1
|
Albano F, Tucci V, Blackshear PJ, Reale C, Roberto L, Russo F, Marotta P, Porreca I, Colella M, Mallardo M, de Felice M, Ambrosino C. ZFP36L2 Role in Thyroid Functionality. Int J Mol Sci 2021; 22:9379. [PMID: 34502288 PMCID: PMC8431063 DOI: 10.3390/ijms22179379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Thyroid hormone levels are usually genetically determined. Thyrocytes produce a unique set of enzymes that are dedicated to thyroid hormone synthesis. While thyroid transcriptional regulation is well-characterized, post-transcriptional mechanisms have been less investigated. Here, we describe the involvement of ZFP36L2, a protein that stimulates degradation of target mRNAs, in thyroid development and function, by in vivo and in vitro gene targeting in thyrocytes. Thyroid-specific Zfp36l2-/- females were hypothyroid, with reduced levels of circulating free Thyroxine (cfT4) and Triiodothyronine (cfT3). Their hypothyroidism was due to dyshormonogenesis, already evident one week after weaning, while thyroid development appeared normal. We observed decreases in several thyroid-specific transcripts and proteins, such as Nis and its transcriptional regulators (Pax8 and Nkx2.1), and increased apoptosis in Zfp36l2-/- thyroids. Nis, Pax8, and Nkx2.1 mRNAs were also reduced in Zfp36l2 knock-out thyrocytes in vitro (L2KO), in which we confirmed the increased apoptosis. Finally, in L2KO cells, we showed an altered response to TSH stimulation regarding both thyroid-specific gene expression and cell proliferation and survival. This result was supported by increases in P21/WAF1 and p-P38MAPK levels. Mechanistically, we confirmed Notch1 as a target of ZFP36L2 in the thyroid since its levels were increased in both in vitro and in vivo models. In both models, the levels of Id4 mRNA, a potential inhibitor of Pax8 activity, were increased. Overall, the data indicate that the regulation of mRNA stability by ZFP36L2 is a mechanism that controls the function and survival of thyrocytes.
Collapse
Affiliation(s)
- Francesco Albano
- IEOS-CNR, 80131 Naples, Italy;
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
| | - Valeria Tucci
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Perry J. Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Carla Reale
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
| | - Luca Roberto
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
| | - Filomena Russo
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
| | - Pina Marotta
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Immacolata Porreca
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
| | - Marco Colella
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Mario de Felice
- IEOS-CNR, 80131 Naples, Italy;
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Concetta Ambrosino
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|
2
|
Fu M, Rao M, Wu K, Wang C, Zhang X, Hessien M, Yeung YG, Gioeli D, Weber MJ, Pestell RG. The androgen receptor acetylation site regulates cAMP and AKT but not ERK-induced activity. J Biol Chem 2004; 279:29436-49. [PMID: 15123687 DOI: 10.1074/jbc.m313466200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) regulates ligand-dependent gene transcription upon binding specific DNA sequences. The AR conveys both trans-activation and trans-repression functions, which together contribute to prostate cellular growth, differentiation, and apoptosis. Like histone H3, the AR is post-translationally modified by both acetylation and phosphorylation. The histone acetyltransferase p300 transactivates the AR and directly acetylates the AR in vitro at a conserved motif. Point mutations of the AR acetylation motif that abrogate acetylation reduce trans-activation by p300 without affecting the trans-repression function of the AR. The current studies assessed the functional relationship between acetylation and phosphorylation of the AR. Herein trans-activation of the AR acetylation site mutants were enhanced by the p42/p44 MAPK pathway but were defective in regulation by protein kinase A (PKA) signaling. PKA inhibition augmented ARwt activity but not AR acetylation mutant gene reporter activity and association at an androgen response element in chromatin immunoprecipitation assays. Mutations of the lysine residues at the AR acetylation site reduced trichostatin A (TSA) responsiveness and ligand-induced phosphorylation of the AR. The AR acetylation site mutant formed ligand-induced phosphorylation-dependent isoforms with distinguishable characteristics from wild type AR as determined with two-dimensional electrophoresis. Conversely, point mutation of a subset of AR phosphorylation sites reduced trichostatin A responsiveness and trans-activation by histone acetyltransferases. Together these studies suggest that acetylation and phosphorylation of the AR are linked events and that the conserved AR lysine motif contributes to a select subset of pathways governing AR activity.
Collapse
Affiliation(s)
- Maofu Fu
- Department of Oncology, Georgetown University Medical Center, Washington, D C 20057, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|