1
|
Abstract
INTRODUCTION Calpain-1 and calpain-2 are prototypical classical isoforms of the calpain family of calcium-activated cysteine proteases. Their substrate proteins participate in a wide range of cellular processes, including transcription, survival, proliferation, apoptosis, migration, and invasion. Dysregulated calpain activity has been implicated in tumorigenesis, suggesting that calpains may be promising therapeutic targets. AREAS COVERED This review covers clinical and basic research studies implicating calpain-1 and calpain-2 expression and activity in tumorigenesis and metastasis. We highlight isoform specific functions and provide an overview of substrates and cancer-related signalling pathways affected by calpain-mediated proteolytic cleavage. We also discuss efforts to develop clinically relevant calpain specific inhibitors and spotlight the challenges facing inhibitor development. EXPERT OPINION Rationale for targeting calpain-1 and calpain-2 in cancer is supported by pre-clinical and clinical studies demonstrating that calpain inhibition has the potential to attenuate carcinogenesis and block metastasis of aggressive tumors. The wide range of substrates and cleavage products, paired with inconsistencies in model systems, underscores the need for more complete understanding of physiological substrates and how calpain cleavage alters their function in cellular processes. The development of isoform specific calpain inhibitors remains an important goal with therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
- Ivan Shapovalov
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Danielle Harper
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| |
Collapse
|
2
|
Functional Mining of the Crotalus Spp. Venom Protease Repertoire Reveals Potential for Chronic Wound Therapeutics. Molecules 2020; 25:molecules25153401. [PMID: 32731325 PMCID: PMC7435869 DOI: 10.3390/molecules25153401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic wounds are a major health problem that cause millions of dollars in expenses every year. Among all the treatments used, active wound treatments such as enzymatic treatments represent a cheaper and specific option with a fast growth category in the market. In particular, bacterial and plant proteases have been employed due to their homology to human proteases, which drive the normal wound healing process. However, the use of these proteases has demonstrated results with low reproducibility. Therefore, alternative sources of proteases such as snake venom have been proposed. Here, we performed a functional mining of proteases from rattlesnakes (Crotalus ornatus, C. molossus nigrescens, C. scutulatus, and C. atrox) due to their high protease predominance and similarity to native proteases. To characterize Crotalus spp. Proteases, we performed different protease assays to measure and confirm the presence of metalloproteases and serine proteases, such as the universal protease assay and zymography, using several substrates such as gelatin, casein, hemoglobin, L-TAME, fibrinogen, and fibrin. We found that all our venom extracts degraded casein, gelatin, L-TAME, fibrinogen, and fibrin, but not hemoglobin. Crotalus ornatus and C. m. nigrescens extracts were the most proteolytic venoms among the samples. Particularly, C. ornatus predominantly possessed low molecular weight proteases (P-I metalloproteases). Our results demonstrated the presence of metalloproteases capable of degrading gelatin (a collagen derivative) and fibrin clots, whereas serine proteases were capable of degrading fibrinogen-generating fibrin clots, mimicking thrombin activity. Moreover, we demonstrated that Crotalus spp. are a valuable source of proteases that can aid chronic wound-healing treatments.
Collapse
|
3
|
Mendes AS, Blascke de Mello MM, Parente JM, Omoto ACM, Neto-Neves EM, Fazan R, Tanus-Santos JE, Castro MM. Verapamil decreases calpain-1 and matrix metalloproteinase-2 activities and improves hypertension-induced hypertrophic cardiac remodeling in rats. Life Sci 2020; 244:117153. [DOI: 10.1016/j.lfs.2019.117153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 12/30/2022]
|
4
|
MacLeod JA, Gao Y, Hall C, Muller WJ, Gujral TS, Greer PA. Genetic disruption of calpain-1 and calpain-2 attenuates tumorigenesis in mouse models of HER2+ breast cancer and sensitizes cancer cells to doxorubicin and lapatinib. Oncotarget 2018; 9:33382-33395. [PMID: 30279968 PMCID: PMC6161787 DOI: 10.18632/oncotarget.26078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/23/2018] [Indexed: 12/03/2022] Open
Abstract
Calpains are a family of calcium activated cysteine proteases which participate in a wide range of cellular functions including migration, invasion, autophagy, programmed cell death, and gene expression. Calpain-1 and calpain-2 isoforms are ubiquitously expressed heterodimers composed of isoform specific catalytic subunits coupled with an obligate common regulatory subunit encoded by capns1. Here, we report that conditional deletion of capns1 disrupted calpain-1 and calpain-2 expression and activity, and this was associated with delayed tumorigenesis and altered signaling in a transgenic mouse model of spontaneous HER2+ breast cancer and effectively blocked tumorigenesis in an orthotopic engraftment model. Furthermore, capns1 knockout in a tumor derived cell line correlated with enhanced sensitivity to the chemotherapeutic doxorubicin and the HER2/EGFR tyrosine kinase inhibitor lapatinib. Collectively, these results indicate pro-tumorigenic roles for calpains-1/2 in HER2+ breast cancer and provide evidence that calpain-1/2 inhibitors could have anti-tumor effects if used either alone or in combination with chemotherapeutics and targeted agents.
Collapse
Affiliation(s)
- James A MacLeod
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.,Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Yan Gao
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Christine Hall
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Taranjit S Gujral
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.,Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| |
Collapse
|
5
|
Latronico T, Branà MT, Gramegna P, Fasano A, Di Bari G, Liuzzi GM. Inhibition of myelin-cleaving poteolytic activities by interferon-beta in rat astrocyte cultures. Comparative analysis between gelatinases and calpain-II. PLoS One 2013; 8:e49656. [PMID: 23390485 PMCID: PMC3563665 DOI: 10.1371/journal.pone.0049656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/11/2012] [Indexed: 01/12/2023] Open
Abstract
Background Proteolytic enzymes have been implicated in the pathogenesis of Multiple Sclerosis (MS) for both their ability to degrade myelin proteins and for their presence in MS plaques.In this study we investigated whether interferon-beta (IFN-β) could differently modulate the activity and the expression of proteolytic activities against myelin basic protein (MBP) present in lipopolysaccharide (LPS)-activated astrocytes. Methodology/Principal Findings Rat astrocyte cultures were activated with LPS and simultaneously treated with different doses of IFN-β. To assess the presence of MBP-cleaving proteolytic activity, culture supernatants and cellular extracts collected from astrocytes were incubated with exogenous MBP. A MBP-degrading activity was found in both lysates and supernatants from LPS-activated astrocytes and was dose-dependently inhibited by IFN-β. The use of protease inhibitors as well as the zymographic analysis indicated the presence of calpain II (CANP-2) in cell lysates and gelatinases A (MMP-2) and B (MMP-9) in cell supernatants. RT-PCR revealed that the expression of CANP-2 as well as of MMP-2 and MMP-9 was increased in LPS-activated astrocytes and was dose-dependently inhibited by IFN-β treatment. The expression of calpastatin, the natural inhibitor of CANPs, was not affected by IFN-β treatment. By contrast, decreased expression of TIMP-1 and TIMP-2, the natural inhibitors of MMP-9 and MMP-2, respectively, was observed in IFN-β-treated astrocytes compared to LPS-treated cells. The ratio enzyme/inhibitor indicated that the effect of IFN-β treatment is more relevant to CANP-2 than on MMPs. Conclusions/ Significance These results suggest that the neuroinflammatory damage during MS involves altered balance between multiple proteases and their inhibitors and indicate that IFN-β is effective in regulating different enzymatic systems involved in MS pathogenesis.
Collapse
Affiliation(s)
- Tiziana Latronico
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Maria Teresa Branà
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Pasqua Gramegna
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Anna Fasano
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Gaetano Di Bari
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
- * E-mail:
| |
Collapse
|
6
|
Duffy KR, Duffy MS. An in situ method for the examination of calcium-dependent proteolysis. J Neurosci Methods 2011; 201:333-9. [PMID: 21871923 DOI: 10.1016/j.jneumeth.2011.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/10/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
Abstract
Proteases are involved in a multitude of cellular processes that are critical for the maintenance of normal cell function, and their aberrant activity has been linked to a large number of diseases. Calcium-dependent proteases (calpains) are found in cells distributed throughout the brain, and their activity contributes to normal and abnormal brain function. A limitation with common approaches to studying the activity of calpain is the requirement for homogenization of tissue samples, which limits the ability to resolve the spatial location of protease activity, and which also introduces the possibility of interaction with endogenous inhibitors that would have otherwise been kept spatially separated in vivo. We present a simple method for the investigation of protease activity that provides better spatial resolution than alternatives, and that alleviates the concern of protein interactions in homogenate. We examined calcium-dependent proteolysis in tissue sections by observation of a fluorescence signal produced by fragmentation of a casein substrate embedded in an agarose gel solution that covered the section. This technique preserved the anatomical characteristics of the tissue, and provided spatial resolution sufficient for ready examination of protease activity in cells and in blood vessels within a single tissue section.
Collapse
Affiliation(s)
- Kevin R Duffy
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
7
|
Daicho T, Daisho Y, Kojima S, Takano S, Tejima Y, Marunouchi T, Takagi N, Takeo S, Tanonaka K. Alterations in Dystrophin-Related Glycoproteins in Development of Right Ventricular Failure in Rats. J Pharmacol Sci 2009; 111:405-15. [DOI: 10.1254/jphs.09208fp] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Cheng XC, Fang H, Xu WF. Advances in assays of matrix metalloproteinases (MMPs) and their inhibitors. J Enzyme Inhib Med Chem 2008; 23:154-67. [PMID: 18343899 DOI: 10.1080/14756360701511292] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Matrix metalloproteinases (MMPs) play an important role in many physiological and pathological processes. To assay the activities of MMPs is important in diagnosis and therapy of the MMPs associated diseases, such as neoplastic, rheumatic and cardiovascular diseases. Several assay systems have been developed, which include bioassay, zymography assay, immunoassay, fluorimetric assay, radio isotopic assay, phage-displayed assay, multiple-enzyme/multiple-reagent assay and activity-based profiling assay. The principle, application, advantage and disadvantage of these assays have been reviewed in this article.
Collapse
Affiliation(s)
- Xian-Chao Cheng
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | | |
Collapse
|
9
|
Jiang L, Wang M, Zhang J, Monticone RE, Telljohann R, Spinetti G, Pintus G, Lakatta EG. Increased aortic calpain-1 activity mediates age-associated angiotensin II signaling of vascular smooth muscle cells. PLoS One 2008; 3:e2231. [PMID: 18493299 PMCID: PMC2373882 DOI: 10.1371/journal.pone.0002231] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 04/08/2008] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Angiotensin II (Ang II) signaling, including matrix metalloproteinase type II (MMP2) activation, has been linked to an age-associated increase in migration capacity of vascular smooth muscle cells (VSMC), and to other proinflammatory features of arterial aging. Calpain-1 activation is required for MMP2 expression in fibroblasts and is induced in cardiomyocytes by Ang II. The consequences of engagement of calpain-1 with its substrates, however, in governing the age-associated proinflammatory status within the arterial wall, remains unknown. METHODOLOGY/PRINCIPAL FINDINGS The present findings demonstrate that transcription, translation, and activity of calpain-1 are significantly up-regulated in rat aortae or early-passage aortic VSMC from old (30-mo) rats compared to young (8-mo). Dual immunolabeling of the arterial wall indicates that colocalization of calpain-1 and Ang II increases within the aged arterial wall. To further explore the relationship of calpain-1 to Ang II, we chronically infused Ang II into young rats, and treated cultured aortic rings or VSMC with Ang II. We also constructed adenoviruses harboring calpain-1 (CANP1) or its endogenous inhibitor calpastatin (CAST) and infected these into VSMC. Ang II induces calpain-1 expression in the aortic walls in vivo and ex vivo and VSMC in vitro. The Ang II mediated, age-associated increased MMP2 activity and migration in VSMC are both blocked by calpain inhibitor 1 or CAST. Over-expression of calpain-1 in young VSMC results in cleavage of intact vimentin, and an increased migratory capacity mimicking that of old VSMC, which is blocked by the MMP inhibitor, GM6001. CONCLUSIONS/SIGNIFICANCE Calpain-1 activation is a pivotal molecular event in the age-associated arterial Ang II/MMP2 signaling cascade that is linked to cytoskeleton protein restructuring, and VSMC migration. Therefore, targeting calpain-1 has the potential to delay or reverse the arterial remodeling that underlies age-associated diseases i.e. atherosclerosis.
Collapse
Affiliation(s)
- Liqun Jiang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Jing Zhang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Robert E. Monticone
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Richard Telljohann
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Gaia Spinetti
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Gianfranco Pintus
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| |
Collapse
|
10
|
Galvez AS, Diwan A, Odley AM, Hahn HS, Osinska H, Melendez JG, Robbins J, Lynch RA, Marreez Y, Dorn GW. Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis. Circ Res 2007; 100:1071-8. [PMID: 17332428 DOI: 10.1161/01.res.0000261938.28365.11] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Regulating the balance between synthesis and proteasomal degradation of cellular proteins is essential for tissue growth and maintenance, but the critical pathways regulating protein ubiquitination and degradation are incompletely defined. Although participation of calpain calcium-activated proteases in post-necrotic myocardial autolysis is well characterized, their importance in homeostatic turnover of normal cardiac tissue is controversial. Hence, we evaluated the consequences of physiologic calpain (calcium-activated protease) activity in cultured cardiomyocytes and unstressed mouse hearts. Comparison of in vitro proteolytic activities of cardiac-expressed calpains 1 and 2 revealed calpain 1, but not calpain 2, activity at physiological calcium concentrations. Physiological calpain 1 activation was evident in adenoviral transfected cultured cardiomyocytes as proteolysis of specific substrates, generally increased protein ubiquitination, and accelerated protein turnover, that were each inhibited by coexpression of the inhibitor protein calpastatin. Conditional forced expression of calpain 1, but not calpain 2, in mouse hearts demonstrated substrate-specific proteolytic activity under basal conditions, with hyperubiquitination of cardiac proteins and increased 26S proteasome activity. Loss of myocardial calpain activity by forced expression of calpastatin diminished ubiquitination of 1 or more specific myocardial proteins, without affecting overall ubiquitination or proteasome activity, and resulted in a progressive dilated cardiomyopathy characterized by accumulation of intracellular protein aggregates, formation of autophagosomes, and degeneration of sarcomeres. Thus, calpain 1 is upstream of, and necessary for, ubiquitination and proteasomal degradation of a subset of myocardial proteins whose abnormal accumulation produces autophagosomes and degeneration of cardiomyocytes with functional decompensation.
Collapse
Affiliation(s)
- Anita S Galvez
- Center for Molecular Cardiovascular Research, University of Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Harper AGS, Sage SO. A role for the intracellular protease calpain in the activation of store-operated calcium entry in human platelets. Cell Calcium 2006; 41:169-78. [PMID: 16884770 DOI: 10.1016/j.ceca.2006.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/21/2006] [Accepted: 05/27/2006] [Indexed: 01/02/2023]
Abstract
Here, we report a novel role for the cysteine protease calpain in store-operated calcium entry. Several structurally and mechanistically unrelated inhibitors of calpain inhibited Ca2+ entry activated in human platelets by thapsigargin-evoked Ca2+ store depletion or the physiological agonist thrombin, whereas inhibitors of other cysteine proteases were without effect. The use of the cell-permeable fluorogenic calpain substrate 7-amino-4-chloromethylcoumarin, t-BOC-l-leucyl-l-methionine amide revealed rapid activation of calpain which was closely temporally correlated with Ca2+ store depletion even in the absence of a rise in cytosolic [Ca2+]. Calpain inhibition prevented the tyrosine phosphorylation of several proteins upon Ca2+ store depletion, suggesting that calpain may lie upstream of protein tyrosine phosphorylation that is known to be required for the activation of store-operated Ca2+ entry in human platelets. Earlier studies using calpain inhibitors may need reinterpretation in the light of this finding that calpain plays a role in the activation of physiological Ca2+ entry pathways.
Collapse
Affiliation(s)
- Alan G S Harper
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | |
Collapse
|
12
|
Shanmuga Sundaram J, Mohana Rao V, Meena AK, Anandaraj MPJS. Altered expression, intracellular distribution and activity of lymphocyte calpain II in Duchenne muscular dystrophy. Clin Chim Acta 2006; 373:82-7. [PMID: 16815350 DOI: 10.1016/j.cca.2006.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 05/03/2006] [Accepted: 05/04/2006] [Indexed: 01/20/2023]
Abstract
BACKGROUND Calpain II is an calcium-dependent cysteine protease involved in essential regulatory or processing functions of the cell, mediated by physiological concentrations of Ca(2+). However, in an environment of abnormal intracellular calcium as in Duchenne muscular dystrophy (DMD), calpain is suggested to cause membrane alterations. METHODS Twelve individuals with dystrophin gene deletion and an equal number of age and sex matched controls were chosen for the study. The expression pattern of calpain II (both at RNA and protein levels), its cellular location upon activation and its activity in lymphocytes were specifically assessed to know if our earlier report of increased calpain activity in DMD lymphocytes is a result of de novo synthesis or is due to basic defect in calcium handling. RESULTS We found a significant increase in the expression, alteration in calpain II distribution and increased activity of this enzyme. CONCLUSION Membrane abnormalities and altered signaling pathways observed in DMD lymphocytes may be due to increased association of calpain II onto membrane and cytosol.
Collapse
Affiliation(s)
- J Shanmuga Sundaram
- Institute of Genetics and Hospital for Genetic Diseases, Begumpet, Hyderabad-500 016, India
| | | | | | | |
Collapse
|
13
|
Satish L, Blair HC, Glading A, Wells A. Interferon-inducible protein 9 (CXCL11)-induced cell motility in keratinocytes requires calcium flux-dependent activation of mu-calpain. Mol Cell Biol 2005; 25:1922-41. [PMID: 15713646 PMCID: PMC549356 DOI: 10.1128/mcb.25.5.1922-1941.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Keratinocyte migration is critical to reepithelialization during wound repair. The motility response is promoted by growth factors, cytokines, and cytokines produced in the wound bed, including those that activate the epidermal growth factor (EGF) receptor. The Alu-Leu-Arg-negative CXC chemokine interferon-inducible protein 9 (IP-9; also known as CXCL11, I-TAC, beta-R1, and H-174) is produced by keratinocytes in response to injury. As keratinocytes also express the receptor, CXCR3, this prompted us to examine the role and molecular mechanism by which IP-9 regulates keratinocyte motility. Unexpectedly, as CXCR3 liganding blocks growth factor-induced motility in fibroblasts, IP-9 alone promoted motility in undifferentiated keratinocytes (37 +/- 6% of the level of the highly motogenic EGF) as determined in a two-dimensional in vitro wound healing assay. IP-9 even enhanced EGF-induced motility in undifferentiated keratinocytes (116 +/- 5%; P < 0.05 compared to EGF alone), suggesting two separate mechanisms of action. IP-9-increased motility and -decreased adhesiveness required the intracellular protease calpain. The increases in both motility and calpain activity by IP-9 were blocked by pharmacological and molecular inhibition of phospholipase C-beta3 and chelation of calcium, which prevented an intracellular calcium flux. Molecular downregulation or RNA interference-mediated depletion of mu-calpain (calpain 1) but not M-calpain (calpain 2) blocked IP-9-induced calpain activation and motility. In accord with elimination of IP-9-induced de-adhesion, RNA interference-mediated depletion of calpain 1 but not calpain 2 prevented cleavage of the focal adhesion component focal adhesion kinase and disassembly of vinculin aggregates. In comparison, EGF-induced motility of the same undifferentiated keratinocytes requires the previously described extracellular signal-regulated kinase to the M-calpain pathway. These data demonstrate that while both EGF- and IP-9-induced motility in keratinocytes requires calpain activity, the isoform of calpain triggered depends on the nature of the receptor for the particular ligand. Interestingly, physiological nonapoptotic calcium fluxes were capable of activating mu-calpain, implying that the calcium requirement of mu-calpain for activation is attained during cell signaling. This is also the first demonstration of differential activation of the two ubiquitous calpain isoforms in the same cell by different signals.
Collapse
Affiliation(s)
- Latha Satish
- Department of Pathology, 713 Scaife, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
14
|
Wei W, Fareed MU, Evenson A, Menconi MJ, Yang H, Petkova V, Hasselgren PO. Sepsis stimulates calpain activity in skeletal muscle by decreasing calpastatin activity but does not activate caspase-3. Am J Physiol Regul Integr Comp Physiol 2005; 288:R580-90. [PMID: 15563579 DOI: 10.1152/ajpregu.00341.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We examined the influence of sepsis on the expression and activity of the calpain and caspase systems in skeletal muscle. Sepsis was induced in rats by cecal ligation and puncture (CLP). Control rats were sham operated. Calpain activity was determined by measuring the calcium-dependent hydrolysis of casein and by casein zymography. The activity of the endogenous calpain inhibitor calpastatin was measured by determining the inhibitory effect on calpain activity in muscle extracts. Protein levels of μ- and m-calpain and calpastatin were determined by Western blotting, and calpastatin mRNA was measured by real-time PCR. Caspase-3 activity was determined by measuring the hydrolysis of the fluorogenic caspase-3 substrate Ac-DEVD-AMC and by determining protein and mRNA expression for caspase-3 by Western blotting and real-time PCR, respectively. In addition, the role of calpains and caspase-3 in sepsis-induced muscle protein breakdown was determined by measuring protein breakdown rates in the presence of specific inhibitors. Sepsis resulted in increased muscle calpain activity caused by reduced calpastatin activity. In contrast, caspase-3 activity, mRNA levels, and activated caspase-3 29-kDa fragment were not altered in muscle from septic rats. Sepsis-induced muscle proteolysis was blocked by the calpain inhibitor calpeptin but was not influenced by the caspase-3 inhibitor Ac-DEVD-CHO. The results suggest that sepsis-induced muscle wasting is associated with increased calpain activity, secondary to reduced calpastatin activity, and that caspase-3 activity is not involved in the catabolic response to sepsis.
Collapse
Affiliation(s)
- Wei Wei
- Dept. of Surgery, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Vinokurov KS, Oppert B, Elpidina EN. An overlay technique for postelectrophoretic analysis of proteinase spectra in complex mixtures using p-nitroanilide substrates. Anal Biochem 2005; 337:164-6. [PMID: 15649391 DOI: 10.1016/j.ab.2004.10.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Indexed: 01/26/2023]
Affiliation(s)
- Konstantin S Vinokurov
- Department of Entomology, Biological Faculty, Moscow State University, Leninskie Gory, Moscow 119992, Russia
| | | | | |
Collapse
|
16
|
Larsen AK, De Veyra T, Jia Z, Wells A, Dutt P, Elce JS. Expression of human, mouse, and rat m-calpains in Escherichia coli and in murine fibroblasts. Protein Expr Purif 2004; 33:246-55. [PMID: 14711513 DOI: 10.1016/j.pep.2003.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The two best known calpains, micro- and m-calpain, are Ca(2+)-dependent cysteine proteases found in all mammalian tissues. They are probably involved in many Ca(2+)-linked signal pathways, although the details are not yet clear. The enzymes are heterodimers of a specific large subunit (micro-80k or m-80k) and a common small subunit (28k). Recombinant calpains have been obtained by co-expression of large and small subunits in Escherichia coli and in Sf9 cells, with variable success. Expression with the 28k subunit is very low, but is much higher with a C-terminal 21k fragment of this subunit. Rat m-calpain (m-80k/21k) is well expressed in E. coli but mouse m-calpain (m-80k/21k) is poorly expressed, even though the amino acid sequences of rat-m-80k and mouse-m-80k are 92% identical. It had also been reported that human m-calpain could be expressed in Sf9 cells but not in E. coli. To investigate these differences, hybrid rat/mouse and rat/human m-calpains were cloned and expressed in E. coli. It was shown that Ile-6 and Pro-127, which are specific to the mouse m-80k sequence, caused poor expression. High expression of human m-calpain in E. coli could be achieved by providing the correct Shine-Dalgarno ribosome binding site. The results provide a simple method to obtain approximately 10mg amounts of human m-calpain and a slightly modified mouse m-calpain. Expression of m-80k-EGFP fusions was also studied, both in E. coli and in mammalian cells, varying both the small subunit and the promoters. m-80k-EGFP alone was not active, but with 21k or 28k subunits was active in both cell types. The EGFP domain was partially cleaved during expression, releasing an active m-80k/21k calpain.
Collapse
Affiliation(s)
- Anna K Larsen
- Department of Dairy and Food Science, The Royal Veterinary and Agricultural University, Rolighedsvej 30, 3, DK-1958 Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
17
|
Smith SD, Jia Z, Huynh KK, Wells A, Elce JS. Glutamate substitutions at a PKA consensus site are consistent with inactivation of calpain by phosphorylation. FEBS Lett 2003; 542:115-8. [PMID: 12729909 DOI: 10.1016/s0014-5793(03)00361-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Regulation of calpain by phosphorylation has often been suggested, but has proved difficult to detect. Calpains extracted from mammalian tissue are reported to contain 2-4 mol phosphate/mol of enzyme distributed over multiple sites, but phosphate groups are not detectable in the X-ray structures of recombinant calpain. Some serine and threonine residues in the large subunit of rat m-calpain were converted to aspartic or glutamic acid residues, at sites suggested by previous studies, to assess the probable effects of phosphate groups on the enzyme. Expression of the mutant calpains in Escherichia coli, and their heat stabilities, did not differ from those of the wild-type enzyme. m-Calpains with the mutations Ser50Asp, Ser50Glu, Ser67Glu, and Thr70Glu had the same specific activity and Ca(2+) requirement as the wild-type enzyme. In contrast, Ser369Asp-, Ser369Glu-, and Thr370Glu-m-calpain were inactive. This result is consistent with the recent report that phosphorylation at position 369 or 370 in vivo reduced m-calpain activation.
Collapse
Affiliation(s)
- Scott D Smith
- Department of Biochemistry, Queen's University, Kingston, ON, Canada K7L 4V1
| | | | | | | | | |
Collapse
|
18
|
Delmas C, Aragou N, Poussard S, Cottin P, Darbon JM, Manenti S. MAP kinase-dependent degradation of p27Kip1 by calpains in choroidal melanoma cells. Requirement of p27Kip1 nuclear export. J Biol Chem 2003; 278:12443-51. [PMID: 12529328 DOI: 10.1074/jbc.m209523200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We investigated the status and the regulation of the cyclin-dependent kinases (CDK) inhibitor p27(Kip1) in a choroidal melanoma tumor-derived cell line (OCM-1). By contrast to normal choroidal melanocytes, the expression level of p27(Kip1) was low in these cells and the mitogen-activated protein (MAP) kinase pathway was constitutively activated. Genetic or chemical inhibition of this pathway induced p27(Kip1) accumulation, whereas MAP kinase reactivation triggered a down-regulation of p27(Kip1) that could be partially reversed by calpain inhibitors. In good accordance, ectopic expression of the cellular calpain inhibitor calpastatin led to an increase of endogenous p27(Kip1) expression. In vitro, p27(Kip1) was degraded by calpains, and OCM-1 cell extracts contained a calcium-dependent p27(Kip1) degradation activity. MAP kinase inhibition partially inhibited both calpain activity and calcium-dependent p27(Kip1) degradation by cellular extracts. Immunofluorescence labeling and subcellular fractionation revealed that p27(Kip1) was in part localized in the cytoplasmic compartment of OCM-1 cells but not of melanocytes, and accumulated into the nucleus upon MAP kinase inhibition. MAP kinase activation triggered a cytoplasmic translocation of the protein, as well as a change in its phosphorylation status. This CRM-1-dependent cytoplasmic translocation was necessary for MAP kinase- and calpain-dependent degradation. Taken together, these data suggest that in tumor-derived cells, p27(Kip1) could be degraded by calpains through a MAP kinase-dependent process, and that abnormal cytoplasmic localization of the protein, probably linked to modifications of its phosphorylation state, could be involved in this alternative mechanism of degradation.
Collapse
Affiliation(s)
- Christelle Delmas
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, CNRS UMR 5088, IFR 109, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
19
|
Tidball JG, Spencer MJ. Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. J Physiol 2002; 545:819-28. [PMID: 12482888 PMCID: PMC2290726 DOI: 10.1113/jphysiol.2002.024935] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2002] [Accepted: 10/03/2002] [Indexed: 01/14/2023] Open
Abstract
Muscle wasting is a prominent feature of several systemic diseases, neurological damage and muscle disuse. The contribution of calpain proteases to muscle wasting in any instance of muscle injury or disease has remained unknown because of the inability to specifically perturb calpain activity in vivo. We have generated a transgenic mouse with muscle-specific overexpression of calpastatin, which is the endogenous inhibitor of calpains, and induced muscle atrophy by unloading hindlimb musculature for 10 days. Expression of the transgene resulted in increases in calpastatin concentration in muscle by 30- to 50-fold, and eliminated all calpain activity that was detectable on zymograms. Muscle fibres in ambulatory, transgenic mice were smaller in diameter, but more numerous, so that muscle mass did not differ between transgenic and non-transgenic mice. This is consistent with the role of the calpain-calpastatin system in muscle cell fusion that has been observed in vitro. Overexpression of calpastatin reduced muscle atrophy by 30 % during the 10 day unloading period. In addition, calpastatin overexpression completely prevented the shift in myofibrillar myosin content from slow to fast isoforms, which normally occurs in muscle unloading. These findings indicate that therapeutics directed toward regulating the calpain-calpastatin system may be beneficial in preventing muscle mass loss in muscle injury and disease.
Collapse
Affiliation(s)
- James G Tidball
- Department of Physiological Science, David Geffen School of Medicine at UCLA, 5833 Life Science Building, Los Angeles, CA 90095, USA.
| | | |
Collapse
|