatings produced similar resolution and efficiencies; however, coating E provided more reproducible migration times and had performed for 635 analyses when testing was terminated. This procedure provides a reproducible, resistant surface coating, thus allowing for replicate analysis of neat PCR product on microchips.
Collapse
Affiliation(s)
- N J Munro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
39
|
Odake T, Tabuchi M, Sato T, Susaki H, Korenaga T. Fluorescent derivatization of nitrite ions with 2,3-diaminonaphthalene utilizing a pH gradient in a Y-shaped microchannel. ANAL SCI 2001; 17:535-8. [PMID: 11990573 DOI: 10.2116/analsci.17.535] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The on-chip derivatization of nitrite ions with 2,3-diaminonaphthalene (DAN) utilizing a pH gradient formed in a Y-shaped microchannel was investigated. Nitrite ions react with DAN at low pH, and strongly fluoresced at high pH. Therefore, a reaction at low pH followed by the addition of a strong alkaline solution is the usual procedure in a batch scheme. However, a strong alkaline solution, like an NaOH aqueous solution, erodes the wall of the microchannels in substrates made of glass or polymers, and has not been considered suitable for use in microchannels. We first investigated the derivatization reaction and fluorescent properties of nitrite ions with DAN. We found that the on-chip fluorescent derivatization reaction and detection without the addition of an alkaline solution is possible by controlling the pH values of the nitrite solution and the DAN solution to form a suitable pH gradient by utilizing a buffering effect of triethanolamine solution, which is used as an NO2 gas-absorption medium. These results have suggested the feasibility of novel reaction schemes which can provide the desired products due to a controlled pH gradient in the microchannels, as well as the possibility of an on-site monitoring microchip device for ambient NO2.
Collapse
Affiliation(s)
- T Odake
- Department of Ecosystem Engineering, Graduate School of Engineering, University of Tokushima, Japan
| | | | | | | | | |
Collapse
|
40
|
Giordano BC, Ferrance J, Swedberg S, Hühmer AF, Landers JP. Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. Anal Biochem 2001; 291:124-32. [PMID: 11262165 DOI: 10.1006/abio.2000.4974] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is much interest in developing methods amenable to amplifying nucleic acids by the polymerase chain reaction (PCR) in small volumes in microfabricated devices. The use of infrared-mediated temperature control to accurately thermocycle microliter volumes in microchips fabricated from polyimide is demonstrated. Amplification of a 500-base-pair fragment of lambda-phage DNA was achieved in a 1.7-microl chamber containing a thermocouple that allowed for accurate control of temperature. While previous work showed that Taq polymerase was inactivated when in direct contact with the thermocouple, this was circumvented with the polyimide chip by the addition of polyethylene glycol as a buffer additive. This, consequently, allowed for adequate amounts of PCR product to be observed after only 15 cycles, with a total time for amplification of 240 s.
Collapse
Affiliation(s)
- B C Giordano
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22901, USA. (Work was carried out at Landers Lab, University of Pittsburgh, PA, USA.)
| | | | | | | | | |
Collapse
|
41
|
Beaulieu M, Larson GP, Geller L, Flanagan SD, Krontiris TG. PCR candidate region mismatch scanning: adaptation to quantitative, high-throughput genotyping. Nucleic Acids Res 2001; 29:1114-24. [PMID: 11222761 PMCID: PMC29718 DOI: 10.1093/nar/29.5.1114] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Linkage and association analyses were performed to identify loci affecting disease susceptibility by scoring previously characterized sequence variations such as microsatellites and single nucleotide polymorphisms. Lack of markers in regions of interest, as well as difficulty in adapting various methods to high-throughput settings, often limits the effectiveness of the analyses. We have adapted the Escherichia coli mismatch detection system, employing the factors MutS, MutL and MutH, for use in PCR-based, automated, high-throughput genotyping and mutation detection of genomic DNA. Optimal sensitivity and signal-to-noise ratios were obtained in a straightforward fashion because the detection reaction proved to be principally dependent upon monovalent cation concentration and MutL concentration. Quantitative relationships of the optimal values of these parameters with length of the DNA test fragment were demonstrated, in support of the translocation model for the mechanism of action of these enzymes, rather than the molecular switch model. Thus, rapid, sequence-independent optimization was possible for each new genomic target region. Other factors potentially limiting the flexibility of mismatch scanning, such as positioning of dam recognition sites within the target fragment, have also been investigated. We developed several strategies, which can be easily adapted to automation, for limiting the analysis to intersample heteroduplexes. Thus, the principal barriers to the use of this methodology, which we have designated PCR candidate region mismatch scanning, in cost-effective, high-throughput settings have been removed.
Collapse
Affiliation(s)
- M Beaulieu
- Division of Molecular Medicine and Division of Neurosciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
42
|
Bousse L, Cohen C, Nikiforov T, Chow A, Kopf-Sill AR, Dubrow R, Parce JW. Electrokinetically controlled microfluidic analysis systems. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 29:155-81. [PMID: 10940246 DOI: 10.1146/annurev.biophys.29.1.155] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electrokinetic forces are emerging as a powerful means to drive microfluidic systems with flow channel cross-sectional dimensions in the tens of micrometers and flow rates in the nanoliter per second range. These systems provide many advantages such as improved analysis speed, improved reproducibility, greatly reduced reagent consumption, and the ability to perform multiple operations in an integrated fashion. Planar microfabrication methods are used to make these analysis chips in materials such as glass or polymers. Many applications of this technology have been demonstrated, such as DNA separations, enzyme assays, immunoassays, and PCR amplification integrated with microfluidic assays. Further development of this technology is expected to yield higher levels of functionality of sample throughput on a single microfluidic analysis chip.
Collapse
Affiliation(s)
- L Bousse
- Caliper Technologies Corporation, Mountain View, California 94043, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Abstract
This review is devoted to the rapid developments in the field of microfluidic separation devices in which the flow is electrokinetically driven, and where the separation element forms the heart of the system, in order to give an overview of the trends of the last three years. Examples of microchip layouts that were designed for various application areas are given. Optimization of mixing and injection strategies, designs for the handling of multiple samples, and capillary array systems show the enormous progress made since the first proof-of-concept papers about lab-on-a-chip devices. Examples of functional elements for on-chip preconcentration, filtering, DNA amplification and on-chip detection indicate that the real integration of various analytical tasks on a single microchip is coming into reach. The use of materials other than glass, such as poly(dimethylsiloxane) and polymethylmethacrylate, for chip fabrication and detection methods other than laser-induced fluorescence (LIF) detection, such as mass spectrometry and electrochemical detection, are described. Furthermore, it can be observed that the separation modes known from capillary electrophoresis (CE) in fused-silica capillaries can be easily transferred to the microchip platform. The review concludes with an overview of applications of microchip CE and with a brief outlook.
Collapse
Affiliation(s)
- G J Bruin
- Novartis Pharma AG, Drug Metabolism & Pharmacokinetics, Basel, Switzerland.
| |
Collapse
|
45
|
Panaro NJ, Yuen PKI, Sakazume T, Fortina P, Kricka LJ, Wilding P. Evaluation of DNA Fragment Sizing and Quantification by the Agilent 2100 Bioanalyzer. Clin Chem 2000. [DOI: 10.1093/clinchem/46.11.1851] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Nicholas J Panaro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3400 Spruce St., Philadelphia, PA 19104
| | - Po K i Yuen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3400 Spruce St., Philadelphia, PA 19104
| | - Taku Sakazume
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3400 Spruce St., Philadelphia, PA 19104
- Department of Pediatrics, The Children’s Hospital of Pennsylvania, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Paolo Fortina
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3400 Spruce St., Philadelphia, PA 19104
- Department of Pediatrics, The Children’s Hospital of Pennsylvania, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Larry J Kricka
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3400 Spruce St., Philadelphia, PA 19104
| | - Peter Wilding
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3400 Spruce St., Philadelphia, PA 19104
| |
Collapse
|
46
|
Hühmer AF, Landers JP. Noncontact infrared-mediated thermocycling for effective polymerase chain reaction amplification of DNA in nanoliter volumes. Anal Chem 2000; 72:5507-12. [PMID: 11080907 DOI: 10.1021/ac000423j] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate that accurate thermocycling of nanoliter volumes is possible using infrared-mediated temperature control. Thermocycling in the presence of Taq polymerase and the appropriate primers for amplification of lambda-DNA in a total volume of 160 nL is shown to result in the successful amplification of a 500-base pair fragment of lambda-DNA. The efficiency of the amplification is sufficiently high so that as few as 10 cycles were required to amplify an adequate mass of DNA for analysis by capillary electrophoresis. This indicates that, as expected, PCR amplification of DNA in nanoliter volumes should not only require less Taq polymerase but require less cycling time to produce a detectable amount of product. This sets the stage for microchip integration of the PCR process in the nanoliter volumes routinely manipulated in electrophoretic microchips.
Collapse
Affiliation(s)
- A F Hühmer
- Department of Chemistry, University of Virginia, Charlottesville 22901, USA
| | | |
Collapse
|
47
|
Tian H, Brody LC, Landers JP. Rapid detection of deletion, insertion, and substitution mutations via heteroduplex analysis using capillary- and microchip-based electrophoresis. Genome Res 2000; 10:1403-13. [PMID: 10984458 PMCID: PMC310899 DOI: 10.1101/gr.132700] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this report, we explore the potential of capillary and microchip electrophoresis for heteroduplex analysis- (HDA) based mutation detection. Fluorescent dye-labeled primers (6-FAM-tagged) were used to amplify the DNA fragments ranging from 130 to 400 bp. The effects of DNA fragment length, matrix additives, pH, and salt were evaluated for capillary electrophoresis- (CE) and/or microchip electrophoresis-based HDA, using six heterozygous mutations, 185delAG, E1250X (3867GT), R1443G (4446CG), 5382insC, 5677insA in BRCA1, and 6174delT in BRCA2. For this system, the effective fragment size for CE-based HDA was found in the range of 200-300 bp, however, the effective range was 150-260 bp for microchip-based HDA. Sensitivity studies show CE-based HDA could detect a mutated DNA present at only 1%-10% of the total DNA. Discrimination between wild-type and deletion or insertion mutations in BRCA1 and BRCA2 with CE-based HDA could be achieved in <8 min, while the substitution mutations required 14 min of analysis time. For each mutation region, 15 samples were run to confirm the accuracy and reproducibility of the method. Using the method described, two previously reported mutations, E1038G (3232AG, missense) and 4427 C/T (4427CT, polymorphism), were detected in the tested samples and confirmed by DNA sequencing. Translation of the CE-based methodology to the microchip format allowed the analysis time for each mutation to be decreased to 130 sec. Based on the results obtained with this model system, it is possible that CE-based HDA methodologies can be developed and used effectively in genetic testing. The fast separation time and automated operation afforded with CE instrumentation provide a powerful system for screening mutations that include small deletions, insertions, and point mutations. Translation to the microchip platform, especially to a multichannel microchip system, would allow for screening mutations with high throughput.
Collapse
Affiliation(s)
- H Tian
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
48
|
Lee TM, Hsing IM, Lao AI, Carles MC. A miniaturized DNA amplifier: its application in traditional Chinese medicine. Anal Chem 2000; 72:4242-7. [PMID: 10994990 DOI: 10.1021/ac000384b] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Si-based miniaturized device for the polymerase chain reaction (PCR) has been developed. The device has Pt temperature sensors and heaters integrated on top of the reaction chamber for real-time accurate temperature sensing and control. Reaction temperature of the device is digitally controlled to achieve a temperature accuracy of +/-0.025 degrees C. The effects of PCR protocol optimization on the amplification performance of the surface-passivated chip reactor have been investigated in detail and quantitatively compared with that of the conventional thermal cycler. In this study, four traditional Chinese medicine genes including Fritillaria cirrhosa, Cartharmus tinctorius, Adenophora lobophilla, and Stephania tetrandra are used as model template. With appropriate chamber surface treatment (chlorotrimethylsilane/polyadenylic acid or SiO2 coatings), the device demonstrates amplification as efficient as that in the conventional thermal cycler at optimized MgCl2 concentration. The amplified DNA has concentration higher than 27 ng/microL, which is sufficient for subsequent on-chip analyses and detection. Experimental results reveal the importance of inclusion of BSA for an efficient amplification in the SiO2-passivated device and the excellent reusability of the device with a simple cleaning step.
Collapse
Affiliation(s)
- T M Lee
- Department of Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, UK
| | | | | | | |
Collapse
|
49
|
Tian H, Hühmer AF, Landers JP. Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format. Anal Biochem 2000; 283:175-91. [PMID: 10906238 DOI: 10.1006/abio.2000.4577] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For DNA purification to be functionally integrated into the microchip for high-throughput DNA analysis, a miniaturized purification process must be developed that can be easily adapted to the microchip format. In this study, we evaluate the effectiveness of a variety of silica resins for miniaturized DNA purification and gauge the potential usefulness for on-chip solid-phase extraction. A micro-solid-phase extraction (muSPE) device containing only nanograms of silica resin is shown to be effective for the adsorption and desorption of DNA in the picogram-nanogram mass range. Fluorescence spectroscopy as well as capillary electrophoresis with laser-induced fluorescence detection is employed for the analysis of DNA recovered from solid-phase resins, while the polymerase chain reaction (PCR) is used to evaluate the amplifiable nature of the eluted DNA. We demonstrate that DNA can be directly recovered from white blood cells with an efficiency of roughly 70%, while greater than 80% of the protein is removed with a 500-nl bed volume muSPE process that takes less than 10 min. With a capacity in the range of 10-30 ng/mg of silica resin, we show that the DNA extracted from white blood cells, cultured cancer cells, and even whole blood on the low microliter scale is suitable for direct PCR amplification. The miniaturized format as well as rapid time frame for DNA extraction is compatible with the fast electrophoresis on microfabricated chips.
Collapse
Affiliation(s)
- H Tian
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
50
|
Affiliation(s)
- S N Krylov
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|