1
|
Abstract
Angiogenin is a member of the ribonuclease A superfamily of proteins that has been implicated in stimulating angiogenesis but whether angiogenin can directly affect ovarian granulosa or theca cell function is unknown. Therefore, the objective of these studies was to determine the effect of angiogenin on proliferation and steroidogenesis of bovine granulosa and theca cells. In experiments 1 and 2, granulosa cells from small (1 to 5 mm diameter) follicles and theca cells from large (8 to 22 mm diameter) follicles were cultured to evaluate the dose-response effect of recombinant human angiogenin on steroidogenesis. At 30 and 100 ng/ml, angiogenin inhibited (P0.10) granulosa cell estradiol production or theca cell progesterone production, and did not affect numbers of granulosa or theca cells. In experiments 3 and 4, granulosa and theca cells from both small and large follicles were cultured with 300 ng/ml of angiogenin to determine if size of follicle influenced responses to angiogenin. At 300 ng/ml, angiogenin increased large follicle granulosa cell proliferation but decreased small follicle granulosa cell progesterone and estradiol production and large follicle theca cell progesterone production. In experiments 5 and 6, angiogenin stimulated (P<0.05) proliferation and DNA synthesis in large follicle granulosa cells. In experiment 7, 300 ng/ml of angiogenin increased (P<0.05) CYP19A1 messenger RNA (mRNA) abundance in granulosa cells but did not affect CYP11A1 mRNA abundance in granulosa or theca cells and did not affect CYP17A1 mRNA abundance in theca cells. We conclude that angiogenin appears to target both granulosa and theca cells in cattle, but additional research is needed to further understand the mechanism of action of angiogenin in granulosa and theca cells, as well as its precise role in folliculogenesis.
Collapse
|
2
|
Dentis JL, Schreiber NB, Gilliam JN, Schutz LF, Spicer LJ. Changes in brain ribonuclease (BRB) messenger RNA in granulosa cells (GCs) of dominant vs subordinate ovarian follicles of cattle and the regulation of BRB gene expression in bovine GCs. Domest Anim Endocrinol 2016; 55:32-40. [PMID: 26773365 PMCID: PMC4779677 DOI: 10.1016/j.domaniend.2015.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 11/15/2022]
Abstract
Brain ribonuclease (BRB) is a member of the ribonuclease A superfamily that is constitutively expressed in a range of tissues and is the functional homolog of human ribonuclease 1. This study was designed to characterize BRB gene expression in granulosa cells (GCs) during development of bovine dominant ovarian follicles and to determine the hormonal regulation of BRB in GCs. Estrous cycles of Holstein cows (n = 18) were synchronized, and cows were ovariectomized on either day 3 to 4 or day 5 to 6 after ovulation during dominant follicle growth and selection. Ovaries were collected, follicular fluid (FFL) was aspirated, and GCs were collected for RNA isolation and quantitative polymerase chain reaction. Follicles were categorized as small (1-5 mm; pooled per ovary), medium (5-8 mm; individually collected), or large (8.1-17 mm; individually collected) based on surface diameter. Estradiol (E2) and progesterone (P4) levels were measured by radioimmunoassay (RIA) in FFL. Abundance of BRB messenger RNA (mRNA) in GCs was 8.6- to 11.8-fold greater (P < 0.05) in small (n = 31), medium (n = 66), and large (n = 33) subordinate E2-inactive (FFL E2 < P4) follicles than in large (n = 16) dominant E2-active (FFL E2 > P4) follicles. In the largest 4 follicles, GCs BRB mRNA abundance was negatively correlated (P < 0.01) with FFL E2 (r = -0.65) and E2:P4 ratio (r = -0.46). In experiment 2, GCs from large (8-22 mm diameter) and small (1-5 mm diameter) follicles were treated with insulin-like growth factor 1 (IGF1; 0 or 30 ng/mL) and/or tumor necrosis factor alpha (0 or 30 ng/mL); IGF1 increased (P < 0.05) BRB mRNA abundance, and tumor necrosis factor alpha decreased (P < 0.001) the IGF1-induced BRB mRNA abundance in large-follicle GCs. In experiment 3 to 6, E2, follicle-stimulating hormone, fibroblast growth factor 9, cortisol, wingless 3A, or sonic hedgehog did not affect (P > 0.10) abundance of BRB mRNA in GCs; thyroxine and luteinizing hormone increased (P < 0.05), whereas prostaglandin E2 (PGE2) decreased (P < 0.05) BRB mRNA abundance in small-follicle GCs. Treatment of small-follicle GCs with recombinant human RNase1 increased (P < 0.05) GCs numbers and E2 production. In conclusion, BRB is a hormonally and developmentally regulated gene in bovine GCs and may regulate E2 production during follicular growth in cattle.
Collapse
Affiliation(s)
- J L Dentis
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - N B Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - J N Gilliam
- Department of Veterinary Clinical Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - L F Schutz
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
3
|
Choi JW, Kim GJ, Lee S, Kim J, deMello AJ, Chang SI. A droplet-based fluorescence polarization immunoassay (dFPIA) platform for rapid and quantitative analysis of biomarkers. Biosens Bioelectron 2015; 67:497-502. [DOI: 10.1016/j.bios.2014.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/30/2014] [Accepted: 09/04/2014] [Indexed: 02/05/2023]
|
4
|
Choi JW, Lee S, Lee DH, Kim J, deMello AJ, Chang SI. Integrated pneumatic micro-pumps for high-throughput droplet-based microfluidics. RSC Adv 2014. [DOI: 10.1039/c4ra02033b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Droplet-based microfluidic systems have recently emerged as powerful experimental tools in the chemical and biological sciences.
Collapse
Affiliation(s)
- Jae-Won Choi
- Department of Biochemistry
- Chungbuk National University
- Cheongju 361-763, Republic of Korea
| | - Sangmin Lee
- Department of Mechanical Engineering
- Pohang University of Science and Technology
- Pohang 790-784, Republic of Korea
| | - Dong-Hun Lee
- Department of Microbiology
- Chungbuk National University
- Cheongju 361-763, Republic of Korea
| | - Joonwon Kim
- Department of Mechanical Engineering
- Pohang University of Science and Technology
- Pohang 790-784, Republic of Korea
| | - Andrew J. deMello
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- Zürich CH-8093, Switzerland
| | - Soo-Ik Chang
- Department of Biochemistry
- Chungbuk National University
- Cheongju 361-763, Republic of Korea
| |
Collapse
|
5
|
Raven LA, Cocks BG, Pryce JE, Cottrell JJ, Hayes BJ. Genes of the RNASE5 pathway contain SNP associated with milk production traits in dairy cattle. Genet Sel Evol 2013; 45:25. [PMID: 23865486 PMCID: PMC3733968 DOI: 10.1186/1297-9686-45-25] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identification of the processes and mutations responsible for the large genetic variation in milk production among dairy cattle has proved challenging. One approach is to identify a biological process potentially involved in milk production and to determine the genetic influence of all the genes included in the process or pathway. Angiogenin encoded by angiogenin, ribonuclease, RNase A family 5 (RNASE5) is relatively abundant in milk, and has been shown to regulate protein synthesis and act as a growth factor in epithelial cells in vitro. However, little is known about the role of angiogenin in the mammary gland or if the polymorphisms present in the bovine RNASE5 gene are associated with lactation and milk production traits in dairy cattle. Given the high economic value of increased protein in milk, we have tested the hypothesis that RNASE5 or genes in the RNASE5 pathway are associated with milk production traits. First, we constructed a "RNASE5 pathway" based on upstream and downstream interacting genes reported in the literature. We then tested SNP in close proximity to the genes of this pathway for association with milk production traits in a large dairy cattle dataset. RESULTS The constructed RNASE5 pathway consisted of 11 genes. Association analysis between SNP in 1 Mb regions surrounding these genes and milk production traits revealed that more SNP than expected by chance were associated with milk protein percent (P < 0.05 significance). There was no significant association with other traits such as milk fat content or fertility. CONCLUSIONS These results support a role for the RNASE5 pathway in milk production, specifically milk protein percent, and indicate that polymorphisms in or near these genes explain a proportion of the variation for this trait. This method provides a novel way of understanding the underlying biology of lactation with implications for milk production and can be applied to any pathway or gene set to test whether they are responsible for the variation of complex traits.
Collapse
Affiliation(s)
- Lesley-Ann Raven
- Biosciences Research Division, Department of Primary Industries Victoria, 5 Ring Rd, Bundoora 3086, Australia.
| | | | | | | | | |
Collapse
|
6
|
Choi JW, Kang DK, Park H, deMello AJ, Chang SI. High-Throughput Analysis of Protein–Protein Interactions in Picoliter-Volume Droplets Using Fluorescence Polarization. Anal Chem 2012; 84:3849-54. [DOI: 10.1021/ac300414g] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jae-Won Choi
- Department of Biochemistry, Chungbuk National University, Cheongju 361-763, Republic
of Korea,
| | - Dong-Ku Kang
- Department of Biochemistry, Chungbuk National University, Cheongju 361-763, Republic
of Korea,
- Department of
Chemistry, Imperial College London, London
SW7 2AZ, United Kingdom,
| | - Hyun Park
- Department of Biochemistry, Chungbuk National University, Cheongju 361-763, Republic
of Korea,
| | - Andrew J. deMello
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Soo-Ik Chang
- Department of Biochemistry, Chungbuk National University, Cheongju 361-763, Republic
of Korea,
| |
Collapse
|
7
|
Fabrication of a hydrophobic/hydrophilic hybrid-patterned microarray chip and its application to a cancer marker immunoassay. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6102-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Pyatibratov MG, Kostyukova AS. New insights into the role of angiogenin in actin polymerization. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:175-98. [PMID: 22449490 DOI: 10.1016/b978-0-12-394306-4.00011-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Angiogenin is a potent stimulator of angiogenesis. It interacts with endothelial cells and induces a wide range of cellular responses initiating a process of blood vessel formation. One important target of angiogenin is endothelial cell-surface actin, and their interaction might be one of crucial steps in angiogenin-induced neovascularization. Recently, it was shown that angiogenin inhibits polymerization of G-actin and changes the physical properties of F-actin. These observations suggest that angiogenin may cause changes in the cell cytoskeleton. This chapter reviews the current state of the literature regarding angiogenin structure and function and discusses the relationship between the angiogenin and actin and possible functional roles of their interaction.
Collapse
Affiliation(s)
- Mikhail G Pyatibratov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | |
Collapse
|
9
|
He Y, Nie F. Chemiluminescence assay for angiogenin using a signal amplification technology based on the cleavage of nicking endonucleases. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0634-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Grado-Ahuir JA, Aad PY, Spicer LJ. New insights into the pathogenesis of cystic follicles in cattle: microarray analysis of gene expression in granulosa cells. J Anim Sci 2011; 89:1769-86. [PMID: 21239663 DOI: 10.2527/jas.2010-3463] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ovarian follicular growth and development are regulated by extraovarian and intraovarian factors, which influence granulosa cell proliferation and differentiation. However, the molecular mechanisms that drive follicular growth are not completely understood. Ovarian follicular cysts are one of the most common causes of reproductive failure in dairy cattle. Nevertheless, the primary cause of cyst formation has not been clearly established. A gene expression comparison may aid in elucidating the causes of ovarian cyst disease. Our objective was to identify differentially expressed genes in ovarian granulosa cells between normal dominant and cystic follicles of cattle. Granulosa cells and follicular fluid were isolated from dominant and cystic follicles collected via either ultrasound-guided aspiration from dairy cows (n = 24) or slaughterhouse ovaries from beef cows (n = 23). Hormonal analysis for progesterone, estradiol, and androstenedione in follicular fluid was performed by RIA. Total RNA was extracted and hybridized to 6 Affymetrix GeneChip Bovine Genome Arrays (Affymetrix, Santa Clara, CA). Abundance of mRNA for differentially expressed selected genes was determined through quantitative real-time reverse-transcription PCR. Follicular cysts showed greater (P < 0.05) progesterone, lesser (P < 0.05) estradiol, and no differences (P > 0.10) in androstenedione concentrations compared with noncystic follicles. A total of 163 gene sequences were differentially expressed (P < 0.01), with 19 upregulated and 144 downregulated. From selected target genes, quantitative real-time reverse-transcription PCR confirmed angiogenin, PGE(2) receptor 4, and G-protein coupled receptor 34 genes as upregulated in cystic follicles, and Indian hedgehog protein precursor and secreted frizzled-related protein 4 genes as downregulated in cystic follicles. Further research is required to elucidate the role of these factors in follicular development and cyst formation.
Collapse
Affiliation(s)
- J A Grado-Ahuir
- Department of Animal Science, Oklahoma State University, Stillwater 74078, USA
| | | | | |
Collapse
|
11
|
Lee M, Lee S, Lee JH, Lim HW, Seong GH, Lee EK, Chang SI, Oh CH, Choo J. Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens Bioelectron 2010; 26:2135-41. [PMID: 20926277 DOI: 10.1016/j.bios.2010.09.021] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/06/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
Abstract
This paper reports a highly reproducible immunoassay of cancer markers using surface-enhanced Raman scattering (SERS) imaging. SERS is a highly sensitive detection method but it is limited in its ability to achieve reproducible signal enhancement because of the difficulty with precisely controlling the uniform distribution of hot junctions. Consequently, inconsistent enhancement prevents the wide exploitation of SERS detection as a bio-detection tool for quantitative analysis. To resolve this problem, we explored the use of a SERS imaging-based immunoassay. For this purpose, Raman reporter-labeled hollow gold nanospheres (HGNs), were manufactured and antibodies were immobilized onto their surfaces for targeting specific antigens. After the formation of sandwich immunocomplexes using these functional HGNs on the surfaces of gold patterned wells, the SERS mapping images were measured. For target protein markers, 12×9 pixels were imaged using a Raman mapping technique in the 0-10(-4) g/mL concentration range, and the SERS signals for 66 pixels were averaged. Here, the SERS imaging-based assay shows much better correlations between concentration and intensity than does the conventional point-based assay. The limits of detection were determined to be 0.1 pg/mL and 1.0 pg/mL for angiogenin (ANG) and alpha-fetoprotein (AFP), respectively. This detection sensitivity is increased by three or four orders of magnitude over that of conventional ELISA method. The detectable dynamic range for SERS imaging (10(-4)-10(-12) g/mL) is also much wider than that for ELISA (10(-6)-10(-9) g/mL).
Collapse
Affiliation(s)
- Moonkwon Lee
- Department of Bionano Engineering, Hanyang University, Ansan 426-791, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Harris P, Johannessen KM, Smolenski G, Callaghan M, Broadhurst MK, Kim K, Wheeler TT. Characterisation of the anti-microbial activity of bovine milk ribonuclease4 and ribonuclease5 (angiogenin). Int Dairy J 2010. [DOI: 10.1016/j.idairyj.2009.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Srisa-Art M, Kang DK, Hong J, Park H, Leatherbarrow RJ, Edel JB, Chang SI, deMello AJ. Analysis of Protein-Protein Interactions by Using Droplet-Based Microfluidics. Chembiochem 2009; 10:1605-11. [DOI: 10.1002/cbic.200800841] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Correlation Between Sexual Steroids and Angiogenin Secretion in Bovine Ovarian Follicles. Vet Res Commun 2006. [DOI: 10.1007/s11259-006-0037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Youn MR, Park MH, Choi CK, Ahn BC, Kim HY, Kang SS, Hong YK, Joe YA, Kim JS, You WK, Lee HS, Chung SI, Chang SI. Direct binding of recombinant plasminogen kringle 1–3 to angiogenin inhibits angiogenin-induced angiogenesis in the chick embryo CAM. Biochem Biophys Res Commun 2006; 343:917-23. [PMID: 16564503 DOI: 10.1016/j.bbrc.2006.03.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
Angiogenin is one of the most potent angiogenesis-inducing proteins. Angiostatin is one of the most potent angiogenesis inhibitors, and it contains the first four kringle domains of plasminogen (K1-4). Recombinant human plasminogen kringle 1-3 (rK1-3) was expressed in Escherichia coli and purified to homogeneity. The binding of t-4-aminomethylcyclohexanecarboxylic acid with the purified kringle 1-3 was determined by changes in intrinsic fluorescence. rK1-3 exhibits comparable ligand-binding properties as native human plasminogen kringle 1-3. The purified rK1-3 inhibits neovascularization in the chick embryo chorioallantoic membrane (CAM) assay. Interaction of angiogenin with rK1-3 was examined by immunological binding assay and surface plasmon resonance kinetic analysis, and the equilibrium dissociation constants for the complex, Kd, are 0.89 and 0.18 microM, respectively. rK1-3 inhibits angiogenin-induced angiogenesis in the chick embryo CAM in a concentration-dependent manner. These results indicate that rK1-3 directly binds to angiogenin and thus rK1-3 inhibits the angiogenic activity of angiogenin.
Collapse
Affiliation(s)
- Mi-Ran Youn
- Department of Biochemistry, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rajashekhar G, Loganath A, Roy AC, Wong YC. Expression and localization of angiogenin in placenta: enhanced levels at term over first trimester villi. Mol Reprod Dev 2002; 62:159-66. [PMID: 11984825 DOI: 10.1002/mrd.10116] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human angiogenin, a 14-kDa non-glycosylated polypeptide with both angiogenic and ribonucleolytic activities, is implicated in angiogenesis, a complex process of proliferation and formation of new capillary blood vessels from existing blood vessels. Placental growth requires extensive angiogenesis, which develops its vascular structure in both fetal chorionic villi and maternal deciduas. In this study, we investigated the expression profiles of angiogenin in placental villi from early and late gestation at both mRNA and protein levels using explant cultures in vitro followed by RT-PCR, immunoblot, and immunohistochemical analyses. From functionally active placental explants, angiogenin was detected in conditioned media of all the samples from first trimester and term group. The mean levels of angiogenin produced by term villi were found to be 2.6-, 2.1-, and 2.2-fold higher (P < 0.01) than first trimester villi at 24, 48, and 72 hr of culture, respectively. Expression profiles of angiogenin from term and first trimester villi seem to agree with its mRNA levels and immunoblot analysis; the expression in term villi was twice that in first trimester villi. The presence of angiogenin in placental villi and upregulation of its production towards term indicate that angiogenin production by the placenta is specific to the developmental stage. In conclusion, the observed changes in the localization and mRNA expression of angiogenin during placental development raise the possibility that it is involved in morphological and angiogenic changes in this endocrine organ vital to the successful fetal outcome during pregnancy.
Collapse
Affiliation(s)
- G Rajashekhar
- Department of Obstetrics and Gynaecology, National University Hospital, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
17
|
Lee HS, Lee IS, Kang TC, Jeong GB, Chang SI. Angiogenin is involved in morphological changes and angiogenesis in the ovary. Biochem Biophys Res Commun 1999; 257:182-6. [PMID: 10092530 DOI: 10.1006/bbrc.1999.0359] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiogenin is a potent angiogenic factor secreted by cultured tumor cells and is found in various normal organs and tissues. The ovary is one of the adult organs in which angiogenesis normally occurs during the female reproductive cycle. In this study, we examined whether angiogenin protein is localized and if angiogenin mRNA is expressed in the normal bovine ovary by immunohistochemistry using polyclonal rabbit anti-bovine angiogenin IgG and by in situ hybridization using bovine angiogenin probe, respectively. The localization and mRNA expression of angiogenin in the ovarian follicle and in the corpus luteum were different in their developmental stages. The intensities of immunoreactivities and angiogenin transcripts in the follicle increased from the primordial to the tertiary (or Graafian) follicle. The early corpus luteum contained strong immunoreactivities and mRNA expression of angiogenin but these intensities weakened during regression. The results suggest that angiogenin is involved in morphological changes and angiogenesis in the ovary.
Collapse
MESH Headings
- Animals
- Cattle
- Corpus Luteum/cytology
- Corpus Luteum/growth & development
- Corpus Luteum/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Factor VIII/analysis
- Female
- Gene Expression Regulation, Developmental
- Granulosa Cells/metabolism
- Immune Sera
- Immunohistochemistry
- In Situ Hybridization
- Luteal Cells/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Neovascularization, Physiologic
- Oocytes
- Ovarian Follicle/cytology
- Ovarian Follicle/growth & development
- Ovarian Follicle/metabolism
- Ovary/blood supply
- Ovary/cytology
- Ovary/growth & development
- Ovary/metabolism
- Proteins/genetics
- Proteins/metabolism
- RNA, Messenger/metabolism
- Ribonuclease, Pancreatic
Collapse
Affiliation(s)
- H S Lee
- College of Veterinary Medicine, Seoul National University, Suwon, 441-744, Korea
| | | | | | | | | |
Collapse
|