1
|
Kaya AI, Onaran HO, Özcan G, Ambrosio C, Costa T, Balli S, Ugur Ö. Cell contact-dependent functional selectivity of β2-adrenergic receptor ligands in stimulating cAMP accumulation and extracellular signal-regulated kinase phosphorylation. J Biol Chem 2012; 287:6362-74. [PMID: 22241475 DOI: 10.1074/jbc.m111.301820] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation of β(2)-adrenegic receptor (β(2)-AR) leads to an increase in intracellular cAMP and activation of ERK. These two signals are activated by the interaction of the receptor with different transducer partners. We showed that the intrinsic activities of β(2)-AR ligands for stimulating cAMP production and ERK phosphorylation responses in HEK-293 cells were not correlated. The lack of correlation resulted mainly from the discrepancy between the intrinsic activities of two groups of ligands for these two responses: The first group consisted of clenbuterol, cimaterol, procaterol, and terbutaline which acted as full agonists for cAMP production but displayed very weak effect on ERK phosphorylation. The second group comprised adrenaline and noradrenaline which displayed higher intrinsic activity for the ERK phosphorylation than for the cAMP response. Thus, both groups behaved as functionally selective ligands. The functional selectivity of the first group was observable only in adherent cells when confluence was approximately 100%. When cell-cell contact was minimized either by decreasing the density of the adherent cells or by bringing the cells into suspension, the first group of ligands gained the ability to stimulate ERK phosphorylation without a change in their effect on cAMP production. In contrast, selectivity of the second group was independent of the adherence state of the cells. Our results show that the inherent "bias" of ligands in coupling a G protein-coupled receptor to different transducers may not always be revealed as functional selectivity when there is a "cross-talk" between the signaling pathways activated by the same receptor.
Collapse
Affiliation(s)
- Ali I Kaya
- Department of Pharmacology, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
2
|
Sarai K, Shikata K, Shikata Y, Omori K, Watanabe N, Sasaki M, Nishishita S, Wada J, Goda N, Kataoka N, Makino H. Endothelial barrier protection by FTY720 under hyperglycemic condition: involvement of focal adhesion kinase, small GTPases, and adherens junction proteins. Am J Physiol Cell Physiol 2009; 297:C945-54. [PMID: 19657053 DOI: 10.1152/ajpcell.00606.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, sphingosine 1-phosphate (S1P) has been highlighted as an endothelial barrier-stabilizing mediator. FTY720 is a S1P analog originally developed as a novel immunosuppressant. The phosphorylated form of FTY720 binds to S1P receptors to exert S1P-like biological effects, suggesting endothelial barrier promotion by FTY720. To elucidate whether FTY720 induces signaling events related to endothelial barrier enhancement under hyperglycemic conditions, human microvascular endothelial cells (HMVECs) preincubated with hyperglycemic (30 mM) medium were treated with 100 nM FTY720 for 3 h. Immunofluorescent microscopy and coprecipitation study revealed FTY720-induced focal adhesion kinase (FAK)-associated adherens junction (AJ) assembly at cell-cell contacts coincident with formation of a prominent cortical actin ring. FTY720 also induced transmonolayer electrical resistance (TER) augmentation in HMVEC monolayers in both normoglycemic and hyperglycemic conditions, implying endothelial barrier enhancement. Similar to S1P, site-specific FAK tyrosine phosphorylation analysis revealed FTY720-induced FAK [Y576] phosphorylation without phosphorylation of FAK [Y397/Y925]. Furthermore, FTY720 conditioned the phosphorylation profile of FAK [Y397/Y576/Y925] in hyperglycemic medium to the same pattern observed in normoglycemic medium. FTY720 challenge resulted in small GTPase Rac activation under hyperglycemic conditions, whereas increased Rho activity in hyperglycemic medium was restored to the basal level. Rac protein depletion by small interfering RNA (siRNA) technique completely abolished FTY720-induced FAK [Y576] phosphorylation. These findings strongly suggest the barrier protective effect of FTY720 on HMVEC monolayers in hyperglycemic medium via S1P signaling, further implying the possibility of FTY720 as a therapeutic agent of diabetic vascular disorder.
Collapse
Affiliation(s)
- Kei Sarai
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Mayhew MW, Webb DJ, Kovalenko M, Whitmore L, Fox JW, Horwitz AF. Identification of protein networks associated with the PAK1-betaPIX-GIT1-paxillin signaling complex by mass spectrometry. J Proteome Res 2006; 5:2417-23. [PMID: 16944954 DOI: 10.1021/pr060140t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The process of cell motility involves coordinate signaling events among proteins associated in interactive integrin-linked networks. Mass spectrometric analysis of immunoprecipitation-derived protein mixtures have provided efficient means of identifying proteomes. In this study, we investigate strategies to enhance the detection of interactome proteins for the known signaling module: PAK1, betaPIX, GIT1, and paxillin. Our results indicate that near-endogenous expression levels of bait protein enhances the identification of associated proteins, and that phosphatase inhibition augments the detection of specific protein interactions. Following the analysis of a large pool of spectral data, we have identified and mapped clusters of proteins that either share common interactions among the four bait proteins of interest or are exclusive to single bait proteins. Taken together, these data indicate that biochemical manipulations can enhance the ability for LC-MS/MS to identify interactome proteins, and that qualitative screening of multiple samples leads to the compilation of proteins associated with a known plexus.
Collapse
Affiliation(s)
- Mark W Mayhew
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Yozai K, Shikata K, Sasaki M, Tone A, Ohga S, Usui H, Okada S, Wada J, Nagase R, Ogawa D, Shikata Y, Makino H. Methotrexate Prevents Renal Injury in Experimental Diabetic RatsviaAnti-Inflammatory Actions. J Am Soc Nephrol 2005; 16:3326-38. [PMID: 16177002 DOI: 10.1681/asn.2004111011] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent studies suggested the involvement of inflammatory processes in the pathogenesis of diabetic nephropathy. Methotrexate (MTX), a folic acid antagonist, is widely used for the treatment of inflammatory diseases. Recently, it has been shown that treatment with low-dose MTX reduces the cardiovascular mortality in patients with rheumatoid arthritis, suggesting that MTX has anti-atherosclerotic effects via its anti-inflammatory actions. This study was designed to determine the anti-inflammatory effects of this agent on diabetic nephropathy. Diabetes was induced in Sprague-Dawley rats with streptozotocin, and MTX (0.5 or 1.0 mg/kg) was administered once a week for 8 wk. Treatment with MTX reduced urinary albumin excretion, mesangial matrix expansion, macrophage infiltration, expression of TGF-beta and type IV collagen, and intercellular adhesion molecule-1 in glomeruli. MTX also reduced the high glucose-induced NF-kappaB activation in vitro and in vivo. The results indicate that intermittent administration of MTX prevented renal injuries without changes in blood glucose level and BP in experimental diabetic rats. The protective effects of MTX are suggested to be mediated by its anti-inflammatory actions through inhibition of NF-kappaB activation and consequent reduction of intercellular adhesion molecule-1 expression and macrophage infiltration. The results suggest that anti-inflammatory agents might be beneficial for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Kosuke Yozai
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, Japan 700-8558
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chen JS, Lee HS, Jin JS, Chen A, Lin SH, Ka SM, Lin YF. Attenuation of mouse mesangial cell contractility by high glucose and mannitol: involvement of protein kinase C and focal adhesion kinase. J Biomed Sci 2004; 11:142-51. [PMID: 14966364 DOI: 10.1007/bf02256557] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 10/16/2003] [Indexed: 12/11/2022] Open
Abstract
Hyperglycemia and mannitol activate protein kinase C (PKC) and induce mesangial cell hypocontractility that subsequently may modulate renal function. Since focal adhesion kinase (FAK) activation is known to be linked with PKC activity, FAK may also be involved in mesangial cell contraction. To facilitate our understanding of the PKC- and FAK-modulating mechanism, we developed an in vitro model of mouse mesangial cell hypocontractility induced by hyperglycemia or mannitol. Mouse mesangial cells (CRL-1927) were exposed to: normal D-glucose (group N), high D-glucose (group H), and control groups at the same osmolality as H plus L-glucose (group L) and mannitol (group M). Changes in the planar surface area of cells in response to 1 microM phorbol 12-myristate 13-acetate (PMA) were determined. Western blot analyses for PKC, phosphorylated (p)-PKC, tyrosine phosphorylation, FAK, and p-FAK were done on each of these four groups. The effects of mannitol in various doses on cell contraction and activation of PKC and FAK were also assayed. The planar surface areas of groups H and M both showed an attenuated change in response to PMA stimulation. Before PMA stimulation, the baseline PKC expression of groups H and M showed a higher expression of p-PKC alpha and delta than that seen in group N (p < 0.05). Results of tyrosine phosphorylation and immunoprecipitation showed that FAK may be involved in this contraction process. The total amount of FAK showed no significant difference among the four experimental groups; however, p-FAK was found to have significantly increased in group M (p < 0.05). The use of PKC and tyrosine kinase inhibitors reduced PMA-induced mesangial cell contraction in all four groups. Activation of PKC alpha, delta, and FAK with the resultant inhibition of mesangial cell contraction by mannitol was found to be dose-dependent. These results may provide a correlation between increased expression of several PKC isoforms and, in particular, increased phosphorylation levels of PKC alpha and delta and hypocontractility induced by high glucose and mannitol treatment. Furthermore, the mannitol-induced hypocontractility involving PKC and FAK occurred in a dose-dependent manner.
Collapse
Affiliation(s)
- Jin-Shuen Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, and Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
6
|
Shikata Y, Birukov KG, Birukova AA, Verin A, Garcia JGN. Involvement of site-specific FAK phosphorylation in sphingosine-1 phosphate- and thrombin-induced focal adhesion remodeling: role of Src and GIT. FASEB J 2004; 17:2240-9. [PMID: 14656986 DOI: 10.1096/fj.03-0198com] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sphingosine-1 phosphate (S1P) and thrombin are agents with profound but divergent effects on vascular endothelial cell (EC) barrier properties. We have previously reported that S1P-induced focal adhesion (FA) remodeling involves interactions between focal adhesion kinase (FAK), paxillin, and G-protein-coupled receptor kinase-interacting proteins GIT1 and GIT2 and suggested a critical involvement of focal adhesions in the EC barrier regulation. In this study, we examined redistribution of FA proteins (FAK, paxillin, GIT1, and GIT2) and site-specific FAK tyrosine phosphorylation in human pulmonary artery endothelial cells stimulated with thrombin. In contrast to S1P, which we have shown to induce peripheral translocation of FA proteins associated with cortical actin ring formation, thrombin caused the redistribution of FA proteins to the ends of the newly formed massive stress fibers. S1P and thrombin induced distinct patterns of FAK site-specific phosphorylation with the FAK Y576 phosphorylation site targeted by SIP challenge and phosphorylation of three FAK sites (Y397, Y576, and Y925) in response to thrombin stimulation. Pharmacological inhibition of Src with Src-specific inhibitor PP2 abolished S1P-induced translocation of FA proteins, cortical actin ring formation, and FAK [Y576] phosphorylation. However, PP2 failed to alter thrombin-induced morphological changes and exhibited only partial inhibition of FAK site-specific tyrosine phosphorylation. These observations highlight the differential mechanisms of focal adhesion protein complex remodeling and FAK activation by S1P and thrombin and link differential FA remodeling to EC barrier regulation.
Collapse
Affiliation(s)
- Yasushi Shikata
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
7
|
Ishibe S, Joly D, Zhu X, Cantley LG. Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol Cell 2004; 12:1275-85. [PMID: 14636584 DOI: 10.1016/s1097-2765(03)00406-4] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Activation of the hepatocyte growth factor (HGF) receptor c-met results in the regulation of cell-matrix interactions, including the MAPK-dependent stimulation of epithelial cell morphogenesis. In the present study we demonstrate that HGF stimulates the localization of ERK to sites of cell-matrix interactions and that this is mediated by the tyrosine phosphorylation-dependent association of inactive ERK and the focal adhesion complex protein paxillin. In addition, paxillin was found to associate with the upstream MAP kinases Raf and MEK, resulting in a complex that can mediate localized ERK activation. Mutation of the ERK binding site in paxillin prevented HGF-stimulated ERK-paxillin association and eliminated HGF-induced cell spreading and branching process formation. These experiments reveal that paxillin-dependent ERK activation at sites of cell-matrix interaction is critical for HGF-stimulated epithelial morphogenesis.
Collapse
Affiliation(s)
- Shuta Ishibe
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
8
|
Okada S, Shikata K, Matsuda M, Ogawa D, Usui H, Kido Y, Nagase R, Wada J, Shikata Y, Makino H. Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes. Diabetes 2003; 52:2586-93. [PMID: 14514644 DOI: 10.2337/diabetes.52.10.2586] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diabetic nephropathy is a leading cause of end-stage renal failure. Several mechanisms, including activation of protein kinase C, advanced glycation end products, and overexpression of transforming growth factor (TGF)-beta, are believed to be involved in the pathogenesis of diabetic nephropathy. However, the significance of inflammatory processes in the pathogenesis of diabetic microvascular complications is poorly understood. Accumulation of macrophages and overexpression of leukocyte adhesion molecules and chemokines are prominent in diabetic human kidney tissues. We previously demonstrated that intercellular adhesion molecule (ICAM)-1 mediates macrophage infiltration into the diabetic kidney. In the present study, to investigate the role of ICAM-1 in diabetic nephropathy, we induced diabetes in ICAM-1-deficient (ICAM-1(-/-)) mice and ICAM-1(+/+) mice with streptozotocin and examined the renal pathology over a period of 6 months. The infiltration of macrophages was markedly suppressed in diabetic ICAM-1(-/-) mice compared with that of ICAM-1(+/+) mice. Urinary albumin excretion, glomerular hypertrophy, and mesangial matrix expansion were significantly lower in diabetic ICAM-1(-/-) mice than in diabetic ICAM-1(+/+) mice. Moreover, expressions of TGF-beta and type IV collagen in glomeruli were also suppressed in diabetic ICAM-1(-/-) mice. These results suggest that ICAM-1 is critically involved in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Shinichi Okada
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Shikata Y, Birukov KG, Garcia JGN. S1P induces FA remodeling in human pulmonary endothelial cells: role of Rac, GIT1, FAK, and paxillin. J Appl Physiol (1985) 2003; 94:1193-203. [PMID: 12482769 DOI: 10.1152/japplphysiol.00690.2002] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) enhances human pulmonary endothelial monolayer integrity via Rac GTPase-dependent formation of a cortical actin ring (Garcia et al. J Clin Invest 108: 689-701, 2001). The mechanisms underlying this response are not well understood but may involve rapid redistribution of focal adhesions (FA) as attachment sites for actin filaments. We evaluate the effects of S1P on the redistribution of paxillin, FA kinase (FAK), and the G protein-coupled receptor kinase-interacting proteins (GITs). S1P induced Rac GTPase activation and cortical actin ring formation at physiological concentrations (0.5 microM), whereas 5 microM S1P caused prominent stress fiber formation and activation of Rho and Rac GTPases. S1P (0.5 microM) stimulated the tyrosine phosphorylation of FAK Y(576), and paxillin was linked to FA disruption and redistribution to the cell periphery. Furthermore, S1P induced a transient association of GIT1 with paxillin and redistribution of the GIT2-paxillin complex to the cell cortical area without affecting GIT2-paxillin association. These results suggest a role of FA rearrangement in S1P-mediated barrier enhancement via Rac- and GIT-mediated processes.
Collapse
Affiliation(s)
- Yasushi Shikata
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
10
|
Tamura K, Okazaki M, Tamura M, Kanegae K, Okuda H, Abe H, Nakashima Y. Synergistic interaction of integrin and angiotensin II in activation of extracellular signal-regulated kinase pathways in vascular smooth muscle cells. J Cardiovasc Pharmacol 2001; 38 Suppl 1:S59-62. [PMID: 11811361 DOI: 10.1097/00005344-200110001-00013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Integrins, major adhesion receptors and angiotensin II activate extracellular signal-regulated kinase (ERK) pathways and result in a mitogenic response such as the proliferation of vascular smooth muscle cells (VSMCs). We investigated mechanisms of collaboration or synergism between integrins and angiotensin II involving ERK pathways in VSMCs. Integrin activation by cell adhesion to fibronectin increased the phosphorylation level of focal adhesion kinase (FAK) upstream of the ERK pathway. angiotensin II induced a high increase in the phosphorylation level of FAK with integrin activation, but not in suspended cells. Integrin activation increased phosphorylation levels of ERK kinase (MEK) and ERK phosphorylation as well. Angiotensin II-induced MEK and ERK phosphorylation were retained even in suspended cells. Furthermore, with integrin activation, angiotensin II induced a much larger increase in the phosphorylation levels of MEK and ERK. These results suggest that simultaneous stimulation of integrin and angiotensin II receptors cause synergistic interaction in the activation of ERK pathway, possibly via phosphorylation of FAK, which may play a critical role in angiotensin II-mediated mitogenic response in VSMCs.
Collapse
Affiliation(s)
- K Tamura
- Second Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Kono T, Nishimura F, Sugimoto H, Sikata K, Makino H, Murayama Y. Human fibroblasts ubiquitously express glutamic acid decarboxylase 65 (GAD 65): possible effects of connective tissue inflammation on GAD antibody titer. J Periodontol 2001; 72:598-604. [PMID: 11394394 DOI: 10.1902/jop.2001.72.5.598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Type 1 diabetes is caused by a destruction of pancreatic beta cells due to autoimmunity. Autoantibody against glutamic acid decarboxylase (GAD) 65 expressed in pancreatic beta cells is widely used as a predictive marker for pancreatic destruction. In this study, we hypothesized that if certain cells in periodontal tissues could express GAD, then it may influence GAD antibody titer. METHODS We used: 1) reverse transcription-polymerase chain reaction (PCR) analysis to detect GAD 65 mRNA in various cells; 2) nucleotide sequencing analysis to confirm that amplified PCR product is the gene encoding GAD; and 3) Western blotting to determine the expression of GAD 65 protein in human gingival fibroblasts. Immunohistochemical staining of GAD 65 protein in normal and inflamed gingiva was performed to examine the potential influence of periodontal inflammation on GAD 65 expression. GAD antibody titer in sera of periodontal patients as well as healthy subjects was measured to determine if periodontal patients could develop autoantibody against GAD 65. RESULTS Cultured human gingival, periodontal, and dermal fibroblasts and mesangial cells expressed GAD mRNA. Nucleotide sequencing analyses confirmed the amplified PCR product as GAD 65. Western immunoblotting analyses and immunohistochemical staining revealed that the GAD 65 protein was expressed in vitro and in vivo. The expression of GAD 65 in inflamed tissue was higher than that in normal tissues. Two of 62 periodontal patients without diabetes showed an increased antibody titer against GAD 65, while none of the systemically healthy subjects showed an increased antibody titer against this antigen. CONCLUSIONS We concluded that periodontal inflammation may result in higher levels of GAD and influence GAD antibody titer, and, hence, affect diabetic diagnosis based upon GAD antibody production.
Collapse
Affiliation(s)
- T Kono
- Department of Periodontology and Endodontology, Okayama University Dental School, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Shikata Y, Shikata K, Matsuda M, Hiragushi K, Ogawa D, Sugimoto H, Wada J, Makino H. Integrins mediate the inhibitory effect of focal adhesion on angiotensin II-induced p44/42 mitogen-activated protein (MAP) kinase activity in human mesangial cells. Biochem Biophys Res Commun 1999; 261:820-3. [PMID: 10441508 DOI: 10.1006/bbrc.1999.1080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we reported that the formation of focal adhesion accelerated by accumulation of extracellular matrices may inhibit the angiotensin II-stimulated proliferation of human mesangial cells (HMCs). The process is regulated by p44/42 MAP kinase activity through the mediation of paxillin and GTPase activating proteins. In this report, we investigated the effect of integrin molecules on the angiotensin II-induced p44/42 MAP kinase activation in non-adherent HMCs. The results demonstrated that incubation of cells with both antibody to integrin beta(1) chain (K20) and GRGDS peptide induced integrin clustering, paxillin aggregation, and marked suppression of angiotensin II-induced p44/42 MAP kinase activation. On the other hand, incubation of cells with K20 alone induced integrin clustering without paxillin aggregation and the suppressive effect on angiotensin II-stimulated p44/42 MAP kinase activity. Our results strongly suggest the pivotal role of integrins in the inhibitory effect of focal adhesion on p44/42 MAP kinase activity, the checking system against angiotensin II-induced MAP kinase overactivation.
Collapse
Affiliation(s)
- Y Shikata
- Department of Medicine III, Okayama University Medical School, Okayama, 700-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|