1
|
Kroneck PMH. Nature's nitrite-to-ammonia expressway, with no stop at dinitrogen. J Biol Inorg Chem 2021; 27:1-21. [PMID: 34865208 PMCID: PMC8840924 DOI: 10.1007/s00775-021-01921-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022]
Abstract
Since the characterization of cytochrome c552 as a multiheme nitrite reductase, research on this enzyme has gained major interest. Today, it is known as pentaheme cytochrome c nitrite reductase (NrfA). Part of the NH4+ produced from NO2- is released as NH3 leading to nitrogen loss, similar to denitrification which generates NO, N2O, and N2. NH4+ can also be used for assimilatory purposes, thus NrfA contributes to nitrogen retention. It catalyses the six-electron reduction of NO2- to NH4+, hosting four His/His ligated c-type hemes for electron transfer and one structurally differentiated active site heme. Catalysis occurs at the distal side of a Fe(III) heme c proximally coordinated by lysine of a unique CXXCK motif (Sulfurospirillum deleyianum, Wolinella succinogenes) or, presumably, by the canonical histidine in Campylobacter jejeuni. Replacement of Lys by His in NrfA of W. succinogenes led to a significant loss of enzyme activity. NrfA forms homodimers as shown by high resolution X-ray crystallography, and there exist at least two distinct electron transfer systems to the enzyme. In γ-proteobacteria (Escherichia coli) NrfA is linked to the menaquinol pool in the cytoplasmic membrane through a pentaheme electron carrier (NrfB), in δ- and ε-proteobacteria (S. deleyianum, W. succinogenes), the NrfA dimer interacts with a tetraheme cytochrome c (NrfH). Both form a membrane-associated respiratory complex on the extracellular side of the cytoplasmic membrane to optimize electron transfer efficiency. This minireview traces important steps in understanding the nature of pentaheme cytochrome c nitrite reductases, and discusses their structural and functional features.
Collapse
Affiliation(s)
- Peter M H Kroneck
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| |
Collapse
|
2
|
Campeciño J, Lagishetty S, Wawrzak Z, Sosa Alfaro V, Lehnert N, Reguera G, Hu J, Hegg EL. Cytochrome c nitrite reductase from the bacterium Geobacter lovleyi represents a new NrfA subclass. J Biol Chem 2020; 295:11455-11465. [PMID: 32518164 PMCID: PMC7450111 DOI: 10.1074/jbc.ra120.013981] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/07/2020] [Indexed: 01/07/2023] Open
Abstract
Cytochrome c nitrite reductase (NrfA) catalyzes the reduction of nitrite to ammonium in the dissimilatory nitrate reduction to ammonium (DNRA) pathway, a process that competes with denitrification, conserves nitrogen, and minimizes nutrient loss in soils. The environmental bacterium Geobacter lovleyi has recently been recognized as a key driver of DNRA in nature, but its enzymatic pathway is still uncharacterized. To address this limitation, here we overexpressed, purified, and characterized G. lovleyi NrfA. We observed that the enzyme crystallizes as a dimer but remains monomeric in solution. Importantly, its crystal structure at 2.55-Å resolution revealed the presence of an arginine residue in the region otherwise occupied by calcium in canonical NrfA enzymes. The presence of EDTA did not affect the activity of G. lovleyi NrfA, and site-directed mutagenesis of this arginine reduced enzymatic activity to <3% of the WT levels. Phylogenetic analysis revealed four separate emergences of Arg-containing NrfA enzymes. Thus, the Ca2+-independent, Arg-containing NrfA from G. lovleyi represents a new subclass of cytochrome c nitrite reductase. Most genera from the exclusive clades of Arg-containing NrfA proteins are also represented in clades containing Ca2+-dependent enzymes, suggesting convergent evolution.
Collapse
Affiliation(s)
- Julius Campeciño
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Satyanarayana Lagishetty
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois, USA
| | - Victor Sosa Alfaro
- Department of Chemistry and Biophysics, The University of Michigan, Ann Arbor, Michigan, USA
| | - Nicolai Lehnert
- Department of Chemistry and Biophysics, The University of Michigan, Ann Arbor, Michigan, USA
| | - Gemma Reguera
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jian Hu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA,Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Eric L. Hegg
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA,For correspondence: Eric L. Hegg,
| |
Collapse
|
3
|
Monteiro T, Gomes S, Jubete E, Añorga L, Silveira CM, Almeida MG. A quasi-reagentless point-of-care test for nitrite and unaffected by oxygen and cyanide. Sci Rep 2019; 9:2622. [PMID: 30796298 PMCID: PMC6385495 DOI: 10.1038/s41598-019-39209-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
The ubiquitous nitrite is a major analyte in the management of human health and environmental risks. The current analytical methods are complex techniques that do not fulfil the need for simple, robust and low-cost tools for on-site monitoring. Electrochemical reductase-based biosensors are presented as a powerful alternative, due to their good analytical performance and miniaturization potential. However, their real-world application is limited by the need of anoxic working conditions, and the standard oxygen removal strategies are incompatible with point-of-care measurements. Instead, a bienzymatic oxygen scavenger system comprising glucose oxidase and catalase can be used to promote anoxic conditions in aired environments. Herein, carbon screen-printed electrodes were modified with cytochrome c nitrite reductase together with glucose oxidase and catalase, so that nitrite cathodic detection could be performed by cyclic voltammetry under ambient air. The resulting biosensor displayed good linear response to the analyte (2–200 µM, sensitivity of 326 ± 5 mA M−1 cm−2 at −0.8 V; 0.8–150 µM, sensitivity of 511 ± 11 mA M−1 cm−2 at −0.5 V), while being free from oxygen interference and stable up to 1 month. Furthermore, the biosensor’s catalytic response was unaffected by the presence of cyanide, a well-known inhibitor of heme-enzymes.
Collapse
Affiliation(s)
- Tiago Monteiro
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Monte de Caparica, Portugal
| | - Sara Gomes
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Monte de Caparica, Portugal
| | - Elena Jubete
- CIDETEC, Sensors Unit, Parque Científico y Tecnológico de San Sebastián, P° Miramón 196, 2014 Donostia, San Sebastián, Spain
| | - Larraitz Añorga
- CIDETEC, Sensors Unit, Parque Científico y Tecnológico de San Sebastián, P° Miramón 196, 2014 Donostia, San Sebastián, Spain
| | - Célia M Silveira
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Monte de Caparica, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Maria Gabriela Almeida
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Monte de Caparica, Portugal. .,Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, Campus Universitário, Quinta da Granja, 2829-511, Caparica, Portugal.
| |
Collapse
|
4
|
Sousa JR, Silveira CM, Fontes P, Roma-Rodrigues C, Fernandes AR, Van Driessche G, Devreese B, Moura I, Moura JJ, Almeida MG. Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to the electron acceptors nitrate and sulfate - biosynthetic costs modulate substrate selection. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1455-1469. [DOI: 10.1016/j.bbapap.2017.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/12/2017] [Accepted: 07/21/2017] [Indexed: 11/27/2022]
|
5
|
Parey K, Fielding AJ, Sörgel M, Rachel R, Huber H, Ziegler C, Rajendran C. In meso
crystal structure of a novel membrane-associated octaheme cytochrome c
from the Crenarchaeon Ignicoccus hospitalis. FEBS J 2016; 283:3807-3820. [DOI: 10.1111/febs.13870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/17/2016] [Accepted: 08/31/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Kristian Parey
- Department of Structural Biology; Max Planck Institute of Biophysics; Frankfurt am Main Germany
| | - Alistair J. Fielding
- School of Chemistry and the Photon Science Institute; University of Manchester; UK
| | - Matthias Sörgel
- Biogeochemistry Department; Max Planck Institute for Chemistry; Mainz Germany
| | - Reinhard Rachel
- Department of Microbiology; University of Regensburg; Germany
| | - Harald Huber
- Department of Microbiology; University of Regensburg; Germany
| | | | - Chitra Rajendran
- Department of Structural Biology; University of Regensburg; Germany
| |
Collapse
|
6
|
Regulation of Nitrite Stress Response in Desulfovibrio vulgaris Hildenborough, a Model Sulfate-Reducing Bacterium. J Bacteriol 2015; 197:3400-8. [PMID: 26283774 DOI: 10.1128/jb.00319-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Sulfate-reducing bacteria (SRB) are sensitive to low concentrations of nitrite, and nitrite has been used to control SRB-related biofouling in oil fields. Desulfovibrio vulgaris Hildenborough, a model SRB, carries a cytochrome c-type nitrite reductase (nrfHA) that confers resistance to low concentrations of nitrite. The regulation of this nitrite reductase has not been directly examined to date. In this study, we show that DVU0621 (NrfR), a sigma54-dependent two-component system response regulator, is the positive regulator for this operon. NrfR activates the expression of the nrfHA operon in response to nitrite stress. We also show that nrfR is needed for fitness at low cell densities in the presence of nitrite because inactivation of nrfR affects the rate of nitrite reduction. We also predict and validate the binding sites for NrfR upstream of the nrfHA operon using purified NrfR in gel shift assays. We discuss possible roles for NrfR in regulating nitrate reductase genes in nitrate-utilizing Desulfovibrio spp. IMPORTANCE The NrfA nitrite reductase is prevalent across several bacterial phyla and required for dissimilatory nitrite reduction. However, regulation of the nrfA gene has been studied in only a few nitrate-utilizing bacteria. Here, we show that in D. vulgaris, a bacterium that does not respire nitrate, the expression of nrfHA is induced by NrfR upon nitrite stress. This is the first report of regulation of nrfA by a sigma54-dependent two-component system. Our study increases our knowledge of nitrite stress responses and possibly of the regulation of nitrate reduction in SRB.
Collapse
|
7
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
8
|
Lockwood CWJ, Burlat B, Cheesman MR, Kern M, Simon J, Clarke TA, Richardson DJ, Butt JN. Resolution of Key Roles for the Distal Pocket Histidine in Cytochrome c Nitrite Reductases. J Am Chem Soc 2015; 137:3059-68. [DOI: 10.1021/ja512941j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Melanie Kern
- Microbial
Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Jörg Simon
- Microbial
Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | | | | | | |
Collapse
|
9
|
Copado R, Arzola C, Epps SVR, Rodriguez-Almeida F, Ruiz O, Rodriguez-Muela C, Castillo YC, Corral-Luna A, Salinas J. Effect of repeated suboptimal chlorate treatment on ruminal and fecal bacterial diversity. J Food Prot 2014; 77:1588-92. [PMID: 25198852 DOI: 10.4315/0362-028x.jfp-14-140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The minimal effective dose of sodium chlorate as an intervention to reduce the carriage of pathogenic bacteria in food-producing animals has not been clearly established. The effect of low-level oral chlorate administration to ewes was assessed by comparing the diversity of prominent bacterial populations in their gastrointestinal tract. Twelve lactating crossed Pelibuey and Blackbelly-Dorper ewes (average body weight, 65 kg) were randomly assigned (four per treatment) to receive a control treatment (TC; consisting of 3 g of NaCl per animal per day) or one of two chlorate treatments (T3 or T9; consisting of 1.8 or 5.4 g of NaClO3 per animal per day, respectively). Treatments were administered twice daily via oral gavage for 5 days. Ruminal and fecal samples were collected daily, starting 3 days before and ending 6 days after treatment, and were subjected to denaturing gradient gel electrophoresis of the 16S rRNA gene sequence amplified from total population DNA. For ruminal microbes, percent similarity coefficients (SCs) between groups varied from 23.0 to 67.5% and from 39.4 to 43.3% during pretreatment and treatment periods, respectively. During the treatment period, SCs within groups ranged from 39.4 to 90.3%, 43.3 to 86.7%, and 67.5 to 92.4% for TC, T3, and T9, respectively. For fecal microbes, SCs between groups varied from 38.0 to 85.2% and 38.0 to 94.2% during pretreatment and treatment periods, respectively. SCs for fecal populations during treatment were most varied for TC (38.0 to 67.9%), intermediate for T9 (75.6 to 92.0%), and least varied for T3 (80.6 to 90.6%). Heterogeneity within and between groups provided no evidence of an effect of chlorate treatment on ruminal or fecal microbial populations.
Collapse
Affiliation(s)
- R Copado
- Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 66451, Mexico
| | - C Arzola
- Autonomous University of Chihuahua, Chihuahua 31203, Mexico.
| | - S V R Epps
- Department of Veterinary Integrative Bioscience, Texas A&M University, College Station, Texas 77843, USA
| | | | - O Ruiz
- Autonomous University of Chihuahua, Chihuahua 31203, Mexico
| | | | | | | | - J Salinas
- Autonomous University of Tamaulipas, Ciudad Victoria, Tamaulipas 87000, Mexico
| |
Collapse
|
10
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
11
|
Abstract
Despite its reactivity and hence toxicity to living cells, sulfite is readily converted by various microorganisms using distinct assimilatory and dissimilatory metabolic routes. In respiratory pathways, sulfite either serves as a primary electron donor or terminal electron acceptor (yielding sulfate or sulfide, respectively), and its conversion drives electron transport chains that are coupled to chemiosmotic ATP synthesis. Notably, such processes are also seen to play a general role in sulfite detoxification, which is assumed to have an evolutionary ancient origin. The diversity of sulfite conversion is reflected by the fact that the range of microbial sulfite-converting enzymes displays different cofactors such as siroheme, heme c, or molybdopterin. This chapter aims to summarize the current knowledge of microbial sulfite metabolism and focuses on sulfite catabolism. The structure and function of sulfite-converting enzymes and the emerging picture of the modular architecture of the corresponding respiratory/detoxifying electron transport chains is emphasized.
Collapse
Affiliation(s)
- Jörg Simon
- Department of Biology, Microbial Energy Conversion and Biotechnology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany.
| | | |
Collapse
|
12
|
Tikhonova TV, Trofimov AA, Popov VO. Octaheme nitrite reductases: Structure and properties. BIOCHEMISTRY (MOSCOW) 2012; 77:1129-38. [DOI: 10.1134/s0006297912100057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Tikhonova T, Tikhonov A, Trofimov A, Polyakov K, Boyko K, Cherkashin E, Rakitina T, Sorokin D, Popov V. Comparative structural and functional analysis of two octaheme nitrite reductases from closely relatedThioalkalivibriospecies. FEBS J 2012; 279:4052-61. [DOI: 10.1111/j.1742-4658.2012.08811.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tamara Tikhonova
- Bach Institute of Biochemistry; Russian Academy of Sciences, Leninskii pr. 33; Moscow 119071; Russia
| | - Alexey Tikhonov
- Bach Institute of Biochemistry; Russian Academy of Sciences, Leninskii pr. 33; Moscow 119071; Russia
| | | | | | | | - Eugene Cherkashin
- National Research Centre ‘Kurchatov Institute’, Academic Kurchatov sq. 1; Moscow 123182; Russia
| | - Tatiana Rakitina
- National Research Centre ‘Kurchatov Institute’, Academic Kurchatov sq. 1; Moscow 123182; Russia
| | - Dmitry Sorokin
- Winogradsky Institute of Microbiology; Russian Academy of Sciences, Leninskii pr. 32a; Moscow 119991; Russia
| | | |
Collapse
|
14
|
Todorovic S, Rodrigues ML, Matos D, Pereira IAC. Redox properties of lysine- and methionine-coordinated hemes ensure downhill electron transfer in NrfH2A4 nitrite reductase. J Phys Chem B 2012; 116:5637-43. [PMID: 22519292 DOI: 10.1021/jp301356m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The multiheme NrfHA nitrite reductase is a menaquinol:nitrite oxidoreductase that catalyzes the 6-electron reduction of nitrite to ammonia in a reaction that involves eight protons. X-ray crystallography of the enzyme from Desulfovibrio vulgaris revealed that the biological unit, NrfH2A4, houses 28 c-type heme groups, 22 of them with low spin and 6 with pentacoordinated high spin configuration. The high spin hemes, which are the electron entry and exit points of the complex, carry a highly unusual coordination for c-type hemes, lysine and methionine as proximal ligands in NrfA and NrfH, respectively. Employing redox titrations followed by X-band EPR spectroscopy and surface-enhanced resonance Raman spectroelectrochemistry, we provide the first experimental evidence for the midpoint redox potential of the NrfH menaquinol-interacting methionine-coordinated heme (-270 ± 10 mV, z = 0.96), identified by the use of the inhibitor HQNO, a structural analogue of the physiological electron donor. The redox potential of the catalytic lysine-coordinated high spin heme of NrfA is -50 ± 10 mV, z = 0.9. These values determined for the integral NrfH2A4 complex indicate that a driving force for a downhill electron transfer is ensured in this complex.
Collapse
Affiliation(s)
- Smilja Todorovic
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa , Av. da Republica, 2780-157 Oeiras, Portugal
| | | | | | | |
Collapse
|
15
|
Abstract
Dissimilatory sulfate and sulfur reduction evolved billions of years ago and while the bacteria and archaea that use this unique metabolism employ a variety of electron donors, H(2) is most commonly used as the energy source. These prokaryotes use multiheme c-type proteins to shuttle electrons from electron donors, and electron transport complexes presumed to contain b-type hemoproteins contribute to proton charging of the membrane. Numerous sulfate and sulfur reducers use an alternate pathway for heme synthesis and, frequently, uniquely specific axial ligands are used to secure c-type heme to the protein. This review presents some of the types and functional activities of hemoproteins involved in these two dissimilatory reduction pathways.
Collapse
|
16
|
Vermeiren J, Van de Wiele T, Van Nieuwenhuyse G, Boeckx P, Verstraete W, Boon N. Sulfide- and nitrite-dependent nitric oxide production in the intestinal tract. Microb Biotechnol 2011; 5:379-87. [PMID: 22129449 PMCID: PMC3821680 DOI: 10.1111/j.1751-7915.2011.00320.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the gut ecosystem, nitric oxide (NO) has been described to have damaging effects on the energy metabolism of colonocytes. Described mechanisms of NO production are microbial reduction of nitrate via nitrite to NO and conversion of l‐arginine by NO synthase. The aim of this study was to investigate whether dietary compounds can stimulate the production of NO by representative cultures of the human intestinal microbiota and whether this correlates to other processes in the intestinal tract. We have found that the addition of a reduced sulfur compound, i.e. cysteine, contributed to NO formation. This increase was ascribed to higher sulfide concentrations generated from cysteine that in turn promoted the chemical conversion of nitrite to NO. The NO release from nitrite was of the order of 4‰ at most. Overall, it was shown that two independent biological processes contribute to the chemical formation of NO in the intestinal tract: (i) the production of sulfide by fermentation of sulfur containing amino acids or reduction of sulfate by sulfate reducing bacteria, and (ii) the reduction of nitrate to nitrite. Our results indicate that dietary thiol compounds in combination with nitrate may contribute to colonocytes damaging processes by promoting NO formation.
Collapse
Affiliation(s)
- Joan Vermeiren
- Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Kern M, Klotz MG, Simon J. The Wolinella succinogenes mcc gene cluster encodes an unconventional respiratory sulphite reduction system. Mol Microbiol 2011; 82:1515-30. [DOI: 10.1111/j.1365-2958.2011.07906.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Kraft B, Strous M, Tegetmeyer HE. Microbial nitrate respiration – Genes, enzymes and environmental distribution. J Biotechnol 2011; 155:104-17. [DOI: 10.1016/j.jbiotec.2010.12.025] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 12/07/2010] [Accepted: 12/20/2010] [Indexed: 01/13/2023]
|
19
|
Molecular interactions between multihaem cytochromes: probing the protein–protein interactions between pentahaem cytochromes of a nitrite reductase complex. Biochem Soc Trans 2011; 39:263-8. [DOI: 10.1042/bst0390263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cytochrome c nitrite reductase NrfA is a 53 kDa pentahaem enzyme that crystallizes as a decahaem homodimer. NrfA catalyses the reduction of NO2− to NH4+ through a six electron reduction pathway that is of major physiological significance to the anaerobic metabolism of enteric and sulfate reducing bacteria. NrfA receives electrons from the 21 kDa pentahaem NrfB donor protein. This requires that redox complexes form between the NrfA and NrfB pentahaem cytochromes. The formation of these complexes can be monitored using a range of methodologies for studying protein–protein interactions, including dynamic light scattering, gel filtration, analytical ultracentrifugation and visible spectroscopy. These methods have been used to show that oxidized NrfA exists in dynamic monomer–dimer equilibrium with a Kd (dissociation constant) of 4 μM. Significantly, the monomeric and dimeric forms of NrfA are equally active for either the six electron reduction of NO2− or HSO3−. When mixed together, NrfA and NrfB exist in equilibrium with NrfAB, which is described by a Kd of 50 nM. Thus, since NrfA and NrfB are present in micromolar concentrations in the periplasmic compartment, it is likely that NrfB remains tightly associated with its NrfA redox partner under physiological conditions.
Collapse
|
20
|
Tikhonova TV, Slutskaya ES, Filimonenkov AA, Boyko KM, Kleimenov SY, Konarev PV, Polyakov KM, Svergun DI, Trofimov AA, Khomenkov VG, Zvyagilskaya RA, Popov VO. Isolation and oligomeric composition of cytochrome c nitrite reductase from the haloalkaliphilic bacterium Thioalkalivibrio nitratireducens. BIOCHEMISTRY (MOSCOW) 2011; 73:164-70. [DOI: 10.1134/s0006297908020077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Einsle O. Structure and Function of Formate-Dependent Cytochrome c Nitrite Reductase, NrfA. Methods Enzymol 2011; 496:399-422. [DOI: 10.1016/b978-0-12-386489-5.00016-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Trofimov AA, Polyakov KM, Boyko KM, Tikhonova TV, Safonova TN, Tikhonov AV, Popov AN, Popov VO. Structures of complexes of octahaem cytochromecnitrite reductase fromThioalkalivibrio nitratireducenswith sulfite and cyanide. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1043-7. [DOI: 10.1107/s0907444910031665] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 08/06/2010] [Indexed: 11/10/2022]
|
23
|
Kinetic and thermodynamic resolution of the interactions between sulfite and the pentahaem cytochrome NrfA from Escherichia coli. Biochem J 2010; 431:73-80. [DOI: 10.1042/bj20100866] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NrfA is a pentahaem cytochrome present in a wide-range of γ-, δ- and ε-proteobacteria. Its nitrite and nitric oxide reductase activities have been studied extensively and contribute to respiratory nitrite ammonification and nitric oxide detoxification respectively. Sulfite is a third substrate for NrfA that may be encountered in the micro-oxic environments where nrfA is expressed. Consequently, we have performed quantitative kinetic and thermodynamic studies of the interactions between sulfite and Escherichia coli NrfA to provide a biochemical framework from which to consider their possible cellular consequences. A combination of voltammetric, spectroscopic and crystallographic analyses define dissociation constants for sulfite binding to NrfA in oxidized (~54 μM), semi-reduced (~145 μM) and reduced (~180 μM) states that are comparable with each other, and the Km (~70 μM) for sulfite reduction at pH 7. Under comparable conditions Km values of ~22 and ~300 μM describe nitrite and nitric oxide reduction respectively, whereas the affinities of nitrate and thiocyanate for NrfA fall more than 50-fold on enzyme reduction. These results are discussed in terms of the nature of sulfite co-ordination within the active site of NrfA and their implications for the cellular activity of NrfA.
Collapse
|
24
|
Measuring the cytochrome C nitrite reductase activity-practical considerations on the enzyme assays. Bioinorg Chem Appl 2010. [PMID: 20689707 PMCID: PMC2905729 DOI: 10.1155/2010/634597] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 05/03/2010] [Indexed: 11/20/2022] Open
Abstract
The cytochrome c nitrite reductase (ccNiR) from Desulfovibrio desulfuricans ATCC 27774 is
able to reduce nitrite to ammonia in a six-electron transfer reaction. Although extensively
characterized from the spectroscopic and structural points-of-view, some of its kinetic aspects
are still under explored. In this work the kinetic behaviour of ccNiR has been evaluated in a
systematic manner using two different spectrophotometric assays carried out in the presence of
different redox mediators and a direct electrochemical approach. Solution assays have proved
that the specific activity of ccNiR decreases with the reduction potential of the electronic carriers
and ammonium is always the main product of nitrite reduction. The catalytic parameters were
discussed on the basis of the mediator reducing power and also taking into account the location
of their putative docking sites with ccNiR. Due to the fast kinetics of ccNiR, electron delivering
from reduced electron donors is rate-limiting in all spectrophotometric assays, so the estimated
kinetic constants are apparent only. Nevertheless, this limitation could be overcome by using a
direct electrochemical approach which shows that the binding affinity for nitrite decreases whilst
turnover increases with the reductive driving force.
Collapse
|
25
|
Martins G, Rodrigues L, Cunha FM, Matos D, Hildebrandt P, Murgida DH, Pereira IAC, Todorovic S. Substrate Binding to a Nitrite Reductase Induces a Spin Transition. J Phys Chem B 2010; 114:5563-6. [DOI: 10.1021/jp9118502] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriel Martins
- Instituto de Tecnologia Química e Biologica, Universidade Nova de Lisboa, Av Republica (EAN), 2780-157 Oeiras, Portugal, Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany, and Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Luisa Rodrigues
- Instituto de Tecnologia Química e Biologica, Universidade Nova de Lisboa, Av Republica (EAN), 2780-157 Oeiras, Portugal, Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany, and Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Filipa M. Cunha
- Instituto de Tecnologia Química e Biologica, Universidade Nova de Lisboa, Av Republica (EAN), 2780-157 Oeiras, Portugal, Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany, and Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Daniela Matos
- Instituto de Tecnologia Química e Biologica, Universidade Nova de Lisboa, Av Republica (EAN), 2780-157 Oeiras, Portugal, Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany, and Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Peter Hildebrandt
- Instituto de Tecnologia Química e Biologica, Universidade Nova de Lisboa, Av Republica (EAN), 2780-157 Oeiras, Portugal, Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany, and Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Daniel H. Murgida
- Instituto de Tecnologia Química e Biologica, Universidade Nova de Lisboa, Av Republica (EAN), 2780-157 Oeiras, Portugal, Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany, and Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biologica, Universidade Nova de Lisboa, Av Republica (EAN), 2780-157 Oeiras, Portugal, Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany, and Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biologica, Universidade Nova de Lisboa, Av Republica (EAN), 2780-157 Oeiras, Portugal, Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany, and Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
26
|
Einsiedl F. Effect of NO2(-) on stable isotope fractionation during bacterial sulfate reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:82-87. [PMID: 19209588 DOI: 10.1021/es801592t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The effects of low NO2(-) concentrations on stable isotope fractionation during dissimilatory sulfate reduction by strain Desulfovibrio desulfuricans were investigated. Nitrite, formed as an intermediate during nitrification and denitrification processes in marine and freshwater habitats, inhibits the reduction of the sulfuroxy intermediate SO3(2-) to H2S even at low concentrations. To gain an understanding of the inhibition effect of the reduction of the sulfuroxy intermediate on stable isotope fractionation in sulfur and oxygen during bacterial sulfate reduction, nitrite was added in the form of short pulses. In the batch experiments that contained 0.02, 0.05, and 0.1 mM nitrite, sulfur enrichment factors epsilon of -12 +/- 1.6, -15 +/- 1.1, and -26 +/- 1.3 per thousand, respectively were observed. In the control experiment (no addition of nitrite) a sulfur enrichment factor epsilon of around -11 per thousand was calculated. In the experiments that contained no 18O enriched water (delta18O: -10 per thousand) and nitrite concentrations of 0.02, 0.05, and 0.1 mM, delta18O values in the remaining sulfate were fairly constant during the experiments (delta18O sulfate: approximately equal to 10 per thousand) and were similar to those obtained from the control experiment (no nitrite and no enriched water). However, in the batch experiments that contained 18O enriched water (+700 per thousand) and nitrite concentrations of 0.05 and 0.1 mM increasing delta18O values in the remaining sulfate from around 15 per thousand to approximately 65 and 85 per thousand, respectively, were found. Our experiments that contained isotopic enriched water and nitrite show clear evidence that the ratio of forward and backward fluxes regulated by adenosine-5'-phosphosulfate reductase (APSR) controls the extent of sulfur isotope fractionation during bacterial sulfate reduction in strain Desulfovibrio desulfuricans. Since the metabolic sulfuroxy intermediate SO3(2-) exchanges with water, evidence of 18O enriched water in the remaining sulfate in the experiments that contained nitrite also demonstrates that SO3(2-) recycling to sulfate affects sulfur and oxygen isotope fractionation during bacterial sulfate reduction to some extent. Even though reduction of adenosine-5'-phosphosulfate (APS) to sulfite of -25 per thousand was not fully expressed, SO3(2-) was recycled to SO4(2-). On the basis of the results of this study a sulfur isotope fractionation for APSR of upto approximately -30 per thousand can be assumed. However, reported NO2(-) concentrations of up to 20 microM in freshwater and marine habitats may not significantly impact the ability to use stable isotope analysis in assessing bacterial sulfate reduction.
Collapse
Affiliation(s)
- Florian Einsiedl
- Helmholtz Center Munich-German Research Center for Environmental Health, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany.
| |
Collapse
|
27
|
|
28
|
Rodrigues ML, Oliveira T, Matias PM, Martins IC, Valente FMA, Pereira IAC, Archer M. Crystallization and preliminary structure determination of the membrane-bound complex cytochrome c nitrite reductase from Desulfovibrio vulgaris Hildenborough. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:565-8. [PMID: 16754983 PMCID: PMC2243080 DOI: 10.1107/s1744309106016629] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 05/05/2006] [Indexed: 11/10/2022]
Abstract
The cytochrome c nitrite reductase (cNiR) isolated from Desulfovibrio vulgaris Hildenborough is a membrane-bound complex formed of NrfA and NrfH subunits. The catalytic subunit NrfA is a soluble pentahaem cytochrome c that forms a physiological dimer of about 120 kDa. The electron-donor subunit NrfH is a membrane-anchored tetrahaem cytochrome c of about 18 kDa molecular weight and belongs to the NapC/NirT family of quinol dehydrogenases, for which no structures are known. Crystals of the native cNiR membrane complex, solubilized with dodecylmaltoside detergent (DDM), were obtained using PEG 4K as precipitant. Anomalous diffraction data were measured at the Swiss Light Source to 2.3 A resolution. Crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 79.5, b = 256.7, c = 578.2 A. Molecular-replacement and MAD methods were combined to solve the structure. The data presented reveal that D. vulgaris cNiR contains one NrfH subunit per NrfA dimer.
Collapse
Affiliation(s)
- M. L. Rodrigues
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Av. República, Apt. 127, 2781-901 Oeiras, Portugal
| | - T. Oliveira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Av. República, Apt. 127, 2781-901 Oeiras, Portugal
| | - P. M. Matias
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Av. República, Apt. 127, 2781-901 Oeiras, Portugal
| | - I. C. Martins
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Av. República, Apt. 127, 2781-901 Oeiras, Portugal
| | - F. M. A. Valente
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Av. República, Apt. 127, 2781-901 Oeiras, Portugal
| | - I. A. C. Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Av. República, Apt. 127, 2781-901 Oeiras, Portugal
| | - M. Archer
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Av. República, Apt. 127, 2781-901 Oeiras, Portugal
| |
Collapse
|
29
|
Fritz G, Einsle O, Rudolf M, Schiffer A, Kroneck PMH. Key Bacterial Multi-Centered Metal Enzymes Involved in Nitrate and Sulfate Respiration. J Mol Microbiol Biotechnol 2006; 10:223-33. [PMID: 16645317 DOI: 10.1159/000091567] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many essential life processes, such as photosynthesis, respiration, nitrogen fixation, depend on transition metal ions and their ability to catalyze multi-electron redox and hydrolytic transformations. Here we review some recent structural studies on three multi-site metal enzymes involved in respiratory processes which represent important branches within the global cycles of nitrogen and sulfur: (i) the multi-heme enzyme cytochrome c nitrite reductase, (ii) the FAD, FeS-enzyme adenosine-5'-phosphosulfate reductase, and (iii) the siroheme, FeS-enzyme sulfite reductase. Structural information comes from X-ray crystallography and spectroscopical techniques, in special cases catalytically competent intermediates could be trapped and characterized by X-ray crystallography.
Collapse
Affiliation(s)
- G Fritz
- Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | | | | | | | | |
Collapse
|
30
|
Tikhonova TV, Slutsky A, Antipov AN, Boyko KM, Polyakov KM, Sorokin DY, Zvyagilskaya RA, Popov VO. Molecular and catalytic properties of a novel cytochrome c nitrite reductase from nitrate-reducing haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio nitratireducens. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:715-23. [PMID: 16500161 DOI: 10.1016/j.bbapap.2005.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 12/26/2005] [Accepted: 12/28/2005] [Indexed: 10/25/2022]
Abstract
A highly active cytochrome c nitrite reductase from the haloalkaliphilic sulfur-oxidizing non-ammonifying bacterium Tv. nitratireducens strain ALEN 2 (TvNiR) was isolated and purified to apparent electrophoretic homogeneity. The enzyme catalyzes reductive conversion of nitrite and hydroxylamine to ammonia without release of any intermediates, as well as reduction of sulfite to sulfide. TvNiR also possesses peroxidase activity. In solution TvNiR exists as a stable hexamer with molecular mass of about 360kDa. Each TvNiR subunit with molecular mass of 64kDa contains, as defined from spectral properties and sequence analysis, eight c-type haems. Seven of them are coordinated by the characteristic CXXCH motifs for haem c binding, while one is bonded by the unique CXXCK motif. So far, this motif coordinating the catalytic haem was found only in bacterial cytochrome c nitrite reductases (ccNiRs). All the residues essential for catalysis in the known ccNiRs were also identified in TvNiR. However, TvNiR is only distantly related to known bacterial ammonifying dissimilatory ccNiRs, sharing no more than 20% homology.
Collapse
|
31
|
Da Silva S, Cosnier S, Gabriela Almeida M, Moura JJ. An efficient poly(pyrrole–viologen)-nitrite reductase biosensor for the mediated detection of nitrite. Electrochem commun 2004. [DOI: 10.1016/j.elecom.2004.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
32
|
Almeida MG, Macieira S, Gonçalves LL, Huber R, Cunha CA, Romão MJ, Costa C, Lampreia J, Moura JJG, Moura I. The isolation and characterization of cytochromecnitrite reductase subunits (NrfA and NrfH) fromDesulfovibrio desulfuricansATCC 27774. ACTA ACUST UNITED AC 2003; 270:3904-15. [PMID: 14511372 DOI: 10.1046/j.1432-1033.2003.03772.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytochrome c nitrite reductase is isolated from the membranes of the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 as a heterooligomeric complex composed by two subunits (61 kDa and 19 kDa) containing c-type hemes, encoded by the genes nrfA and nrfH, respectively. The extracted complex has in average a 2NrfA:1NrfH composition. The separation of ccNiR subunits from one another is accomplished by gel filtration chromatography in the presence of SDS. The amino-acid sequence and biochemical subunits characterization show that NrfA contains five hemes and NrfH four hemes. These considerations enabled the revision of a vast amount of existing spectroscopic data on the NrfHA complex that was not originally well interpreted due to the lack of knowledge on the heme content and the oligomeric enzyme status. Based on EPR and Mössbauer parameters and their correlation to structural information recently obtained from X-ray crystallography on the NrfA structure [Cunha, C.A., Macieira, S., Dias, J.M., Almeida, M.G., Gonçalves, L.M.L., Costa, C., Lampreia, J., Huber, R., Moura, J.J.G., Moura, I. & Romão, M. (2003) J. Biol. Chem. 278, 17455-17465], we propose the full assignment of midpoint reduction potentials values to the individual hemes. NrfA contains the high-spin catalytic site (-80 mV) as well as a quite unusual high reduction potential (+150 mV)/low-spin bis-His coordinated heme, considered to be the site where electrons enter. In addition, the reassessment of the spectroscopic data allowed the first partial spectroscopic characterization of the NrfH subunit. The four NrfH hemes are all in a low-spin state (S = 1/2). One of them has a gmax at 3.55, characteristic of bis-histidinyl iron ligands in a noncoplanar arrangement, and has a positive reduction potential.
Collapse
Affiliation(s)
- Maria Gabriela Almeida
- REQUIMTE, CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G. Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ Microbiol 2003; 5:607-17. [PMID: 12823193 DOI: 10.1046/j.1462-2920.2003.00446.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sulphate-reducing bacteria (SRB) can be inhibited by nitrate-reducing, sulphide-oxidizing bacteria (NR-SOB), despite the fact that these two groups are interdependent in many anaerobic environments. Practical applications of this inhibition include the reduction of sulphide concentrations in oil fields by nitrate injection. The NR-SOB Thiomicrospira sp. strain CVO was found to oxidize up to 15 mM sulphide, considerably more than three other NR-SOB strains that were tested. Sulphide oxidation increased the environmental redox potential (Eh) from -400 to +100 mV and gave 0.6 nitrite per nitrate reduced. Within the genus Desulfovibrio, strains Lac3 and Lac6 were inhibited by strain CVO and nitrate for the duration of the experiment, whereas inhibition of strains Lac15 and D. vulgaris Hildenborough was transient. The latter had very high nitrite reductase (Nrf) activity. Southern blotting with D. vulgaris nrf genes as a probe indicated the absence of homologous nrf genes from strains Lac3 and Lac6 and their presence in strain Lac15. With respect to SRB from other genera, inhibition of the known nitrite reducer Desulfobulbus propionicus by strain CVO and nitrate was transient, whereas inhibition of Desulfobacterium autotrophicum and Desulfobacter postgatei was long-lasting. The results indicate that inhibition of SRB by NR-SOB is caused by nitrite production. Nrf-containing SRB can overcome this inhibition by further reducing nitrite to ammonia, preventing a stalling of the favourable metabolic interactions between these two bacterial groups. Nrf, which is widely distributed in SRB, can thus be regarded as a resistance factor that prevents the inhibition of dissimilatory sulphate reduction by nitrite.
Collapse
Affiliation(s)
- E A Greene
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada, T2N 1N4
| | | | | | | | | |
Collapse
|
34
|
Abreu IA, Lourenço AI, Xavier AV, LeGall J, Coelho AV, Matias PM, Pinto DM, Arménia Carrondo M, Teixeira M, Saraiva LM. A novel iron centre in the split-Soret cytochrome c from Desulfovibrio desulfuricans ATCC 27774. J Biol Inorg Chem 2003; 8:360-70. [PMID: 12589573 DOI: 10.1007/s00775-002-0426-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2002] [Accepted: 10/28/2002] [Indexed: 11/28/2022]
Abstract
The facultative sulfate/nitrate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 harbours a split-Soret cytochrome c. This cytochrome is a homodimeric protein, having two bis-histidinyl c-type haems per monomer. It has an unique architecture at the haem domain: each haem has one of the coordinating histidines provided by the other monomer, and in each monomer the haems are parallel to each other, almost in van der Waals contact. This work reports the cloning and sequencing of the gene encoding for this cytochrome and shows, by transcriptional analysis, that it is more expressed in nitrate-grown cells than in sulfate-grown ones. In addition, the gene-deduced amino acid sequence revealed two new cysteine residues that could be involved in the binding of a non-haem iron centre. Indeed, the presence of a novel type of an iron-sulfur centre (possibly of the [2Fe-2S] type) was demonstrated by EPR spectroscopy, and putative models for its localization and structure in the cytochrome molecule are proposed on the basis of the so-far-known 3D crystallographic structure of the aerobically purified split-Soret cytochrome, which lacks this centre.
Collapse
Affiliation(s)
- Isabel A Abreu
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Nitrite is widely used by bacteria as an electron acceptor under anaerobic conditions. In respiratory nitrite ammonification an electrochemical proton potential across the membrane is generated by electron transport from a non-fermentable substrate like formate or H(2) to nitrite. The corresponding electron transport chain minimally comprises formate dehydrogenase or hydrogenase, a respiratory quinone and cytochrome c nitrite reductase. The catalytic subunit of the latter enzyme (NrfA) catalyzes nitrite reduction to ammonia without liberating intermediate products. This review focuses on recent progress that has been made in understanding the enzymology and bioenergetics of respiratory nitrite ammonification. High-resolution structures of NrfA proteins from different bacteria have been determined, and many nrf operons sequenced, leading to the prediction of electron transfer pathways from the quinone pool to NrfA. Furthermore, the coupled electron transport chain from formate to nitrite of Wolinella succinogenes has been reconstituted by incorporating the purified enzymes into liposomes. The NrfH protein of W. succinogenes, a tetraheme c-type cytochrome of the NapC/NirT family, forms a stable complex with NrfA in the membrane and serves in passing electrons from menaquinol to NrfA. Proteins similar to NrfH are predicted by open reading frames of several bacterial nrf gene clusters. In gamma-proteobacteria, however, NrfH is thought to be replaced by the nrfBCD gene products. The active site heme c group of NrfA proteins from different bacteria is covalently bound via the cysteine residues of a unique CXXCK motif. The lysine residue of this motif serves as an axial ligand to the heme iron thus replacing the conventional histidine residue. The attachment of the lysine-ligated heme group requires specialized proteins in W. succinogenes and Escherichia coli that are encoded by accessory nrf genes. The proteins predicted by these genes are unrelated in the two bacteria but similar to proteins of the respective conventional cytochrome c biogenesis systems.
Collapse
Affiliation(s)
- Jörg Simon
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Biozentrum N240, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany.
| |
Collapse
|
36
|
Lemos RS, Gomes CM, LeGall J, Xavier AV, Teixeira M. The quinol:fumarate oxidoreductase from the sulphate reducing bacterium Desulfovibrio gigas: spectroscopic and redox studies. J Bioenerg Biomembr 2002; 34:21-30. [PMID: 11860177 DOI: 10.1023/a:1013814619023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The membrane bound fumarate reductase (FRD) from the sulphate-reducer Desulfovibrio gigas was purified from cells grown on a fumarate/sulphate medium and extensively characterized. The FRD is isolated with three subunits of apparent molecular masses of 71, 31, and 22 kDa. The enzyme is capable of both fumarate reduction and succinate oxidation, exhibiting a higher specificity toward fumarate (Km for fumarate is 0.42 and for succinate 2 mM) and a reduction rate 30 times faster than that for oxidation. Studies by Visible and EPR spectroscopies allowed the identification of two B-type haems and the three iron-sulplur clusters usually found in FRDs and succinate dehydrogenases: [2Fe-2S]2+/1+ (S1), [4Fe-4S]2+/1+ (S2), and [3Fe-4S]1+/0 (S3). The apparent macroscopic reduction potentials for the metal centers, at pH 7.6, were determined by redox titrations: -45 and -175 mV for the two haems, and +20 and -140 mV for the S3 and SI clusters, respectively. The reduction potentials of the haem groups are pH dependent, supporting the proposal that fumarate reduction is associated with formation of the membrane proton gradient. Furthermore, co-reconstitution in liposomes of D. gigas FRD, duroquinone, and D. gigas cytochrome bd shows that this system is capable of coupling succinate oxidation with oxygen reduction to water.
Collapse
Affiliation(s)
- Rita S Lemos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
37
|
Simon J, Pisa R, Stein T, Eichler R, Klimmek O, Gross R. The tetraheme cytochrome c NrfH is required to anchor the cytochrome c nitrite reductase (NrfA) in the membrane of Wolinella succinogenes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5776-82. [PMID: 11722563 DOI: 10.1046/j.0014-2956.2001.02520.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The electron-transport chain that catalyzes nitrite respiration with formate in Wolinella succinogenes consists of formate dehydrogenase, menaquinone and the nitrite reductase complex. The latter catalyzes nitrite reduction by menaquinol and is made up of NrfA and NrfH, two c-type cytochromes. NrfA is the catalytic subunit; its crystal structure is known. NrfH belongs to the NapC/NirT family of membrane-bound c-type cytochromes and mediates electron transport between menaquinol and NrfA. It is demonstrated here by MALDI MS that four heme groups are attached to NrfH. A Delta nrfH deletion mutant of W. succinogenes was constructed by replacing the nrfH gene with a kanamycin-resistance gene cartridge. This mutant did not form the NrfA protein, probably because of a polar effect of the mutation on nrfA expression. The nrfHAIJ gene cluster was restored by integration of an nrfH-containing plasmid into the genome of the Delta nrfH mutant. The resulting strain had wild-type properties with respect to growth by nitrite respiration and nitrite reductase activity. A mutant (stopH) that contained the nrfHAIJ locus with nrfH modified by two artificial stop codons near its 5' end produced wild-type amounts of NrfA in the absence of the NrfH protein. NrfA was located exclusively in the soluble cell fraction of the stopH mutant, indicating that NrfH acts as the membrane anchor of the NrfHA complex in wild-type bacteria. The stopH mutant did not grow by nitrite respiration and did not catalyze nitrite reduction by formate, indicating that the electron transport is strictly dependent on NrfH. The NrfH protein seems to be an unusual member of the NapC/NirT family as it forms a stable complex with its redox partner protein NrfA.
Collapse
Affiliation(s)
- J Simon
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Saraiva LM, da Costa PN, Conte C, Xavier AV, LeGall J. In the facultative sulphate/nitrate reducer Desulfovibrio desulfuricans ATCC 27774, the nine-haem cytochrome c is part of a membrane-bound redox complex mainly expressed in sulphate-grown cells. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1520:63-70. [PMID: 11470160 DOI: 10.1016/s0167-4781(01)00250-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The bacterium Desulfovibrio desulfuricans ATCC 27774 belongs to the group of sulphate reducers also capable of utilising nitrate as its terminal electron acceptor for anaerobic growth. One of the complex multihaem proteins found in nitrate- or sulphate-grown cells of Desulfovibrio desulfuricans ATCC 27774 is the nine-haem cytochrome c. The present work shows that the gene encoding for Desulfovibrio desulfuricans ATCC 27774 nine-haem cytochrome c is part of an operon formed by the gene cluster 9hcA-D. Besides 9hcA, the gene encoding for the nine-haem cytochrome c, genes 9hcB to D encode for a protein containing four [4Fe-4S](2+/1+) centres, for a dihaem transmembrane cytochrome b and for an unknown hydrophobic protein, respectively. The four proteins have a predicted topology that is in accordance with the formation of a membrane-bound redox complex. Furthermore, the transcriptional studies show that not only the expression of the 9HcA-D complex is dependent on the growth phase, but also is markedly increased in sulphate-grown cells.
Collapse
Affiliation(s)
- L M Saraiva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | | | | | | | | |
Collapse
|
39
|
Pereira IA, LeGall J, Xavier AV, Teixeira M. Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1481:119-30. [PMID: 11004582 DOI: 10.1016/s0167-4838(00)00111-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A cytochrome c nitrite reductase (NiR) was purified for the first time from a microorganism not capable of growing on nitrate, the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. It was isolated from the membranes as a large heterooligomeric complex of 760 kDa, containing two cytochrome c subunits of 56 and 18 kDa. This complex has nitrite and sulfite reductase activities of 685 micromol NH(4)(+)/min/mg and 1.0 micromol H(2)/min/mg. The enzyme was studied by UV-visible and electron paramagnetic resonance (EPR) spectroscopies. The overall redox behavior was determined through a visible redox titration. The data were analyzed with a set of four redox transitions, with an E(0)' of +160 mV (12% of total absorption), -5 mV (38% of total absorption), -110 mV (38% of total absorption) and -210 mV (12% of total absorption) at pH 7.6. The EPR spectra of oxidized and partially reduced NiR show a complex pattern, indicative of multiple heme-heme magnetic interactions. It was found that D. vulgaris Hildenborough is not capable of using nitrite as a terminal electron acceptor. These results indicate that in this organism the NiR is not involved in the dissimilative reduction of nitrite, as is the case with the other similar enzymes isolated so far. The possible role of this enzyme in the detoxification of nitrite and/or in the reduction of sulfite is discussed.
Collapse
Affiliation(s)
- I A Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal.
| | | | | | | |
Collapse
|
40
|
Stach P, Einsle O, Schumacher W, Kurun E, Kroneck PM. Bacterial cytochrome c nitrite reductase: new structural and functional aspects. J Inorg Biochem 2000; 79:381-5. [PMID: 10830892 DOI: 10.1016/s0162-0134(99)00248-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cytochrome c nitrite reductase catalyzes the six-electron reduction of nitrite to ammonia as a key step within the biological nitrogen cycle. Most recently, the crystal structure of the soluble enzyme from Sulfurospirillum deleyianum could be solved to 1.9 A resolution. This set the basis for new experiments on structural and functional aspects of the pentaheme protein which carries a Ca(2+) ion close to the active site heme. In the crystal, the protein was a homodimer with ten hemes in very close packing. The strong interaction between the nitrite reductase monomers also occurred in solution according to the dependence of the activity on the protein concentration. Addition of Ca(2+) to the enzyme as isolated had a stimulating effect on the activity. Ca(2+) could be removed from the enzyme by treatment with chelating agents such as EGTA or EDTA which led to a decrease in activity. In addition to nitrite, the enzyme converted NO, hydroxylamine and O-methyl hydroxylamine to ammonia at considerable rates. With N2O the activity was much lower; most likely dinitrogen was the product in this case. Cytochrome c nitrite reductase exhibited a remarkably high sulfite reductase activity, with hydrogen sulfide as the product. A paramagnetic Fe(II)-NO, S = 1/2 adduct was identified by rapid freeze EPR spectroscopy under turnover conditions with nitrite. This potential reaction intermediate of the reduction of nitrite to ammonia was also observed with PAPA NONOate and Spermine NONOate.
Collapse
Affiliation(s)
- P Stach
- Universität Konstanz, Fachbereich Biologie, Germany
| | | | | | | | | |
Collapse
|
41
|
Saraiva LM, da Costa PN, LeGall J. Sequencing the gene encoding desulfovibrio desulfuricans ATCC 27774 nine-heme cytochrome c. Biochem Biophys Res Commun 1999; 262:629-34. [PMID: 10471375 DOI: 10.1006/bbrc.1999.1238] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contradicting early suggestions, the sequencing of the gene encoding the Desulfovibrio desulfuricans (ATCC 27774) nine-heme cytochrome c proves that this cytochrome is not the product of the degradation of the 16-heme containing cytochrome c [Coelho et al. (1996) Acta Cryst. D52, 1202-1208]. However, preliminary data indicate that the cytochrome gene is part of an operon similar to the DvH hmc operon, which contains the gene coding for the 16-heme cytochrome c [Rossi et al. (1993) J. Bacteriol. 175, 4699-4711]. Also, the amino acid sequence deduced from the DNA sequence shows four residues in the C-terminal not predicted in the amino acid sequence obtained by X-ray methods [Matias et al. (1999) Structure 7, 119-130].
Collapse
Affiliation(s)
- L M Saraiva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, Oeiras, 2780, Portugal.
| | | | | |
Collapse
|
42
|
Moura I, Bursakov S, Costa C, Moura JJ. Nitrate and Nitrite Utilization in Sulfate-Reducing Bacteria. Anaerobe 1997; 3:279-90. [PMID: 16887602 DOI: 10.1006/anae.1997.0093] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/1997] [Accepted: 04/08/1997] [Indexed: 02/06/2023]
Affiliation(s)
- I Moura
- Departamento de Química e Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2825, Monte de Caparica, Portugal
| | | | | | | |
Collapse
|
43
|
Pereira IA, Pacheco I, Liu MY, Legall J, Xavier AV, Teixeira M. Multiheme cytochromes from the sulfur-reducing bacterium Desulfuromonas acetoxidans. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:323-8. [PMID: 9346284 DOI: 10.1111/j.1432-1033.1997.00323.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two new multiheme cytochromes were isolated from the anaerobic sulfur reducing bacterium Desulfuromonas acetoxidans. They have monomeric molecular masses of 50 and 65 kDa and contain six and eight hemes, respectively. Visible and EPR spectroscopies, in the as-isolated (oxidised) cytochromes, show the presence of only low-spin hemes in the 50-kDa cytochrome, and of high-spin and low-spin hemes in the 65-kDa cytochrome. The EPR spectra of the native 65-kDa cytochrome indicate multiple heme-heme interactions, including integer-spin systems as judged by parallel-mode EPR. The 50-kDa cytochrome has a complex redox pattern, as shown by EPR redox titrations, and contains one heme with unusual characteristics. Both cytochromes cover an extremely wide range of reduction potentials, which go from +100 mV to -375 mV for the 50-kDa cytochrome, and +185 mV to -235 mV for the 65-kDa cytochrome. The two cytochromes were tested for hydroxylamine oxidoreductase activity and polysulfide reductase activity, but neither displayed any activity. In contrast, it was found for the first time that the previously characterised cytochrome c551.5, from the same bacterium is very active in the reduction of polysulfide, which suggests that it acts as a terminal reductase in D. acetoxidans.
Collapse
Affiliation(s)
- I A Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
During microbial denitrification, NO is produced by reduction of nitrite by either the reduced high spin d1 hemes in a unique reductase (NIR) or at the expense of a blue copper protein that transfers electrons that move first to a type I copper and then to a type II copper in a unique trimeric NIR. This latter type of NIR is also produced by several denitrifying filamentous fungi. Reduction of NO is then carried out by either a specific cytochrome be complex NOR in denitrifying bacteria or a unique cytochrome P-450 in denitrifying filamentous fungi. NO is also produced by an anomalous reaction of a molybdoprotein, nitrate reductase (NAR), acting on an odd substrate, NO2-. NO is also reduced by a multiheme NIR that serves physiologically for reduction of NO2- to NH3. This type NIR reduces NO to either N2O, if only partially reduced, or NH3, if fully reduced, when it encounters NO. This multiheme NIR is very sensitive to cyanide. Transcription of the genes for NIR and NOR production in a denitrifier is activated by NO, a process that also requires the presence of the gene product, a transcriptional activator, NnrR.
Collapse
Affiliation(s)
- W J Payne
- Department of Microbiology, University of Georgia, Athens 30602, USA
| | | | | | | |
Collapse
|