1
|
Tao J, Zhang H, Weinfeld M, Le XC. Detection of Uracil-Excising DNA Glycosylases in Cancer Cell Samples Using a Three-Dimensional DNAzyme Walker. ACS MEASUREMENT SCIENCE AU 2024; 4:459-466. [PMID: 39184356 PMCID: PMC11342458 DOI: 10.1021/acsmeasuresciau.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 08/27/2024]
Abstract
DNA glycosylase dysregulation is implicated in carcinogenesis and therapeutic resistance of cancers. Thus, various DNA-based detection platforms have been developed by leveraging the base excision activity of DNA glycosylases. However, the efficacy of DNA-based methods is hampered due to nonspecific degradation by nucleases commonly present in cancer cells and during preparations of cell lysates. In this report, we describe a fluorescence-based assay using a specific and nuclease-resistant three-dimensional DNAzyme walker to investigate the activity of DNA glycosylases from cancer cell lysates. We focus on DNA glycosylases that excise uracil from deoxyuridine (dU) lesions, namely, uracil DNA glycosylase (UDG) and single-stranded monofunctional uracil DNA glycosylase (SMUG1). The limits of detection for detecting UDG and SMUG1 in the buffer were 3.2 and 3.0 pM, respectively. The DNAzyme walker detected uracil excision activity in diluted cancer cell lysate from as few as 48 A549 cells. The results of the UDG inhibitor experiments demonstrate that UDG is the predominant uracil-excising glycosylase in A549 cells. Approximately 500 nM of UDG is present in each A549 cell on average. No fluorescence was generated in the samples lacking DNAzyme activation, indicating that there was no nonspecific nuclease interference. The ability of the DNAzyme walker to respond to glycosylase activity illustrates the potential use of DNAzyme walker technology to monitor and study biochemical processes involving glycosylases.
Collapse
Affiliation(s)
- Jeffrey Tao
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Hongquan Zhang
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Michael Weinfeld
- Division
of Experimental Oncology, Department of Oncology, Faculty of Medicine
and Dentistry, University of Alberta, Cross
Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - X. Chris Le
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
2
|
Ouyang Y, Liu Y, Deng Y, He H, Huang J, Ma C, Wang K. Recent advances in biosensor for DNA glycosylase activity detection. Talanta 2021; 239:123144. [PMID: 34923254 DOI: 10.1016/j.talanta.2021.123144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
Base excision repair (BER) is vital for maintaining the integrity of the genome under oxidative damage. DNA glycosylase initiates the BER pathway recognizes and excises the mismatched substrate base leading to the apurinic/apyrimidinic site generation, and simultaneously breaks the single-strand DNA. As the aberrant activity of DNA glycosylase is associated with numerous diseases, including cancer, immunodeficiency, and atherosclerosis, the detection of DNA glycosylase is significant from bench to bedside. In this review, we summarized novel DNA strategies in the past five years for DNA glycosylase activity detection, which are classified into fluorescence, colorimetric, electrochemical strategies, etc. We also highlight the current limitations and look into the future of DNA glycosylase activity monitoring.
Collapse
Affiliation(s)
- Yuzhen Ouyang
- School of Life Sciences, Central South University, Changsha, 410013, China; Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yifan Liu
- School of Life Sciences, Central South University, Changsha, 410013, China; Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yuan Deng
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha, 410013, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Combination of bidirectional strand displacement amplification with single-molecule detection for multiplexed DNA glycosylases assay. Talanta 2021; 235:122805. [PMID: 34517663 DOI: 10.1016/j.talanta.2021.122805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 11/21/2022]
Abstract
DNA glycosylases can initiate base excision repair pathway to repair endogenous DNA base damages for the maintenance of genome stability. Multiple DNA glycosylases exhibit abnormal in various diseases, and the simultaneous measurement of different DNA glycosylases is critical to clinical diagnosis and drug discovery. Herein, we take advantage of single-molecule detection and bidirectional strand displacement amplification (SDA) to simultaneously detect uracil DNA glycolase (UDG) and human alkyladenine DNA glycosylase (hAAG). We design a partial double-stranded DNA (dsDNA) substrate modified with specific recognition sites of UDG and hAAG. The dsDNA substrate is labeled with BHQ1 and BHQ2 at the 5'-ends and then hybridizes with the Cy3/Cy5-labeled reporter probes to obtain the BHQ1/Cy3 and BHQ2/Cy5 base pairs, resulting in the quenching of Cy3/Cy5 fluorescence by BHQ1/BHQ2 via fluorescence resonance energy transfer (FRET). When UDG and hAAG are present, they can induce the base excision repair reaction and subsequently initiate the bidirectional SDA amplification process, releasing the Cy5/Cy3-labeled reporter probes from the dsDNA substrate and consequently the recovery of Cy5 and Cy3 fluorescence, which can be measured by single-molecule detection, with Cy5 indicating UDG and Cy3 indicating hAAG. This method possesses high sensitivity and good selectivity with the capability of quantifying multiple DNA glycosylases at the single-cell level. Furthermore, it can be used to simultaneously screen DNA glycosylase inhibitors and determine enzyme kinetic parameters, with the potential of sensing various DNA/RNA enzymes by simple changing the recognition sites of DNA substrates.
Collapse
|
4
|
Chang HL, Su KY, Goodman SD, Yen RS, Cheng WC, Yang YC, Lin LI, Chang SY, Fang WH. Measurement of uracil-DNA glycosylase activity by matrix assisted laser desorption/ionization time-of-flight mass spectrometry technique. DNA Repair (Amst) 2020; 97:103028. [PMID: 33254084 DOI: 10.1016/j.dnarep.2020.103028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/26/2022]
Abstract
Uracil-DNA glycosylase (UDG) is a highly conserved DNA repair enzyme that acts as a key component in the base excision repair pathway to correct hydrolytic deamination of cytosine making it critical to genome integrity in living organisms. We report here a non-labeled, non-radio-isotopic and very specific method to measure UDG activity. Oligodeoxyribonucleotide duplex containing a site-specific G:U mismatch that is hydrolyzed by UDG then subjected to Matrix Assisted Laser Desorption/Ionization time-of-flight mass spectrometry analysis. A protocol was developed to maintain the AP product in DNA without strand break then the cleavage of uracil was identified by the mass change from uracil substrate to AP product. From UDG kinetic analysis, for G:U substrate the Km is 50 nM, Vmax is 0.98 nM/s and Kcat = 9.31 s-1. The method was applied to uracil glycosylase inhibitor measurement with an IC50 value of 7.6 pM. Single-stranded and double-stranded DNAs with uracil at various positions of the substrates were also tested for UDG activity albeit with different efficiencies. The simple, rapid, quantifiable, scalable and versatile method has potential to be the reference method for monofunctional glycosylase measurement, and can also be used as a tool for glycosylase inhibitors screening.
Collapse
Affiliation(s)
- Hui-Lan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Nationwide Children's Hospital and the Department of Pediatrics, the Ohio State University, Columbus, OH, USA
| | - Rong-Syuan Yen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Wern-Cherng Cheng
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Ya-Chien Yang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Woei-Horng Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
5
|
Li CC, Chen HY, Hu J, Zhang CY. Rolling circle amplification-driven encoding of different fluorescent molecules for simultaneous detection of multiple DNA repair enzymes at the single-molecule level. Chem Sci 2020; 11:5724-5734. [PMID: 32864084 PMCID: PMC7433776 DOI: 10.1039/d0sc01652g] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022] Open
Abstract
DNA repair enzymes (e.g., DNA glycosylases) play a critical role in the repair of DNA lesions, and their aberrant levels are associated with various diseases. Herein, we develop a sensitive method for simultaneous detection of multiple DNA repair enzymes based on the integration of single-molecule detection with rolling circle amplification (RCA)-driven encoding of different fluorescent molecules. We use human alkyladenine DNA glycosylase (hAAG) and uracil DNA glycosylase (UDG) as the target analytes. We design a bifunctional double-stranded DNA (dsDNA) substrate with a hypoxanthine base (I) in one strand for hAAG recognition and an uracil (U) base in the other strand for UDG recognition, whose cleavage by APE1 generates two corresponding primers. The resultant two primers can hybridize with their respective circular templates to initiate RCA, resulting in the incorporation of multiple Cy3-dCTP and Cy5-dGTP nucleotides into the amplified products. After magnetic separation and exonuclease cleavage, the Cy3 and Cy5 fluorescent molecules in the amplified products are released into the solution and subsequently quantified by total internal reflection fluorescence (TIRF)-based single-molecule detection, with Cy3 indicating the presence of hAAG and Cy5 indicating the presence of UDG. This strategy greatly increases the number of fluorescent molecules per concatemer through the introduction of RCA-driven encoding of different fluorescent molecules, without the requirement of any specially labeled detection probes for simultaneous detection. Due to the high amplification efficiency of RCA and the high signal-to-ratio of single-molecule detection, this method can achieve a detection limit of 6.10 × 10-9 U mL-1 for hAAG and 1.54 × 10-9 U mL-1 for UDG. It can be further applied for simultaneous detection of multiple DNA glycosylases in cancer cells at the single-cell level and the screening of DNA glycosylase inhibitors, holding great potential in early clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Chen-Chen Li
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Tel: +86 0531-86186033
| | - Hui-Yan Chen
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Tel: +86 0531-86186033
| | - Juan Hu
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Tel: +86 0531-86186033
| | - Chun-Yang Zhang
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Tel: +86 0531-86186033
| |
Collapse
|
6
|
Healing E, Charlier CF, Meira LB, Elliott RM. A panel of colorimetric assays to measure enzymatic activity in the base excision DNA repair pathway. Nucleic Acids Res 2019; 47:e61. [PMID: 30869144 PMCID: PMC6582407 DOI: 10.1093/nar/gkz171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/13/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
DNA repair is essential for the maintenance of genomic integrity, and evidence suggest that inter-individual variation in DNA repair efficiency may contribute to disease risk. However, robust assays suitable for quantitative determination of DNA repair capacity in large cohort and clinical trials are needed to evaluate these apparent associations fully. We describe here a set of microplate-based oligonucleotide assays for high-throughput, non-radioactive and quantitative determination of repair enzyme activity at individual steps and over multiple steps of the DNA base excision repair pathway. The assays are highly sensitive: using HepG2 nuclear extract, enzyme activities were quantifiable at concentrations of 0.0002 to 0.181 μg per reaction, depending on the enzyme being measured. Assay coefficients of variation are comparable with other microplate-based assays. The assay format requires no specialist equipment and has the potential to be extended for analysis of a wide range of DNA repair enzyme activities. As such, these assays hold considerable promise for gaining new mechanistic insights into how DNA repair is related to individual genetics, disease status or progression and other environmental factors and investigating whether DNA repair activities can be used a biomarker of disease risk.
Collapse
Affiliation(s)
- Eleanor Healing
- Department of Nutritional Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Clara F Charlier
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Lisiane B Meira
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Ruan M Elliott
- Department of Nutritional Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
7
|
Zhang H, Wang L, Xie Y, Zuo X, Chen H, Chen X. Base excision repair mediated cascading triple-signal amplification for the sensitive detection of human alkyladenine DNA glycosylase. Analyst 2019; 144:3064-3071. [PMID: 30916676 DOI: 10.1039/c9an00200f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DNA glycosylase (DG) plays a significant role in repairing DNA lesions, and the dysregulation of DG activity is associated with a variety of human pathologies. Thus, the detection of DG activity is essential for biomedical research and clinical diagnosis. Herein, we develop a facile fluorometric method based on the base excision repair (BER) mediated cascading triple-signal amplification for the sensitive detection of DG. The presence of human alkyladenine DNA glycosylase (hAAG) can initiate the cleavage of the substrate at the mismatched deoxyinosine site by endonuclease IV (Endo IV), resulting in the breaking of the DNA substrate. The cleaved DNA substrate functions as both a primer and a template to initiate strand displacement amplification (SDA) to release primers. The released primers can further bind to a circular template to induce an exponential primer generation rolling circle amplification (PG-RCA) reaction, producing a large number of primers. The primers that resulted from the SDA and PG-RCA reaction can induce the subsequent recycling cleavage of signal probes, leading to the generation of a fluorescence signal. Taking advantage of the high amplification efficiency of triple-signal amplification and the low background signal resulting from single uracil repair-mediated inhibition of nonspecific amplification, this method exhibits a low detection limit of 0.026 U mL-1 and a large dynamic range of 4 orders of magnitude for hAAG. Moreover, this method has distinct advantages of simplicity and low cost, and it can further quantify the hAAG activity from HeLa cell extracts, holding great potential in clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Huige Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Lili Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yi Xie
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xianwei Zuo
- Key Laboratory of Sensor and Sensing Technology of Gansu Province, Gansu Academy of Sciences, Lanzhou 730000, China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Xingguo Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Zhu J, Hao Q, Liu Y, Guo Z, Rustam B, Jiang W. Integrating DNA structure switch with branched hairpins for the detection of uracil-DNA glycosylase activity and inhibitor screening. Talanta 2017; 179:51-56. [PMID: 29310268 DOI: 10.1016/j.talanta.2017.10.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022]
Abstract
The detection of uracil-DNA glycosylase (UDG) activity is pivotal for its biochemical studies and the development of drugs for UDG-related diseases. Here, we explored an integrated DNA structure switch for high sensitive detection of UDG activity. The DNA structure switch containing two branched hairpins was employed to recognize UDG enzyme and generate fluorescent signal. Under the action of UDG, one branched hairpin was impelled folding into a close conformation after the excision of the single uracil. This reconfigured hairpin could immediately initiate the polymerization/nicking amplification reaction of another branched hairpin accompanying with the release of numerous G-quadruplexes (G4s). In the absence of UDG, the DNA structure switch kept its original configuration, and thus the subsequent polymerization/nicking reaction was inhibited, resulting in the release of few G4 strands. In this work, Thioflavin T was used as signal reporter to target G4s. By integrating the DNA structure switch, the quick response and high sensitivity for UDG determination was achieved and a low detection limit of 0.0001U/mL was obtained, which was superior to the most fluorescent methods for UDG assay. The repeatability of the as-proposed strategy was demonstrated under the concentration of 0.02U/mL and 0.002U/mL, the relative standard deviation obtained from 5 successive samples were 1.7% and 2.8%, respectively. The integrated DNA structure switch strategy proposed here has the potential application for the study of mechanism and function of UDG enzyme and the screening the inhibitors as potential drugs and biochemical tools.
Collapse
Affiliation(s)
- Jing Zhu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China; Henan Key Laboratory of Biomolecular Recognition and Sensing, School of Chemistry and Chemical Engineering, Shangqiu Normal University, 476000 Shangqiu, PR China
| | - Qijie Hao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China
| | - Yi Liu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China
| | - Zhaohui Guo
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China
| | - Buayxigul Rustam
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China
| | - Wei Jiang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China.
| |
Collapse
|
9
|
Zhang Y, Li CC, Tang B, Zhang CY. Homogeneously Sensitive Detection of Multiple DNA Glycosylases with Intrinsically Fluorescent Nucleotides. Anal Chem 2017. [PMID: 28621520 DOI: 10.1021/acs.analchem.7b01655] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA glycosylases are responsible for recognition and excision of the damaged bases in the base excision repair pathway, and all mammals express multiple DNA glycosylases to maintain genome stability. However, simultaneous detection of multiple DNA glycosylase still remains a great challenge. Here, we develop a rapid and sensitive fluorescent method for simultaneous detection of human 8-oxoG DNA glycosylase 1 (hOGG1) and uracil DNA glycolase (UDG) using exonuclease-assisted recycling signal amplification in combination with fluorescent bases 2-aminopurine (2-AP) and pyrrolo-dC (P-dC) as the fluorophores. We design a bifunctional DNA probe modified with one 8-oxoG and five uracil bases, which can hybridize with the trigger probes to form a sandwiched DNA substrate for hOGG1 and UDG. In addition, we design 2-AP and P-dC signal probes as the hairpin structures with 2-AP and P-dC in the stems. The presence of hOGG1 and UDG may initiate the signal amplification process by the recycling lambda exonuclease digestion and generates distinct fluorescence signals, with 2-AP indicating the presence of hOGG1 and P-dC indicating the presence of UDG. This method can simultaneously detect multiple DNA glycosylases with the detection limits of 0.0035 U/mL for hOGG1 and 0.0025 U/mL for UDG, and it can even measure DNA glycosylases at the single-cell level. Moreover, this method can be applied for the measurement of enzyme kinetic parameters and the screening of DNA glycosylase inhibitors, holding great potential for further applications in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Chen-Chen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| |
Collapse
|
10
|
Zhao J, Ma Y, Kong R, Zhang L, Yang W, Zhao S. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity. Anal Chim Acta 2015; 887:216-223. [DOI: 10.1016/j.aca.2015.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
|
11
|
Zhang T, Zhao H, Quan X, Chen S. An electrochemiluminescence sensing for DNA glycosylase assay with enhanced host-guest recognition technique based on α-cyclodextrin functionalized gold/silica cell-shell nanoparticles. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Lee CY, Park KS, Park HG. A fluorescent G-quadruplex probe for the assay of base excision repair enzyme activity. Chem Commun (Camb) 2015. [DOI: 10.1039/c5cc05010c] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A G-quadruplex probe incorporating 2-AP is utilized to develop a novel strategy to accurately determine UDG activity. The excision reaction promoted by UDG is designed to trigger the formation of G-quadruplex structure with significant fluorescence enhancement of 2-AP within the probe. By employing this strategy, UDG activity can be reliably determined with high sensitivity and specificity.
Collapse
Affiliation(s)
- Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK21 + Program)
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Ki Soo Park
- Department of Chemical and Biomolecular Engineering (BK21 + Program)
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 + Program)
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| |
Collapse
|
13
|
Tao J, Song P, Sato Y, Nishizawa S, Teramae N, Tong A, Xiang Y. A label-free and sensitive fluorescent method for the detection of uracil-DNA glycosylase activity. Chem Commun (Camb) 2015; 51:929-32. [DOI: 10.1039/c4cc06170e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A label-free fluorescent method has been developed for sensitive detection of uracil-DNA glycosylase activity as well as UDG inhibitors.
Collapse
Affiliation(s)
- Jing Tao
- Department of Chemistry
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing 100084
| | - Panshu Song
- National Institute of Metrology
- Beijing 100029
- China
| | - Yusuke Sato
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Seiichi Nishizawa
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Norio Teramae
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Aijun Tong
- Department of Chemistry
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing 100084
| | - Yu Xiang
- Department of Chemistry
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing 100084
| |
Collapse
|
14
|
Gines G, Saint-Pierre C, Gasparutto D. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities. Anal Chim Acta 2014; 812:168-75. [PMID: 24491778 DOI: 10.1016/j.aca.2013.12.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/18/2013] [Accepted: 12/28/2013] [Indexed: 12/25/2022]
Abstract
DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes' activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL(-1) and 50 μg mL(-1) of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair activities.
Collapse
Affiliation(s)
- Guillaume Gines
- Laboratoire des Lésions des Acides Nucléiques, SCIB-UMR E3 CEA-UJF/INAC/CEA Grenoble, Grenoble Cedex 09 38054, France
| | - Christine Saint-Pierre
- Laboratoire des Lésions des Acides Nucléiques, SCIB-UMR E3 CEA-UJF/INAC/CEA Grenoble, Grenoble Cedex 09 38054, France
| | - Didier Gasparutto
- Laboratoire des Lésions des Acides Nucléiques, SCIB-UMR E3 CEA-UJF/INAC/CEA Grenoble, Grenoble Cedex 09 38054, France.
| |
Collapse
|
15
|
Leung KH, He HZ, Wang W, Zhong HJ, Chan DSH, Leung CH, Ma DL. Label-free luminescent switch-on detection of endonuclease IV activity using a G-quadruplex-selective iridium(III) complex. ACS APPLIED MATERIALS & INTERFACES 2013; 5:12249-12253. [PMID: 24245499 DOI: 10.1021/am404314p] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report herein the synthesis and application of a novel G-quadruplex-selective luminescent iridium(III) complex [Ir(ppy)2(bcp)](+) (where ppy = 2-phenylpyridine and bcp = 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) for the sensitive detection of apurinic/apyrimidinic (AP) endonuclease activity. Using endonuclease IV (Endo IV) as a model enzyme, a duplex DNA substrate containing a G-quadruplex-forming sequence is cleaved by Endo IV at the abasic site. This releases the G-quadruplex sequence, which folds into a G-quadruplex and is recognised by the G-quadruplex-selective iridium(III) complex with an enhanced luminescence response. The assay achieved high sensitivity and selectivity for Endo IV over other tested enzymes.
Collapse
Affiliation(s)
- Ka-Ho Leung
- Department of Chemistry, Hong Kong Baptist University , Kowloon Tong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhang H, Zhang L, Jiang J, Yu R. A highly sensitive electrochemical platform for the assay of uracil-DNA glycosylase activity combined with enzymatic amplification. ANAL SCI 2013; 29:193-8. [PMID: 23400284 DOI: 10.2116/analsci.29.193] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Uracil-DNA glycosylase (UDG) plays a crucial role in DNA lesion repair because it is one of the most important base excision repair (BER) enzymes. Quantitative analysis of UDG activity is of fundamental importance in bioanalysis. Here, an electrochemical sensing platform combined with enzymatic amplification was developed for simple and sensitive assay of UDG activity and its inhibition. This strategy relies on the release of a biotinylated signal probe from the electrode surface, due to the lowered melting temperature of the duplex UDG substrate after UDG treatment. A biotin modification was used as a tracer in the signal probe and streptavidin-alkaline phosphatase (SA-ALP) was taken as a reporter molecule. Upon reacting with UDG, the loss of biotin label led to a decrease in the amount of bound SA-ALP on the electrode surface, resulting in a weaker electrochemical signal. This strategy allowed for a simple, cost-effective, sensitive and selective assay for UDG with a wide linear response range from 0.01 to 10 U/mL and a low detection limit of 0.0079 U/mL. In addition, the effects of drugs on UDG activity have also been investigated. The proposed strategy not only provides a universal platform for the assay of BER enzymes, but also shows potential application for drug screening.
Collapse
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | | | | | | |
Collapse
|
17
|
Leung KH, He HZ, Ma VPY, Zhong HJ, Chan DSH, Zhou J, Mergny JL, Leung CH, Ma DL. Detection of base excision repair enzyme activity using a luminescent G-quadruplex selective switch-on probe. Chem Commun (Camb) 2013; 49:5630-2. [PMID: 23559154 DOI: 10.1039/c3cc41129j] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report herein a simple and convenient luminescent assay for detection of base excision repair enzyme activity using an Ir(III) complex as a G-quadruplex selective probe. Using uracil-DNA glycosylase (UDG) as a model enzyme, the assay achieved high sensitivity and selectivity for UDG over other tested enzymes. The utility of the assay for screening potential UDG inhibitors was also demonstrated.
Collapse
Affiliation(s)
- Ka-Ho Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang L, Zhao J, Jiang J, Yu R. A target-activated autocatalytic DNAzyme amplification strategy for the assay of base excision repair enzyme activity. Chem Commun (Camb) 2012; 48:8820-2. [PMID: 22836748 DOI: 10.1039/c2cc34531e] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Based on a target-activated autocatalytic DNAzyme amplification strategy, novel fluorescence sensing platforms were constructed for highly sensitive and selective assay of base excision repair enzyme activity. By using a rolling circle amplification (RCA)-coupled amplification cascade, an extremely low detection limit (0.002 U mL(-1)) was achieved.
Collapse
Affiliation(s)
- Liangliang Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | | | | | | |
Collapse
|
19
|
KURAMITZ H, MAWATARI Y, IKEUCHI M, KUTOMI O, HATA N, TAGUCHI S, SUGAWARA K. Multiplexed Assay for Proteins Based on Sequestration Electrochemistry Using the Protein Binding Electroactive Magnetic Microbeads. ANAL SCI 2012; 28:77. [DOI: 10.2116/analsci.28.77] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hideki KURAMITZ
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama
| | - Yoko MAWATARI
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama
| | - Mariwo IKEUCHI
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama
| | - Osamu KUTOMI
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama
| | - Noriko HATA
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama
| | - Shigeru TAGUCHI
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama
| | | |
Collapse
|
20
|
A liquid chromatography-mass spectrometric assay for measuring activity of human 8-oxoguanine-DNA glycosylase. Anal Biochem 2009; 396:275-9. [PMID: 19782038 DOI: 10.1016/j.ab.2009.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/10/2009] [Accepted: 09/19/2009] [Indexed: 11/24/2022]
Abstract
A new assay for measuring glycosylase activity of human 8-oxoguanine-DNA glycosylase is described. The assay measures the amount of released 8-oxoguanine from synthetic oligonucleotides containing modified base in the middle of the sequence. After enzymatic release, the amount of base is quantified by liquid chromatography-mass spectrometry. Chromatographic separation is carried out on a reversed-phase C(18) column using 10% methanol/water. Quantitation of 8-oxoguanine is carried out by negative-ion electrospray on a single quadrupole mass spectrometer operated in selected-ion monitoring mode. The limit of quantitation was 6 nM and the assay was linear from 6 to 1000 nM. The method was evaluated by monitoring the kinetics of base excision of several substrates as well as by measuring stimulation of activity in the presence of APE1 endonuclease. The new assay provides much higher throughput compared to traditional gel-based assays, which is particularly important when large number of samples need to analyzed.
Collapse
|
21
|
Magnetic microbead-based electrochemical immunoassays. Anal Bioanal Chem 2009; 394:61-9. [PMID: 19229525 DOI: 10.1007/s00216-009-2650-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Revised: 01/21/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
This review provides a summary of recent works concerning electrochemical immunoassays using magnetic microbeads as a solid phase. Recent research activity has led to innovative and powerful detection strategies that have been resulted in sensitive electrochemical detection. Coupling of magnetic microbeads with highly sensitive electrochemical detection provides a useful analytical method for environmental evaluation and clinical diagnostics, etc. The huge surface area and high dispersion capability of magnetic microbeads strongly contributes towards the development of new sensitive, rapid, user-friendly, and miniaturized electrochemical immunoassay systems. Moreover, the immunocomplexes formed on the magnetic microbead surface can be easily detected without pretreatment steps such as preconcentration or purification, which are normally required for standard methods. The discussion in this review is organized in two main subjects that include magnetic-microbead-based assays using enzyme labels and nanoparticle tags.
Collapse
|
22
|
Ting SRS, Nguyen TLU, Stenzel MH. One Pot Synthesis of Surface PEGylated Core-Shell Microparticles by Suspension Polymerization with Surface Enrichment of Biotin/Avidin Conjugation. Macromol Biosci 2008; 9:211-20. [DOI: 10.1002/mabi.200800161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Lorenzi PL, Landowski CP, Brancale A, Song X, Townsend LB, Drach JC, Amidon GL. N-methylpurine DNA glycosylase and 8-oxoguanine dna glycosylase metabolize the antiviral nucleoside 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole. Drug Metab Dispos 2006; 34:1070-7. [PMID: 16565170 DOI: 10.1124/dmd.105.009209] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rapid in vivo degradation of the potent human cytomegalovirus inhibitor 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole (BDCRB) compared with a structural L-analog, maribavir (5,6-dichloro-2-(isopropylamino)-1-beta-L-ribofuranosyl-1H-benzimidazole), has been attributed to selective glycosidic bond cleavage. An enzyme responsible for this selective BDCRB degradation, however, has not been identified. Here, we report the identification of two enzymes, 8-oxoguanine DNA glycosylase (OGG1) and N-methylpurine DNA glycosylase (MPG), that catalyze N-glycosidic bond cleavage of BDCRB and its 2-chloro homolog, 2,5,6-trichloro-1-(beta-D-ribofuranosyl)benzimidazole, but not maribavir. To our knowledge, this is the first demonstration that free nucleosides are substrates of OGG1 and MPG. To understand how these enzymes might process BDCRB, docking and molecular dynamics simulations were performed with the native human OGG1 crystal coordinates. These studies showed that OGG1 was not able to bind a negative control, guanosine, yet BDCRB and maribavir were stabilized through interactions with various binding site residues, including Phe319, His270, Ser320, and Asn149. Only BDCRB, however, achieved orientations whereby its anomeric carbon, C1', could undergo nucleophilic attack by the putative catalytic residue, Lys249. Thus, in silico observations were in perfect agreement with experimental observations. These findings implicate DNA glycosylases in drug metabolism.
Collapse
Affiliation(s)
- Philip L Lorenzi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor MI 48109-1065, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kuramitz H, Dziewatkoski M, Barnett B, Halsall HB, Heineman WR. Application of an automated fluidic system using electrochemical bead-based immunoassay to detect the bacteriophage MS2 and ovalbumin. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2006.01.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Keener WK, Ward TE. An assay for N-glycosylase activity on single-stranded DNA using stable, nonhazardous reagents. Anal Biochem 2005; 342:170-2. [PMID: 15958196 DOI: 10.1016/j.ab.2005.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 03/18/2005] [Accepted: 04/04/2005] [Indexed: 11/25/2022]
Affiliation(s)
- William K Keener
- Biotechnology Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA.
| | | |
Collapse
|
26
|
Xia L, Zheng L, Lee HW, Bates SE, Federico L, Shen B, O'Connor TR. Human 3-methyladenine-DNA glycosylase: effect of sequence context on excision, association with PCNA, and stimulation by AP endonuclease. J Mol Biol 2005; 346:1259-74. [PMID: 15713479 DOI: 10.1016/j.jmb.2005.01.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 12/29/2004] [Accepted: 01/05/2005] [Indexed: 01/26/2023]
Abstract
Human 3-methyladenine-DNA glycosylase (MPG protein) is involved in the base excision repair (BER) pathway responsible mainly for the repair of small DNA base modifications. It initiates BER by recognizing DNA adducts and cleaving the glycosylic bond leaving an abasic site. Here, we explore several of the factors that could influence excision of adducts recognized by MPG, including sequence context, effect of APE1, and interaction with other proteins. To investigate sequence context, we used 13 different 25 bp oligodeoxyribonucleotides containing a unique hypoxanthine residue (Hx) and show that the steady-state specificity of Hx excision by MPG varied by 17-fold. If APE1 protein is used in the reaction for Hx removal by MPG, the steady-state kinetic parameters increase by between fivefold and 27-fold, depending on the oligodeoxyribonucleotide. Since MPG has a role in removing adducts such as 3-methyladenine that block DNA synthesis and there is a potential sequence for proliferating cell nuclear antigen (PCNA) interaction, we hypothesized that MPG protein could interact with PCNA, a protein involved in repair and replication. We demonstrate that PCNA associates with MPG using immunoprecipitation with either purified proteins or whole cell extracts. Moreover, PCNA binds to both APE1 and MPG at different sites, and loading PCNA onto a nicked, closed circular substrate with a unique Hx residue enhances MPG catalyzed excision. These data are consistent with an interaction that facilitates repair by MPG or APE1 by association with PCNA. Thus, PCNA could have a role in short-patch BER as well as in long-patch BER. Overall, the data reported here show how multiple factors contribute to the activity of MPG in cells.
Collapse
Affiliation(s)
- Liqun Xia
- Biology Division, Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Maksimenko A, Ishchenko AA, Sanz G, Laval J, Elder RH, Saparbaev MK. A molecular beacon assay for measuring base excision repair activities. Biochem Biophys Res Commun 2004; 319:240-6. [PMID: 15158468 DOI: 10.1016/j.bbrc.2004.04.179] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Indexed: 11/17/2022]
Abstract
The base excision repair (BER) pathway plays a key role in protecting the genome from endogenous DNA damage. Current methods to measure BER activities are indirect and cumbersome. Here, we introduce a direct method to assay DNA excision repair that is suitable for automation and industrial use, based on the fluorescence quenching mechanism of molecular beacons. We designed a single-stranded DNA oligonucleotide labelled with a 5'-fluorescein (F) and a 3'-Dabcyl (D) in which the fluorophore, F, is held in close proximity to the quencher, D, by the stem-loop structure design of the oligonucleotide. Following removal of the modified base or incision of the oligonucleotide, the fluorophore is separated from the quencher and fluorescence can be detected as a function of time. Several modified beacons have been used to validate the assay on both cell-free extracts and purified proteins. We have further developed the method to analyze BER in cultured cells. As described, the molecular beacon-based assay can be applied to all DNA modifications processed by DNA excision/incision repair pathways. Possible applications of the assay are discussed, including high-throughput real-time DNA repair measurements both in vitro and in living cells.
Collapse
Affiliation(s)
- Andrei Maksimenko
- BioAlliance Pharma SA, 59, Bvd du Général Martial Valin, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|