1
|
Londzin P, Cegieła U, Trawczyński M, Czuba ZP, Folwarczna J. Unfavorable effects of memantine on the skeletal system in female rats. Biomed Pharmacother 2023; 164:114921. [PMID: 37229803 DOI: 10.1016/j.biopha.2023.114921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
Memantine is an N-methyl-D-aspartate (NMDA) receptor antagonist used in the treatment of Alzheimer's disease (AD). NMDA receptors are expressed on bone cells. The aim of the present study was to investigate the effects of memantine on the rat musculoskeletal system. Taking into account that most of female AD patients are postmenopausal, the study was carried out on intact and ovariectomized (estrogen-deficient) rats. Mature Wistar rats were divided into following groups: non-ovariectomized (NOVX) control rats, NOVX rats treated with memantine, ovariectomized (OVX) control rats, and OVX rats treated with memantine. Memantine (2 mg/kg p.o.) was administered once daily for four weeks, starting one week after ovariectomy. The serum bone turnover marker and cytokine levels, bone density, mass, mineralization, mechanical properties, histomorphometric parameters of compact and cancellous bone, skeletal muscle mass and grip strength were determined. In NOVX rats, memantine slightly decreased the strength of compact bone of the femoral diaphysis (parameters in the yield point) and unfavorably affected histomorphometric parameters of cancellous bone (the femoral epiphysis and metaphysis). In OVX rats, in which estrogen deficiency induced osteoporotic changes, memantine increased the phosphorus content in the femoral bone mineral. No other effects on bone were observed in the memantine-treated OVX rats. In conclusion, the results of the present study indicated slight damaging skeletal effects of memantine in rats with normal estrogen levels.
Collapse
Affiliation(s)
- Piotr Londzin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Urszula Cegieła
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Marcin Trawczyński
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Zenon P Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze, Poland.
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
2
|
Yoshikawa M, Kan T, Shirose K, Watanabe M, Matsuda M, Ito K, Kawaguchi M. Free d-Amino Acids in Salivary Gland in Rat. BIOLOGY 2022; 11:390. [PMID: 35336764 PMCID: PMC8944958 DOI: 10.3390/biology11030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Free d-amino acids, which are enantiomers of l-amino acids, are found in mammals, including humans, and play an important role in a range of physiological functions in the central nervous system and peripheral tissues. Several d-amino acids have been observed in saliva, but their origin and the enzymes involved in their metabolism and catabolism remain to be clarified. In the present study, large amounts of d-aspartic acid and small amounts of d-serine and d-alanine were detected in all three major salivary glands in rat. No other d-enantiomers were detected. Protein expression of d-amino acid oxidase and d-aspartate oxidase, the enzymes responsible for the oxidative deamination of neutral and dicarboxylic d-amino acids, respectively, were detected in all three types of salivary gland. Furthermore, protein expression of the d-serine metabolic enzyme, serine racemase, in parotid glands amounted to approximately 40% of that observed in the cerebral cortex. The N-methyl-d-aspartic acid subunit proteins NR1 and NR2D were detected in all three major salivary glands. The results of the present study suggest that d-amino acids play a physiological role in a range of endocrine and exocrine function in salivary glands.
Collapse
Affiliation(s)
- Masanobu Yoshikawa
- Department of Clinical Pharmacology, School of Medicine, Tokai University, Isehara 259-1193, Japan
| | - Takugi Kan
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Kosuke Shirose
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Mariko Watanabe
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Mitsumasa Matsuda
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Kenji Ito
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | | |
Collapse
|
3
|
Glutamate-Gated NMDA Receptors: Insights into the Function and Signaling in the Kidney. Biomolecules 2020; 10:biom10071051. [PMID: 32679780 PMCID: PMC7407907 DOI: 10.3390/biom10071051] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
N-Methyl-d-aspartate receptor (NMDAR) is a glutamate-gated ionotropic receptor that intervenes in most of the excitatory synaptic transmission within the central nervous system (CNS). Aside from being broadly distributed in the CNS and having indispensable functions in the brain, NMDAR has predominant roles in many physiological and pathological processes in a wide range of non-neuronal cells and tissues. The present review outlines current knowledge and understanding of the physiological and pathophysiological functions of NMDAR in the kidney, an essential excretory and endocrine organ responsible for the whole-body homeostasis. The review also explores the recent findings regarding signaling pathways involved in NMDAR-mediated responses in the kidney. As established from diverse lines of research reviewed here, basal levels of receptor activation within the kidney are essential for the maintenance of healthy tubular and glomerular function, while a disproportionate activation can lead to a disruption of NMDAR's downstream signaling pathways and a myriad of pathophysiological consequences.
Collapse
|
4
|
Martin KS, Azzolini M, Lira Ruas J. The kynurenine connection: how exercise shifts muscle tryptophan metabolism and affects energy homeostasis, the immune system, and the brain. Am J Physiol Cell Physiol 2020; 318:C818-C830. [DOI: 10.1152/ajpcell.00580.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tryptophan catabolism through the kynurenine pathway generates a variety of bioactive metabolites. Physical exercise can modulate kynurenine pathway metabolism in skeletal muscle and thus change the concentrations of select compounds in peripheral tissues and in the central nervous system. Here we review recent advances in our understanding of how exercise alters tryptophan-kynurenine metabolism in muscle and its subsequent local and distal effects. We propose that the effects of kynurenine pathway metabolites on skeletal muscle, adipose tissue, immune system, and the brain suggest that some of these compounds could qualify as exercise-induced myokines. Indeed, some of the more recently discovered biological activities for kynurenines include many of the best-known benefits of exercise: improved energy homeostasis, promotion of an anti-inflammatory environment, and neuroprotection. Finally, by considering the tissue expression of the different membrane and cytosolic receptors for kynurenines, we discuss known and potential biological activities for these tryptophan metabolites.
Collapse
Affiliation(s)
- Kyle S. Martin
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Michele Azzolini
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Jorge Lira Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|
5
|
Miladinovic T, Ungard RG, Linher-Melville K, Popovic S, Singh G. Functional effects of TrkA inhibition on system x C--mediated glutamate release and cancer-induced bone pain. Mol Pain 2018; 14:1744806918776467. [PMID: 29761734 PMCID: PMC5956640 DOI: 10.1177/1744806918776467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer cells release the signalling molecule glutamate via the system xC− antiporter, which is upregulated to exchange extracellular cystine for intracellular glutamate to protect against oxidative stress. Here, we demonstrate that this antiporter is functionally influenced by the actions of the neurotrophin nerve growth factor on its cognate receptor tyrosine kinase, TrkA, and that inhibiting this complex may reduce cancer-induced bone pain via its downstream actions on xCT, the functional subunit of system xC−. We have characterized the effects of the selective TrkA inhibitor AG879 on system xC− activity in murine 4T1 and human MDA-MB-231 mammary carcinoma cells, as well as its effects on nociception in our validated immunocompetent mouse model of cancer-induced bone pain, in which BALB/c mice are intrafemorally inoculated with 4T1 murine carcinoma cells. AG879 decreased functional system xC− activity, as measured by cystine uptake and glutamate release, and inhibited nociceptive and physiologically relevant responses in tumour-bearing animals. Cumulatively, these data suggest that the activation of TrkA by nerve growth factor may have functional implications on system xC−-mediated cancer pain. System xC−-mediated TrkA activation therefore presents a promising target for therapeutic intervention in cancer pain treatment.
Collapse
Affiliation(s)
- Tanya Miladinovic
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Robert G Ungard
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katja Linher-Melville
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Snezana Popovic
- 2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Molecular effect of an OPTN common variant associated to Paget's disease of bone. PLoS One 2018; 13:e0197543. [PMID: 29782529 PMCID: PMC5962077 DOI: 10.1371/journal.pone.0197543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/03/2018] [Indexed: 11/19/2022] Open
Abstract
Paget’s disease of bone (PDB) is a chronic bone disorder and although genetic factors appear to play an important role in its pathogenesis, to date PDB causing mutations were identified only in the Sequestosome 1 (SQSTM1) gene at the PDB3 locus. PDB6 locus, also previously linked to PDB, contains several candidate genes for metabolic bone diseases. We focused our analysis in the most significantly associated variant with PDB, within the Optineurin (OPTN) gene, i.e. the common variant rs1561570. Although it was previously shown to be strongly associated with PDB in several populations, its contribution to PDB pathogenesis remains unclear. In this study we have shown that rs1561570 may contribute to PDB since its T allele results in the loss of a methylation site in patients’ DNA, leading to higher levels of OPTN gene expression and a corresponding increase in protein levels in patients’ osteoclasts. This increase in OPTN expression leads to higher levels of NF-κB translocation into the nucleus and increasing expression of its target genes, which may contribute to the overactivity of osteoclasts observed in PDB. We also reported a tendency for a more severe clinical phenotype in the presence of a haplotype containing the rs1561570 T allele, which appear to be re-enforced with the presence of the SQSTM1/P392L mutation. In conclusion, our work provides novel insight towards understanding the functional effects of this variant, located in OPTN intron 7, and its implication in the contribution to PDB pathogenesis.
Collapse
|
7
|
Abstract
BACKGROUND The antifibrinolytic drug tranexamic acid is structurally similar to the amino acid glycine and may cause seizures and myoclonus by acting as a competitive antagonist of glycine receptors. Glycine is an obligatory co-agonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. Thus, it is plausible that tranexamic acid inhibits NMDA receptors by acting as a competitive antagonist at the glycine binding site. The aim of this study was to determine whether tranexamic acid inhibits NMDA receptors, as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate subtypes of ionotropic glutamate receptors. METHODS Tranexamic acid modulation of NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate receptors was studied using whole cell voltage-clamp recordings of current from cultured mouse hippocampal neurons. RESULTS Tranexamic acid rapidly and reversibly inhibited NMDA receptors (half maximal inhibitory concentration = 241 ± 45 mM, mean ± SD; 95% CI, 200 to 281; n = 5) and shifted the glycine concentration-response curve for NMDA-evoked current to the right. Tranexamic acid also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (half maximal inhibitory concentration = 231 ± 91 mM; 95% CI, 148 to 314; n = 5 to 6) and kainate receptors (half maximal inhibitory concentration = 90 ± 24 mM; 95% CI, 68 to 112; n = 5). CONCLUSIONS Tranexamic acid inhibits NMDA receptors likely by reducing the binding of the co-agonist glycine and also inhibits α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors. Receptor blockade occurs at high millimolar concentrations of tranexamic acid, similar to the concentrations that occur after topical application to peripheral tissues. Glutamate receptors in tissues including bone, heart, and nerves play various physiologic roles, and tranexamic acid inhibition of these receptors may contribute to adverse drug effects.
Collapse
|
8
|
Dextromethorphan upregulates osteoblast and osteoclast activity but does not attenuate ovariectomy-induced osteoporosis. Life Sci 2017; 173:145-149. [PMID: 28153746 DOI: 10.1016/j.lfs.2017.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/21/2017] [Accepted: 01/27/2017] [Indexed: 11/22/2022]
Abstract
AIMS Study on the in vivo regulatory role of glutamate in osteoblast (OB) and osteoclast (OC) differentiation is less advanced. The present study investigated the effect of dextromethorphan (DXM), an N-methyl-d-aspartate receptors (NMDARs) antagonist, on osteoporosis development. MAIN METHODS In order to examine the role of glutamate in bone metabolism, ovariectomized (Ovx) female Wistar rats were injected three times per week for 8weeks with either saline, or 15μg/kg of β-estrodiol, or DXM (40mg/kg) intraperitoneally. Serum samples were collected every two weeks for measuring osteocalcin and C-terminal telopeptide of type I collagen (CTX-1) level. Rats were then sacrificed at week 8 and the femurs harvested for micro-CT scanning and mechanical strength. KEY FINDINGS In saline-treated group, osteocalcin level significantly lower than that of sham-operated rats at 8weeks after operation, while CTX-1 levels were not affected. Estrogen treatment, as a positive control, partially inhibited the Ovx-induced reduction of osteocalcin serum level. DXM injection prevented the Ovx-induced reduction of osteocalcin expression and significantly upregulated CTX-1 expression. The micro-CT scan showed that the bone volume density decreased significantly in DXM treated rats compared to the sham-operated rats. In the mechanical strength assay, the maximum failure load for DXM treatment was significantly lower than the other groups. SIGNIFICANCE Treatment with DXM upregulated OB and OC markers in Ovx rats, however with a greater effect on the OC marker, and had no significant benefit on bone volume density or bone strength.
Collapse
|
9
|
Du E, McAllister P, Venna VR, Xiao L. Clinically Relevant Concentrations of Ketamine Inhibit Osteoclast Formation In Vitro in Mouse Bone Marrow Cultures. J Cell Biochem 2016; 118:914-923. [PMID: 27775174 DOI: 10.1002/jcb.25772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/21/2016] [Indexed: 11/09/2022]
Abstract
Ketamine has been used safely in clinics for decades for analgesia and anesthesia. It is increasingly popular in clinical practice due to its new uses and importance for emergency procedures. It is known that ketamine is sequestered in the bone marrow and the major receptors for ketamine, noncompetitive N-methyl-d-aspartate receptors (NMDARs), are expressed in osteoclasts (OCs) and osteoblasts. However, the impact of ketamine on OCs or osteoblasts is unknown. In this study, we investigated the effects of ketamine on osteoclastogenesis and regulation of NMDARs expression in vitro. Bone marrows (BMs) or bone marrow macrophages (BMMs) were cultured in the presence of macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL) with or without ketamine for up to 6 days. OC formation peaked at day 5. On day 5 of culture, ketamine inhibited OC formation from both BM and BMM cultures at clinically relevant concentrations (3-200 µM). Ketamine inhibited RANKL-induced expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) in BMM cultures. Inhibition of ketamine on RANKL-induced osteoclastogenesis is associated with down-regulation of NMDARs. In addition, ketamine significantly inhibited the M-CSF induced migration of BMMs, inhibited cell fusion and significantly increased mature OC apoptosis. We conclude that clinically relevant concentrations of ketamine inhibit OC formation in both BM and BMM cultures in vitro through inhibiting migration and fusion process and enhancing mature OC apoptosis. It is likely that ketamine regulates osteoclastogenesis, at least in part, via its effects on NMDAR expression. J. Cell. Biochem. 118: 914-923, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Erxia Du
- Department of Medicine, UConn Health, Farmington, Connecticut
| | - Patrick McAllister
- Department of Medicine, UConn Health, Farmington, Connecticut.,Department of Biology, UConn Health, Farmington, Connecticut
| | - Venugopal Reddy Venna
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Liping Xiao
- Department of Medicine, UConn Health, Farmington, Connecticut.,Department of Psychiatry, UConn Health, Farmington, Connecticut
| |
Collapse
|
10
|
Physiological Roles of Non-Neuronal NMDA Receptors. Trends Pharmacol Sci 2016; 37:750-767. [DOI: 10.1016/j.tips.2016.05.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 12/14/2022]
|
11
|
Abstract
Bone metabolism is regulated by the action of two skeletal cells: osteoblasts and osteoclasts. This process is controlled by many genetic, hormonal and lifestyle factors, but today more and more studies have allowed us to identify a neuronal regulation system termed 'bone-brain crosstalk', which highlights a direct relationship between bone tissue and the nervous system. The first documentation of an anatomic relationship between nerves and bone was made via a wood cut by Charles Estienne in Paris in 1545. His diagram demonstrated nerves entering and leaving the bones of a skeleton. Later, several studies were conducted on bone innervation and, as of today, many observations on the regulation of bone remodeling by neurons and neuropeptides that reside in the CNS have created a new research field, that is, neuroskeletal research.
Collapse
Affiliation(s)
- Alessia Metozzi
- a 1 Department of Surgery and Translational Medicine, Metabolic Bone Diseases Unit, University of Florence, Largo Palagi 1, 50138 Florence, Italy
| | - Lorenzo Bonamassa
- a 1 Department of Surgery and Translational Medicine, Metabolic Bone Diseases Unit, University of Florence, Largo Palagi 1, 50138 Florence, Italy
| | - Gemma Brandi
- b 2 Public Mental Health system 1-4 of Florence, Florence, Italy
| | - Maria Luisa Brandi
- c 3 Department of Surgery and Translational Medicine, Metabolic Bone Diseases Unit, AOUC Careggi, University of Florence, Largo Palagi 1, 50138 Florence, Italy
| |
Collapse
|
12
|
Abstract
INTRODUCTION NMDA receptor (NMDAR) is an ionotropic glutamate receptor with a high permeability to calcium and a unique feature of controlling numerous calcium-dependent processes. Apart from being widely distributed in the CNS, the presence of NMDAR and its potential significance in a variety of non-neuronal cells and tissues has become an interesting research topic. AREAS COVERED The current review summarizes prevailing knowledge on the role of NMDARs in the kidney, bone and parathyroid gland, three main organs responsible for calcium homeostasis, as well as in the heart, an organ whose function is highly dependable on balanced intracellular calcium concentrations. The review also examines studies that have advanced our understanding of the therapeutic potential of NMDAR agonists and antagonists in renal, cardiovascular and bone pathologies. EXPERT OPINION NMDARs have a preeminent role in many physiological and pathological processes outside the CNS. In certain organs and/or disease conditions, activating the NMDAR leads to beneficial effects for the target organ, whereas in other diseases cell signaling downstream of NMDAR activation can exacerbate their pathology. Therefore, targeting NMDARs therapeutically is rather intricate work, and surely requires more extensive investigation in order to properly tune up the diverse NMDAR's actions translating them into beneficial cellular responses.
Collapse
Affiliation(s)
- Milica Bozic
- Institute for Biomedical Research (IRB Lleida), Nephrology Research Department , Edificio Biomedicina 1. Lab B1-10, Lleida , Spain +34 973 003 650 ; +34 973 702 213 ;
| | | |
Collapse
|
13
|
Inhibition of breast cancer-cell glutamate release with sulfasalazine limits cancer-induced bone pain. Pain 2013; 155:28-36. [PMID: 23999057 DOI: 10.1016/j.pain.2013.08.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 08/14/2013] [Accepted: 08/26/2013] [Indexed: 12/29/2022]
Abstract
Cancer in bone is frequently a result of metastases from distant sites, particularly from the breast, lung, and prostate. Pain is a common and often severe pathological feature of cancers in bone, and is a significant impediment to the maintenance of quality of life of patients living with bone metastases. Cancer cell lines have been demonstrated to release significant amounts of the neurotransmitter and cell-signalling molecule l-glutamate via the system xC(-) cystine/glutamate antiporter. We have developed a novel mouse model of breast cancer bone metastases to investigate the impact of inhibiting cancer cell glutamate transporters on nociceptive behaviour. Immunodeficient mice were inoculated intrafemorally with the human breast adenocarcinoma cell line MDA-MB-231, then treated 14days later via mini-osmotic pumps inserted intraperitoneally with sulfasalazine, (S)-4-carboxyphenylglycine, or vehicle. Both sulfasalazine and (S)-4-carboxyphenylglycine attenuated in vitro cancer cell glutamate release in a dose-dependent manner via the system xC(-) transporter. Animals treated with sulfasalazine displayed reduced nociceptive behaviours and an extended time until the onset of behavioural evidence of pain. Animals treated with a lower dose of (S)-4-carboxyphenylglycine did not display this reduction in nociceptive behaviour. These results suggest that a reduction in glutamate secretion from cancers in bone with the system xC(-) inhibitor sulfasalazine may provide some benefit for treating the often severe and intractable pain associated with bone metastases.
Collapse
|
14
|
Cowan RW, Seidlitz EP, Singh G. Glutamate signaling in healthy and diseased bone. Front Endocrinol (Lausanne) 2012; 3:89. [PMID: 22833735 PMCID: PMC3400067 DOI: 10.3389/fendo.2012.00089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 06/30/2012] [Indexed: 01/22/2023] Open
Abstract
Bone relies on multiple extracellular signaling systems to maintain homeostasis of its normal structure and functions. The amino acid glutamate is a fundamental extracellular messenger molecule in many tissues, and is used in bone for both neural and non-neural signaling. This review focuses on the non-neural interactions, and examines the evolutionarily ancient glutamate signaling system in the context of its application to normal bone functioning and discusses recent findings on the role of glutamate signaling as they pertain to maintaining healthy bone structure. The underlying mechanisms of glutamate signaling and the many roles glutamate plays in modulating bone physiology are featured, including those involved in osteoclast and osteoblast differentiation and mature cell functions. Moreover, the relevance of glutamate signaling systems in diseases that affect bone, such as cancer and rheumatoid arthritis, is discussed, and will highlight how the glutamate system may be exploited as a viable therapeutic target. We will identify novel areas of research where knowledge of glutamate communication mechanisms may aid in our understanding of the complex nature of bone homeostasis. By uncovering the contributions of glutamate in maintaining healthy bone, the reader will discover how this complex molecular signaling system may advance our capacity to treat bone pathologies.
Collapse
Affiliation(s)
- Robert W. Cowan
- Department of Pathology and Molecular Medicine, McMaster UniversityHamilton, ON, Canada
| | - Eric P. Seidlitz
- Department of Pathology and Molecular Medicine, McMaster UniversityHamilton, ON, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster UniversityHamilton, ON, Canada
- *Correspondence: Gurmit Singh, Juravinski Cancer Centre, Room 4-225, 699 Concession Street, Hamilton, ON, Canada L8V 5C2. e-mail:
| |
Collapse
|
15
|
Abstract
Mechanical loading plays a key role in the physiology of bone, allowing bone to functionally adapt to its environment, however characterization of the signaling events linking load to bone formation is incomplete. A screen for genes associated with mechanical load-induced bone formation identified the glutamate transporter GLAST, implicating the excitatory amino acid, glutamate, in the mechanoresponse. When an osteogenic load (10 N, 10 Hz) was externally applied to the rat ulna, GLAST (EAAT1) mRNA, was significantly down-regulated in osteocytes in the loaded limb. Functional components from each stage of the glutamate signaling pathway have since been identified within bone, including proteins necessary for calcium-mediated glutamate exocytosis, receptors, transporters, and signal propagation. Activation of ionotropic glutamate receptors has been shown to regulate the phenotype of osteoblasts and osteoclasts in vitro and bone mass in vivo. Furthermore, glutamatergic nerves have been identified in the vicinity of bone cells expressing glutamate receptors in vivo. However, it is not yet known how a glutamate signaling event is initiated in bone or its physiological significance. This review will examine the role of the glutamate signaling pathway in bone, with emphasis on the functions of glutamate transporters in osteoblasts.
Collapse
Affiliation(s)
- Karen S. Brakspear
- Department of Physiology and Pharmacology, Bristol University,Bristol, UK
| | - Deborah J. Mason
- School of Biosciences, Cardiff University,Cardiff, UK
- *Correspondence: Deborah J. Mason, School of Biosciences, Cardiff University, Biomedical Sciences Building, Museum Avenue, Cardiff CF10 3AX, UK. e-mail:
| |
Collapse
|
16
|
Bozic M, Valdivielso JM. Calcium signaling in renal tubular cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:933-44. [PMID: 22453977 DOI: 10.1007/978-94-007-2888-2_42] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The kidney handles calcium by filtration and reabsorption. About 60% of the plasma calcium is filterable, and 99% is reabsorbed in the tubule. In the proximal tubule, the reabsorption is passive and paracellular, but in the distal tubule is active and transcellular. Thus, renal tubular cells are exposed to very high concentrations of calcium in both, the extracellular and the intracellular compartments. Extracellular calcium signaling is transmitted by the calcium sensing receptor, located both in the luminal and basolateral sides of tubular cells. This receptor is able to control levels of extracellular calcium and acts in consequence to maintain calcium homeostasis. Furthermore, renal tubular cells possess several calcium channels that regulate some of the cell functions. Among those, voltage gated calcium channels, transient receptor potential channels and N-methyl-D-aspartate receptor channels have been reported to control several functions. Those functions include survival, apoptosis, differentiation, epithelial-mesenchymal transition, and active vitamin D and renin synthesis.
Collapse
Affiliation(s)
- Milica Bozic
- Nephrology Research Laboratory, IRB Lleida, University Hospital Arnau de Vilanova, Rovira Roure 80, Planta 1, 25198 Lleida, Spain.
| | | |
Collapse
|
17
|
Seidlitz EP, Sharma MK, Singh G. Extracellular glutamate alters mature osteoclast and osteoblast functions. Can J Physiol Pharmacol 2011; 88:929-36. [PMID: 20921979 DOI: 10.1139/y10-070] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamatergic intercellular communication is involved in many aspects of metabolic homeostasis in normal bone. In bone metastasis, the balance between bone formation and degradation is disrupted. Although the responsible mechanisms are not clear, we have previously identified that cancer cell lines used in bone tumour models secrete glutamate, suggesting that tumour-derived glutamate may disrupt sensitive signalling systems in bone. This study examines the role of glutamate in mature osteoclastic bone resorption, osteoblast differentiation, and bone nodule formation. Glutamate was found to have no effect on the survival or activity of mature osteoclasts, although glutamate transporter inhibition and receptor blockade increased the number of bone resorption pits. Furthermore, transporter inhibition increased the area of resorbed bone while significantly decreasing the number of osteoclasts. Alkaline phosphatase activity and extracellular matrix mineralization were used as measurements of osteoblast differentiation. Glutamate significantly increased osteoblast differentiation and mineralization, but transport inhibitors had no effect. These studies support earlier findings suggesting that glutamate may be more important for osteoclastogenesis than for osteoclast proliferation or functions. Since glutamate is capable of changing the differentiation and activities of both osteoclast and osteoblast cell types in bone, it is reasonable to postulate that tumour-derived glutamate may impact bone homeostasis in bone metastasis.
Collapse
Affiliation(s)
- Eric P Seidlitz
- Department of Pathology and Molecular Medicine, McMaster University, 699 Concession Street, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
18
|
Buitkamp J, Semmer J, Götz KU. Arachnomelia syndrome in Simmental cattle is caused by a homozygous 2-bp deletion in the molybdenum cofactor synthesis step 1 gene (MOCS1). BMC Genet 2011; 12:11. [PMID: 21255426 PMCID: PMC3034695 DOI: 10.1186/1471-2156-12-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/21/2011] [Indexed: 02/06/2023] Open
Abstract
Background Arachnomelia syndrome is an autosomal recessive inherited disease in cattle. Affected calves die around birth and show malformations of the skeleton mainly affecting the legs, the spinal column and the skull. A number of arachnomelia syndrome affected Simmental calves were recently detected by a surveillance system of anomalies with a peak of more than 120 recorded cases in the year 2006. The causative mutation was previously mapped to a 9 cM-region on bovine chromosome 23. We herein report the fine-mapping and identification of the gene causing arachnomelia syndrome in Simmental cattle. Results By using a dense set of markers, the arachnomelia syndrome linked region could be refined to 1.5 cM harbouring three protein coding genes. Comparative sequencing of these genes revealed a two-bp-deletion in the bovine MOCS1 gene resulting in a frame-shift and a premature termination codon. We genotyped affected calves and their ancestors and found that all affected were homozygous for the deletion whereas all carriers were heterozygous. Furthermore, cattle from the same population, but not directly related to known carriers mostly showed the wild type genotype. Conclusions MOCS1 encodes two proteins that are involved in the first synthesis step of molybdenum cofactor. A non functional sulfite-oxydase, one of the enzymes requiring molybdenum cofactor, leads to a similar pathology in Brown Swiss cattle. In combination the perfect association of the mutation with the phenotype and the obvious disruption of protein translation provide strong evidence for the causality of the MOCS1 mutation. Our results are the first example for an oligogenic lethal inherited disease in cattle. Furthermore, they show the potential involvement of sulfite metabolism in aberrant bone development.
Collapse
Affiliation(s)
- Johannes Buitkamp
- Bavarian State Research Center for Agriculture, Institute for Animal Breeding, 85586 Grub, Germany.
| | | | | |
Collapse
|
19
|
Liu D, Li H, Zhao CQ, Jiang LS, Dai LY. Changes of substance P-immunoreactive nerve fiber innervation density in the sublesional bones in young growing rats at an early stage after spinal cord injury. Osteoporos Int 2008; 19:559-69. [PMID: 17924052 DOI: 10.1007/s00198-007-0481-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 08/24/2007] [Indexed: 11/25/2022]
Abstract
UNLABELLED Spinal cord injury (SCI) causes osteoporosis (OP), and the neuropeptide substance P (SP) may play important roles in the pathogenesis of OP after SCI. Our study confirmed SCI-induced sublesional bone loss in young rats at an early stage is associated with a significant increase of SP-immunoreactive nerve fiber innervation density. INTRODUCTION Spinal cord injury (SCI) causes osteoporosis (OP), and neuropeptides may play important roles in the pathogenesis of OP after SCI. However, few data exist concerning the relationship between neural factors and OP following SCI. METHODS One hundred and eight SCI and hindlimb cast immobilization (HCI) rats were studied for skeletal innervation of substance P (SP) and neurofilament 200 (NF200) with immunocytochemistry. Bone and serum SP levels were also assessed using enzyme immunoassay. RESULTS Developing bone loss was successfully induced by SCI at 3 wks and by HCI at 6 wks. We observed a significant increase of SP-immunoreactive (IR) nerve fibers and decrease of NF200-IR nerve fibers in the tibiae of SCI rats compared with HCI and control (CON) rats at all time points. SP in the proximal tibiae in SCI rats was significantly higher than that in HCI and CON rats at all time points, but no difference was found in the serum. CONCLUSION SCI-induced sublesional bone loss in young rats at an early stage is associated with a significant increase of nerve fiber innervation density of SP-IR and decrease of NF200-IR. We speculated that neural factors may play an important role in pathogenesis of OP after SCI.
Collapse
Affiliation(s)
- D Liu
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
20
|
Jiang SD, Jiang LS, Dai LY. Effects of spinal cord injury on osteoblastogenesis, osteoclastogenesis and gene expression profiling in osteoblasts in young rats. Osteoporos Int 2007; 18:339-49. [PMID: 17036173 DOI: 10.1007/s00198-006-0229-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Spinal cord injury (SCI) causes a significant amount of bone loss in the sublesional area in animals and humans, and this type of bone loss is different from other forms of osteoporosis such as disuse osteoporosis and postmenopausal osteoporosis. However, no data is available on the cellular and molecular changes of osteoblastogenesis and osteoclastogenesis during SCI-induced bone loss. METHODS SCI and SHAM rats were used in this study to investigate osteoblastogenesis and osteoclastogenesis in bone-marrow culture. We also measured bone mass and bone histomorphometry, as well as the expression of alkaline phosphatase (ALP), core binding factor alpha1 (Cbfa-1), osterix, receptor activator of NF-kappaB ligand (RANKL) and osteoprotegerin (OPG) in osteoblast-like cells in bone-marrow culture obtained from SCI and SHAM rats. RESULTS Bone mineral density (BMD) measurement showed serious bone loss in the tibial ephiphyses and metaphyses of SCI rats compared with SHAM rats. In addition, bone histomorphometry analysis of the tibial metaphyses of SCI rats demonstrated that bone microarchitecture in SCI rats deteriorated further than in SHAM rats, and increased eroded surfaces and bone formation rates were observed in SCI rats. The number of osteoclasts that developed from bone marrow of SCI rats at equal density was significantly increased compared with SHAM rats, and the area of the resorption pits formed in the bone marrow culture from SCI rats was significantly greater than SHAM rats, whereas the number of CFU-F and CFU-OB was similar in both groups. RANKL mRNA and protein levels in osteoblast-like cells in culture obtained from SCI rats were significantly higher than those from the SHAM rats, whereas OPG levels decreased slightly. The ratios of RANKL to OPG expression in SCI rats were significantly higher than those in SHAM rats. However, osteogenic gene profiling of Cbfa-1, ALP and osterix in SCI rats remained similar with SHAM rats. CONCLUSION These changes favor increased osteoclast activity over osteoblast activity, and may explain, in part, the imbalance in bone formation and resorption following SCI.
Collapse
Affiliation(s)
- S-D Jiang
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, China.
| | | | | |
Collapse
|
21
|
Bliziotes M, Eshleman A, Burt-Pichat B, Zhang XW, Hashimoto J, Wiren K, Chenu C. Serotonin transporter and receptor expression in osteocytic MLO-Y4 cells. Bone 2006; 39:1313-21. [PMID: 16884969 PMCID: PMC1766480 DOI: 10.1016/j.bone.2006.06.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 06/09/2006] [Accepted: 06/15/2006] [Indexed: 12/31/2022]
Abstract
Neurotransmitter regulation of bone metabolism has been a subject of increasing interest and investigation. We reported previously that osteoblastic cells express a functional serotonin (5-HT) signal transduction system, with mechanisms for responding to and regulating uptake of 5-HT. The clonal murine osteocytic cell line, MLO-Y4, demonstrates expression of the serotonin transporter (5-HTT), and the 5-HT1A, and 5-HT2A receptors by real-time RT-PCR and immunoblot analysis. Immunohistochemistry using antibodies for the 5-HTT, and the 5-HT1A and 5-HT2A receptors reveals expression of all three proteins in both osteoblasts and osteocytes in rat tibia. 5-HTT binding sites were demonstrated in the MLO-Y4 cells with nanomolar affinity for the stable cocaine analog [125I]RTI-55. Imipramine and fluoxetine, antagonists with specificity for 5-HTT, show the highest potency to antagonize [125I]RTI-55 binding in the MLO-Y4 cells. GBR-12935, a relatively selective dopamine transporter antagonist, had a much lower potency, as did desipramine, a selective norepinephrine transporter antagonist. The maximal [3H]5-HT uptake rate in MLO-Y4 cells was 2.85 pmol/15 min/well, with a Km value of 290 nM. Imipramine and fluoxetine inhibited specific [3H]5-HT uptake with IC50 values in the nanomolar range. 5-HT rapidly stimulated PGE2 release from MLO-Y4 cells; the EC50 for 5-HT was 0.1 microM, with a 3-fold increase seen at 60 min. The rate-limiting enzyme for serotonin synthesis, tryptophan hydroxylase, is expressed in MLO-Y4 cells as well as osteoblastic MC3T3-E1 cells. Thus, osteocytes, as well as osteoblasts, are capable of 5-HT synthesis, and express functional receptor and transporter components of the 5-HT signal transduction system.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Line
- Gene Expression
- Immunohistochemistry
- Kinetics
- Mice
- Osteoblasts/metabolism
- Osteocytes/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serotonin Plasma Membrane Transport Proteins/genetics
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Tibia/metabolism
Collapse
Affiliation(s)
- M Bliziotes
- Portland VA Medical Center, Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Spencer GJ, McGrath CJ, Genever PG. Current perspectives on NMDA-type glutamate signalling in bone. Int J Biochem Cell Biol 2006; 39:1089-104. [PMID: 17188550 DOI: 10.1016/j.biocel.2006.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/29/2006] [Accepted: 11/05/2006] [Indexed: 11/21/2022]
Abstract
Bone is a complex, evolving tissue, architecturally defined by the activities of osteoclasts and osteoblasts that continually resorb and replace the mineralised matrix. Numerous regulatory mechanisms exist to control bone remodelling and the maintenance of bone mass. The consequences of inappropriate or uncoupled bone resorption and formation are significant and invariably lead to different disease states, the most prevalent being osteoporosis. In recent years, much attention has focused on unravelling the systemic and local signalling interactions that influence the differentiation and function of bone cells with a view to developing our understanding of bone biology and identifying potential new targets for therapeutic intervention. Several lines of evidence indicate that neurotransmitters and neuromodulators have influential roles to play in the regulation of bone remodelling and much of this research has involved analysis of the excitatory amino acid glutamate. This review will summarise current understanding of glutamate signalling in bone cells, addressing specifically the function of N-methyl-D-aspartate (NMDA)-type glutamate receptor signalling mechanisms, and will address the functional significance and future prospects for this area of research.
Collapse
Affiliation(s)
- Gary J Spencer
- Biomedical Tissue Research, Department of Biology (Area 9), University of York, York Y010 5YW, UK.
| | | | | |
Collapse
|
23
|
Ho ML, Tsai TN, Chang JK, Shao TS, Jeng YR, Hsu C. Down-regulation of N-methyl D-aspartate receptor in rat-modeled disuse osteopenia. Osteoporos Int 2005; 16:1780-8. [PMID: 15997422 DOI: 10.1007/s00198-005-1928-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 04/14/2005] [Indexed: 10/25/2022]
Abstract
Lack of mechanical stress may result in osteoporosis; however, the underlying mechanisms of disuse osteoporosis remain unclear. It has been indicated that mechanical loading causes extracellular glutamate accumulation in osteoblasts. We hypothesized that the glutamate receptor mediation on bone cells might also be involved in mechanically stimulated osteogenesis. In this study, we investigated the changes of bone formation and the expressions of osteogenic genes and N-methyl D-aspartate (NMDA) receptors, the major glutamate receptors, in disused bones. Rat modeled disuse osteopenia in hind limbs was induced by a 3-week tail suspension in Sprague-Dawley rats. Bone mineral density and trabecular bone volume of distal femurs were measured to verify the osteopenia of disused bones. The mRNA expressions of cbfa1/Runx2, type I collagen, alkaline phosphatase (ALP) and osteocalcin (OC) in bones were measured as osteogenic markers. The influences of mechanical unloading on the expressions of NMDA receptors (NR1 and NR2D) in bones were also examined. The effects of NMDA mediation on osteogenesis were tested by a treatment of MK-801, a non-competitive NMDA receptor antagonist, in cultured osteoblasts and bone marrow stroma cells. Our result showed that mRNA expressions of cbfa1/Runx2, type I collagen, ALP and OC were significantly decreased in disused bones. The mRNA and protein expressions of NR1 and NR2D were significantly decreased in disused bones; furthermore, immunolocalization of both receptors showed decreases in osteoblasts, but not in osteoclasts. The results from the in vitro study showed that MK-801 inhibited mRNA expression of cbfa1/Runx2 in bone marrow stroma cells and also inhibited those of collagen type I, ALP and OC of osteoblasts in a dose-dependent manner. These results suggest that NMDA receptor mediation may play an important role in transmitting mechanical loading in bones, and decreases of the expressions of NMDA receptors in disused bones, especially in osteoblasts, may contribute to the decrease of osteogenesis.
Collapse
Affiliation(s)
- Mei-Ling Ho
- Department of Physiology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, 807, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Kalariti N, Pissimissis N, Koutsilieris M. The glutamatergic system outside the CNS and in cancer biology. Expert Opin Investig Drugs 2005; 14:1487-96. [PMID: 16307489 DOI: 10.1517/13543784.14.12.1487] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glutamate is a major excitatory neurotransmitter in the CNS. The signalling machinery consists of: glutamate receptors, which are responsible for signal input; plasma glutamate transporters, which are responsible for signal termination; and vesicular glutamate transporters for signal output through exocytic release. Recently, data have suggested that the glutamatergic system plays an important role in non-neuronal tissues. In addition, the expression of glutamatergic system has been implicated in tumour biology. This review outlines the evidence, which suggests that the glutamatergic system may have an important role in cancer biology.
Collapse
Affiliation(s)
- Niki Kalariti
- Department of Experimental Physiology, Medical School, University of Athens, 75 Micras Asias, Goudi-Athens, Greece
| | | | | |
Collapse
|
25
|
Szczesniak AM, Gilbert RW, Mukhida M, Anderson GI. Mechanical loading modulates glutamate receptor subunit expression in bone. Bone 2005; 37:63-73. [PMID: 15922681 DOI: 10.1016/j.bone.2003.10.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Revised: 08/01/2003] [Accepted: 10/01/2003] [Indexed: 11/18/2022]
Abstract
The cellular mechanisms coupling mechanical loading with bone remodeling remain unclear. In the CNS, the excitatory amino acid glutamate (Glu) serves as a potent neurotransmitter exerting its effects via various membrane Glu receptors (GluR). Nerves containing Glu exist close to bone cells expressing functional GluRs. Demonstration of a mechanically sensitive glutamate/aspartate transporter protein and the ability of glutamate to stimulate bone resorption in vitro suggest a role for glutamate linking mechanical load and bone remodeling. We used immunohistochemical techniques to identify the expression of N-methyl-d-aspartate acid (NMDA) and non-NMDA (AMPA or kainate) ionotropic GluR subunits on bone cells in vivo. In bone sections from young adult rats, osteoclasts expressed numerous GluR subunits including AMPA (GluR2/3 and GluR4), kainic acid (GluR567) and NMDA (NMDAR2A, NMDAR2B and NMDAR2C) receptor subtypes. Bone lining cells demonstrated immunoexpression for NMDAR2A, NMDAR2B, NMDAR2C, GluR567, GluR23, GluR2 and GluR4 subunits. Immunoexpression was not evident on osteocytes, chondrocytes or vascular channels. To investigate the effects of mechanical loading on GluR expression, we used a Materials Testing System (MTS) to apply 10 N sinusoidal axial compressive loads percutaneously to the right limbs (radius/ulna, tibia/fibula) of rats. Each limb underwent 300-load cycles/day (cycle rate, 1 Hz) for 4 consecutive days. Contralateral, non-loaded limbs served as controls. Mechanically loaded limbs revealed a load-induced loss of immunoexpression for GluR2/3, GluR4, GluR567 and NMDAR2A on osteoclasts and NMDAR2A, NMDAR2B, GluR2/3 and GluR4 on bone lining cells. Both neonatal rabbit and rat osteoclasts were cultured on bone slices to investigate the effect of the NMDA receptor antagonist, MK801, and the AMPA/kainic acid receptor antagonist, NBQX, on osteoclast resorptive activity in vitro. The inhibition of resorptive function seen suggested that both NMDAR and kainic acid receptor function are required for normal osteoclast function. While the exact role of ionotropic GluRs in skeletal tissue remains unclear, the modulation of GluR subunit expression by mechanical loading lends further support for participation of Glu as a mechanical loading effector. These ionotropic receptors appear to be functionally relevant to normal osteoclast resorptive activity.
Collapse
Affiliation(s)
- Anna M Szczesniak
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5
| | | | | | | |
Collapse
|
26
|
Burt-Pichat B, Lafage-Proust MH, Duboeuf F, Laroche N, Itzstein C, Vico L, Delmas PD, Chenu C. Dramatic decrease of innervation density in bone after ovariectomy. Endocrinology 2005; 146:503-10. [PMID: 15498888 DOI: 10.1210/en.2004-0884] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies have demonstrated that bone is highly innervated and contains neuromediators that have functional receptors on bone cells. However, no data exist concerning the quantitative changes of innervation during bone loss associated with estrogen withdrawal. To study the involvement of nerve fibers in the regulation of bone remodeling, we have evaluated the modifications of innervation in a classical in vivo model of osteopenia in rats, ovariectomy (OVX). Skeletal innervation was studied by immunocytochemistry using antibodies directed against specific neuronal markers, neurofilament 200 and synaptophysin, and the neuromediator glutamate. Sciatic neurectomy, another model of bone loss due to limb denervation and paralysis, was used to validate our quantitative image analysis technique of immunostaining for nerve markers. Female Wistar rats at 12 wk of age were sham-operated (SHAM) or ovariectomized (OVX). Bone mineral density measurement and bone histomorphometry analysis of tibiae 14 d after surgery demonstrated a significant bone loss in OVX compared with SHAM. We observed an important reduction of nerve profile density in tibiae of OVX animals compared with SHAM animals, whereas innervation density in skin and muscles was similar for OVX and control rats. Quantitative image analysis of immunostainings demonstrated a significant decrease of the percentage of immunolabeling per total bone volume of neurofilament 200, synaptophysin, and glutamate in both the primary and secondary spongiosa of OVX rats compared with SHAM. These data indicate for the first time that OVX-induced bone loss in rat tibiae is associated with a reduction in nerve profile density, suggesting a functional link between the nervous system and the bone loss after ovariectomy.
Collapse
Affiliation(s)
- B Burt-Pichat
- Institut National de la Santé et de la Recherche Medicale Unit 403, Hôpital E. HERRIOT, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Boggio V, Ladizesky MG, Cutrera RA, Cardinali DP. Autonomic neural signals in bone: Physiological implications for mandible and dental growth. Life Sci 2004; 75:383-95. [PMID: 15147826 DOI: 10.1016/j.lfs.2003.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 11/17/2003] [Indexed: 11/19/2022]
Abstract
Signals derived from the autonomic nervous system exert potent effects on osteoclast and osteoblast function. A ubiquitous sympathetic and sensory innervation of all periosteal surfaces exists and its disruption affects bone remodeling. Several neuropeptides, neurohormones and neurotransmitters and their receptors are detectable in bone. Bone mineral content decreased in sympathetically denervated mandibular bone. When a mechanical stress was superimposed on mandibular bone by cutting out the lower incisors, an increase in bone density ensued providing the sympathetic innervation was intact. A lower eruption rate of sympathetically denervated incisors at the impeded eruption side, and a higher eruption rate of denervated incisors at the unimpeded side were also observed. A normal sympathetic neural activity appears to be a pre-requisite for maintaining a minimal normal unimpeded incisor eruption and for keeping the unimpeded eruption to attain abnormally high velocities under conditions of stimulated incisor growth. These and other results suggest that the sympathetic nervous system plays an important role in mandibular bone metabolism.
Collapse
Affiliation(s)
- Verónica Boggio
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 1121 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
28
|
Merle B, Itzstein C, Delmas PD, Chenu C. NMDA glutamate receptors are expressed by osteoclast precursors and involved in the regulation of osteoclastogenesis. J Cell Biochem 2004; 90:424-36. [PMID: 14505357 DOI: 10.1002/jcb.10625] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We previously identified functional N-methyl-D-aspartate (NMDA) glutamate receptors in mature osteoclasts and demonstrated that they are involved in bone resorption in vitro. In the present work, we studied the expression of NMDA receptors (NMDAR) by osteoclast precursors and their role in osteoclastogenesis using two in vitro models, the murine myelomonocytic RAW 264.7 cell line and mouse bone marrow cells, both of which differentiate into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF) and Rank ligand (RankL). Using RT-PCR analysis with specific probes, we showed that RAW 264.7 cells and mouse bone marrow cells express mRNA of NMDAR subunits NMDA receptor 1 (NR1) and NMDA receptor 2 (NR2) A, B, and D. These subunits are expressed all along the differentiation sequence from undifferentiated precursors to mature resorbing osteoclasts. Semi-quantitative PCR analysis showed no regulation of the expression of these subunits during the differentiation process. Two specific non competitive antagonists of NMDAR, MK801 and DEP, dose-dependently inhibited osteoclast formation in both models, indicating that osteoclastogenesis requires the activation of NMDAR expressed by osteoclast precursors. MK801 had no effect when added only during the first 2 days of culture, suggesting that NMDAR are rather involved in the late stages of osteoclast formation. Finally, we demonstrated using Western-blotting and immunofluorescence that activation of NMDAR in RAW 264.7 cells by specific agonists induces nuclear translocation of NF-kappa B, a factor required for osteoclast formation. Altogether, our results indicate that osteoclast precursors express NMDAR that are involved in the osteoclast differentiation process through activation of the NF-kappa B pathway.
Collapse
Affiliation(s)
- Blandine Merle
- INSERM Unit 403, Hôpital E. Herriot, Pavillon F, 69437 LYON Cedex 03, France.
| | | | | | | |
Collapse
|
29
|
Spencer GJ, Genever PG. Long-term potentiation in bone--a role for glutamate in strain-induced cellular memory? BMC Cell Biol 2003; 4:9. [PMID: 12892570 PMCID: PMC179892 DOI: 10.1186/1471-2121-4-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 07/31/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The adaptive response of bone cells to mechanical strain is a primary determinant of skeletal architecture and bone mass. In vivo mechanical loading induces new bone formation and increases bone mineral density whereas disuse, immobilisation and weightlessness induce bone loss. The potency of mechanical strain is such that a single brief period of loading at physiological strain magnitude is able to induce a long-lasting osteogenic response that lasts for days. Although the process of mechanotransduction in bone is incompletely understood, observations that responses to mechanical strain outlast the duration of stimulation necessitate the existence of a form of cellular memory through which transient strain episodes are recorded, interpreted and remembered by bone cells. Recent evidence supports the existence of a complex multicellular glutamate-signalling network in bone that shares functional similarities to glutamatergic neurotransmission in the central nervous system. In neurones, these signalling molecules coordinate synaptic communication required to support learning and memory formation, through a complex process of long-term potentiation. PRESENTATION OF THE HYPOTHESIS We hypothesise that osteoblasts use a cellular mechanism similar or identical to neuronal long-term potentiation in the central nervous system to mediate long-lasting changes in osteogenesis following brief periods of mechanical strain. TESTING THE HYPOTHESIS N-methyl-D-aspartate (NMDA) receptor antagonism should inhibit the saturating response of mechanical strain and reduce the enhanced osteogenicity of segregated loading to that of an equivalent period of uninterrupted loading. Changes in alpha-amino-3-hydroxy-5-methyl-isoxazole propionate (AMPA) receptor expression, localisation and electrophysiological responses should be induced by mechanical strain and inhibited by modulators of neuronal long-term potentiation. IMPLICATIONS OF THE HYPOTHESIS If true, this hypothesis would provide a mechanism through which the skeleton could be pharmacologically primed to enhance or retrieve the normal osteogenic response to exercise. This would form a basis through which novel therapies could be developed to target osteoporosis and other prevalent bone disorders associated with low bone mass.
Collapse
Affiliation(s)
- Gary J Spencer
- Biomedical Tissue Research, Department of Biology, University of York, York, YO10 5YW, UK
| | - Paul G Genever
- Biomedical Tissue Research, Department of Biology, University of York, York, YO10 5YW, UK
| |
Collapse
|
30
|
Mentaverri R, Kamel S, Wattel A, Prouillet C, Sevenet N, Petit JP, Tordjmann T, Brazier M. Regulation of bone resorption and osteoclast survival by nitric oxide: possible involvement of NMDA-receptor. J Cell Biochem 2003; 88:1145-56. [PMID: 12647297 DOI: 10.1002/jcb.10463] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitric oxide has been shown to play an important role in regulation of bone resorption. However, the role of endogenous nitric oxide on osteoclast activity remains still controversial. In this work, using RT-PCR amplification, we demonstrated that rabbit mature osteoclasts express mRNA encoding for neuronal nitric oxide synthase suggesting that this enzyme could be involved in basal nitric oxide production in these cells. Then we assessed the effect of carboxy-PTIO, a nitric oxide scavenger, on in vitro bone resorption and osteoclast survival. Carboxy-PTIO (10-100 microM) inhibited osteoclastic bone resorption in a dose dependent manner and induced osteoclast apoptosis by a mechanism involving caspase 3 activation. These results suggest that basal concentration of endogenous nitric oxide may be essential for normal bone resorption by supporting osteoclast survival. Because osteoclasts express N-methyl-d-aspartate-receptor (NMDA-R), we hypothesized that in osteoclasts NMDA-R may be involved in nitric oxide production as in neuronal cells. We confirmed that blockade of NMDA-R with specific non-competitive antagonists, MK801 and DEP, strongly inhibited bone resorption. As for carboxy-PTIO, we showed that blockade of NMDA-R by both antagonists induced osteoclast apoptosis in a dose dependent manner by a mechanism dependent on caspase 3 activation. Intracellular calcium concentration in osteoclasts decreased within minutes in the presence of both antagonists. Finally, MK801-induced osteoclast apoptosis was partially reversed in the presence of small amount of SNAP (100 nM), a nitric oxide donor, suggesting that the effect of NMDA-R on osteoclast apoptotic cell death could be due to a decrease in nitric oxide production. Taken together, our results are consistent with the hypothesis that NMDA-R on osteoclasts could have a similar function as those in neuronal cells, i.e., to allow a calcium influx, which in turn activates a constitutive neuronal nitric oxide synthase. Nitric oxide generated by this pathway may be essential for osteoclast survival and hence for normal bone resorption.
Collapse
Affiliation(s)
- R Mentaverri
- Groupe d'Etude des Mécanismes de la Résorption Osseuse, Université de Picardie-Jules Verne, Laboratoire de pharmacie clinique, 1, rue des Louvels, 80037 Amiens, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Whitfield JF, Morley P, Willick GE. Bone growth stimulators. New tools for treating bone loss and mending fractures. VITAMINS AND HORMONES 2003; 65:1-80. [PMID: 12481542 DOI: 10.1016/s0083-6729(02)65059-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the new millennium, humans will be traveling to Mars and eventually beyond with skeletons that respond to microgravity by self-destructing. Meanwhile in Earth's aging populations growing numbers of men and many more women are suffering from crippling bone loss. During the first decade after menopause all women suffer an accelerating loss of bone, which in some of them is severe enough to result in "spontaneous" crushing of vertebrae and fracturing of hips by ordinary body movements. This is osteoporosis, which all too often requires prolonged and expensive care, the physical and mental stress of which may even kill the patient. Osteoporosis in postmenopausal women is caused by the loss of estrogen. The slower development of osteoporosis in aging men is also due at least in part to a loss of the estrogen made in ever smaller amounts in bone cells from the declining level of circulating testosterone and is needed for bone maintenance as it is in women. The loss of estrogen increases the generation, longevity, and activity of bone-resorbing osteoclasts. The destructive osteoclast surge can be blocked by estrogens and selective estrogen receptor modulators (SERMs) as well as antiosteoclast agents such as bisphosphonates and calcitonin. But these agents stimulate only a limited amount of bone growth as the unaffected osteoblasts fill in the holes that were dug by the now suppressed osteoclasts. They do not stimulate osteoblasts to make bone--they are antiresorptives not bone anabolic agents. (However, certain estrogen analogs and bisphosphates may stimulate bone growth to some extent by lengthening osteoblast working lives.) To grow new bone and restore bone strength lost in space and on Earth we must know what controls bone growth and destruction. Here we discuss the newest bone controllers and how they might operate. These include leptin from adipocytes and osteoblasts and the statins that are widely used to reduce blood cholesterol and cardiovascular damage. But the main focus of this article is necessarily the currently most promising of the anabolic agents, the potent parathyroid hormone (PTH) and certain of its 31- to 38-aminoacid fragments, which are either in or about to be in clinical trial or in the case of Lilly's Forteo [hPTH-(1-34)] tentatively approved by the Food and Drug Administration for treating osteoporosis and mending fractures.
Collapse
Affiliation(s)
- James F Whitfield
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | | | | |
Collapse
|
32
|
Dobbins DE, Joe B, Hashiramoto A, Salstrom JL, Dracheva S, Ge L, Wilder RL, Remmers EF. Localization of the mutation responsible for osteopetrosis in the op rat to a 1.5-cM genetic interval on rat chromosome 10: identification of positional candidate genes by radiation hybrid mapping. J Bone Miner Res 2002; 17:1761-7. [PMID: 12369779 DOI: 10.1359/jbmr.2002.17.10.1761] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteopetrosis is caused by a heterogenous group of bone diseases that result in an increase in skeletal mass because of inadequate osteoclastic bone resorption. In the op osteopetrotic rat, the disease has been linked to a single genetic locus located at the proximal end of rat chromosome 10. In this study, we identified a 1.5-cM genetic interval that contains the mutation. We then generated an improved radiation hybrid (RH) map of this region to identify potential functional and positional candidates for the op gene. Using the rat genome radiation hybrid panel, we mapped 57 markers including 24 genes (14 that have not yet been mapped in the rat) and 10 expressed sequence tag markers. Included in the mapped genes are several candidate genes that might significantly influence the biochemical pathways involved in osteopetrosis. These include genes involved in osteoclast differentiation, apoptosis, and the functional capabilities of mature osteoclasts to resorb bone. Further analysis of the genes and expressed transcripts mapped to this region may yield important insights into the multifactorial control of osteoclast function and the mechanisms of failed bone homeostasis in diseases such as osteopetrosis, osteoporosis, and rheumatoid arthritis in which failed bone homeostasis is an instigating or exacerbating circumstance of the disease process.
Collapse
Affiliation(s)
- David E Dobbins
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Espinosa L, Paret L, Ojeda C, Tourneur Y, Delmas PD, Chenu C. Osteoclast spreading kinetics are correlated with an oscillatory activation of a calcium-dependent potassium current. J Cell Sci 2002; 115:3837-48. [PMID: 12235294 DOI: 10.1242/jcs.00062] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cell movement and spreading involve calcium-dependent processes and ionic channel activation. During bone resorption, osteoclasts alternate between spread, motile and resorptive phases. We investigated whether the electrical membrane properties of osteoclasts were linked to their membrane morphological changes. Rabbit osteoclasts were recorded by time-lapse videomicroscopy performed simultaneously with patch-clamp whole cell and single channel recordings. Original image analysis methods were developed and used to demonstrate for the first time an oscillatory activation of a spontaneous membrane current in osteoclasts, which is directly correlated to the membrane movement rate. This current was identified as a calcium-dependent potassium current (IK(Ca)) that is sensitive to both charybdotoxin and apamin and was generated by a channel with unitary conductance of approximately 25+/-2 pS. Blockade of this current also decreased osteoclast spreading and inhibited bone resorption in vitro, demonstrating a physiological role for this current in osteoclast activity. These results establish for the first time a temporal correlation between lamellipodia formation kinetics and spontaneous peaks of IK(Ca), which are both involved in the control of osteoclast spreading and bone resorption.
Collapse
Affiliation(s)
- Leon Espinosa
- INSERM Unit 403, Hôpital E Herriot, Pavillon F, 69437 Lyon Cedex 03, France
| | | | | | | | | | | |
Collapse
|
34
|
Stone TW, Darlington LG. Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 2002; 1:609-20. [PMID: 12402501 DOI: 10.1038/nrd870] [Citation(s) in RCA: 600] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The kynurenine pathway is the main pathway for tryptophan metabolism. It generates compounds that can modulate activity at glutamate receptors and possibly nicotinic receptors, in addition to some as-yet-unidentified sites. The pathway is in a unique position to regulate other aspects of the metabolism of tryptophan to neuroactive compounds, and also seems to be a key factor in the communication between the nervous and immune systems. It also has potentially important roles in the regulation of cell proliferation and tissue function in the periphery. As a result, the pathway presents a multitude of potential sites for drug discovery in neuroscience, oncology and visceral pathology.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
35
|
Lundberg P, Lerner UH. Expression and regulatory role of receptors for vasoactive intestinal peptide in bone cells. Microsc Res Tech 2002; 58:98-103. [PMID: 12203709 DOI: 10.1002/jemt.10124] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An intense network of nerve fibers can be demonstrated in skeletal tissues, not only in the periosteum but also within cortical bone, growth plate, and bone marrow. This neuro-osteogenic network expresses a restricted number of signalling molecules, including neuropeptides, neurotransmitters, and neurotrophins. Several lines of evidence indicate that receptors for these molecules are present on bone cells and that activation of these receptors leads to changes in bone cell activities. In addition, deletion of signalling molecules has been shown to alter bone metabolism. In the present review, these studies are summarized with a focus on distribution and effects of vasoactive intestinal peptide.
Collapse
|
36
|
Abstract
Bone is highly innervated, and evidence for a regulation of bone metabolism by nerve fibers has been suggested by many clinical and experimental studies. However, the nature of the neuromediators involved in these processes has not been well documented. Glutamate (Glu), a major neuromediator of the central nervous system (CNS), was recently identified in nerve fibers running in bone marrow in close contact with bone cells, suggesting that Glu may also act as a neuromediator in this tissue. During the last few years, all the machinery required for glutamate signalling in the CNS was demonstrated in bone. Osteoblasts and osteoclasts express ionotropic Glu receptors (iGluR) (NMDA, AMPA, and Kainate) and metabotropic Glu receptors (mGluR) as well as Glu transporters. Electrophysiological studies have demonstrated that NMDA receptors (NMDAR) and mGluR are functional on bone cells. NMDAR are involved in osteoclast formation and bone resorption and preliminary studies suggest that they may also participate in mechanisms underlying osteoblast proliferation or differentiation, providing evidence for a direct action of Glu on bone cells. The bone loss induced in a model of sciatic neurectomy in growing rats is associated with a decrease of glutamatergic innervation, suggesting that Glu released by nerve fibers may contribute to the regulation of bone remodeling. The manipulation of Glu action in bone may, therefore, represent a new therapeutic target for pathologies associated with modifications of bone remodeling.
Collapse
Affiliation(s)
- Chantal Chenu
- INSERM Unit 403, Hôpital E. Herriot, 69437 Lyon Cedex 03, France.
| |
Collapse
|
37
|
Bliziotes MM, Eshleman AJ, Zhang XW, Wiren KM. Neurotransmitter action in osteoblasts: expression of a functional system for serotonin receptor activation and reuptake. Bone 2001; 29:477-86. [PMID: 11704501 DOI: 10.1016/s8756-3282(01)00593-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neurotransmitter regulation of bone metabolism has been the subject of increasing interest and investigation. Because serotonin (5-HT) plays a role as a regulator of craniofacial morphogenesis, we investigated the expression and function of 5-HT receptors and the 5-HT transporter (5-HTT) in bone. Primary cultures of rat osteoblasts (rOB) and a variety of clonal osteoblastic cell lines, including ROS 17/2.8, UMR 106-H5, and Py1a, showed mRNA expression for 5-HTT as well as the 5-HT(1A), 5-HT(1D), 5-HT(2A), and 5-HT(2B) receptors by reverse transcription-polymerase chain reaction (RT-PCR) analysis. Protein expression of the 5-HT(1A), 5-HT(2A), and 5-HT(2B) receptors was confirmed by immunoblot. 5-HTT binding sites were assessed in ROS 17/2.8 and UMR 106-H5 cells by binding of the stable cocaine analog [125I]RTI-55, which showed a relatively high density of nanomolar affinity binding sites. Imipramine and fluoxetine, antagonists with specificity for 5-HTT, showed the highest potency to antagonize [125I]RTI-55 binding in ROS and UMR cells. GBR-12935, a relatively selective dopamine transporter antagonist, had a much lower potency, as did desipramine, a selective norepinephrine transporter antagonist. The maximal [3H]5-HT uptake rate in ROS cells was 110 pmol/10 min per well, with a K(m) value of 1.13 micromol/L. Imipramine and fluoxetine inhibited specific [3H]5-HT uptake with IC(50) values in the nanomolar range. In normal differentiating rOB cultures, 5-HTT functional activity was observed initially at day 25, and activity increased almost eightfold by day 31. In mature rOB cultures, the estimated density of [125I]RTI-55 binding sites was 600 fmol/mg protein. Functional downregulation of transporter activity was assessed after PMA treatment, which caused a significant 40% reduction in the maximal uptake rate of [3H]5-HT, an effect that was prevented by pretreatment with staurosporine. The affinity of 5-HT for the transporter was significantly increased following PMA treatment. We assessed the functional significance of expression of the 5-HT receptors by investigating the interaction between 5-HT and parathyroid hormone (PTH) signaling. 5-HT potentiates the PTH-induced increase in AP-1 activity in UMR cells. These results demonstrate that osteoblastic cells express a functional serotonin system, with mechanisms for responding to and regulating uptake of 5-HT.
Collapse
MESH Headings
- Animals
- Carcinogens/pharmacology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Down-Regulation/drug effects
- Gene Expression/physiology
- Iodine Radioisotopes
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Transport Proteins
- Nerve Tissue Proteins
- Osteoblasts/cytology
- Osteoblasts/metabolism
- Osteosarcoma
- Parathyroid Hormone/physiology
- RNA, Messenger/analysis
- Radioligand Assay
- Rats
- Receptor, Serotonin, 5-HT1D
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2B
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Receptors, Serotonin, 5-HT1
- Serotonin/pharmacokinetics
- Serotonin Plasma Membrane Transport Proteins
- Tetradecanoylphorbol Acetate/pharmacology
- Tritium
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M M Bliziotes
- Portland VA Medical Center, Portland, Oregon 97201, USA.
| | | | | | | |
Collapse
|
38
|
Skerry T, Genever P, Taylor A, Dobson K, Mason D, Suva L. Absence of evidence is not evidence of absence. The shortcomings of the GLAST knockout mouse. J Bone Miner Res 2001; 16:1729-30; author reply 1731-2. [PMID: 11547846 DOI: 10.1359/jbmr.2001.16.9.1729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Chenu C, Itzstein C, Espinosa L. Absence of evidence is not evidence of absence. Redundancy blocks determination of cause and effect. J Bone Miner Res 2001; 16:1728-9; author reply 1731-2. [PMID: 11547845 DOI: 10.1359/jbmr.2001.16.9.1728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Abstract
Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
Collapse
Affiliation(s)
- N C Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, N-0317, Oslo, Norway
| |
Collapse
|
41
|
Abstract
Regulated intercellular signaling is essential for the maintenance of bone mass. In recent work we described how osteoblasts and osteoclasts express functional receptors for the excitatory amino acid, glutamate, indicating that a signaling pathway analogous to synaptic neurotransmission exists in bone. Here, we show that osteoblasts also express the essential molecular framework for regulated glutamate exocytosis to occur as is present in presynaptic neurons. A combination of reverse transcription-polymerase chain reaction (RT-PCR) and northern and western blotting is used to show expression of the target membrane-SNARE (soluble NSF attachment protein receptor), proteins SNAP-25 and syntaxin 4 and the vesicular-SNARE protein VAMP (synaptobrevin), the minimum molecular requirements for core exocytotic complex formation. Immunofluorescent localizations reveal peripheral SNAP-25 expression on osteoblastic cells, particularly at intercellular contact sites, colocalizing with immunoreactive glutamate and the synaptic vesicle-specific protein, synapsin I. We also identify multiple accessory proteins associated with vesicle trafficking, including munc18, rSec8, DOC2, syntaxin 6, and synaptophysin, which have varied roles in regulated glutamate exocytosis. mRNA for the putative Ca(2+)-dependent regulators of vesicle recycling activity, synaptotagmin I (specialized for fast Ca(2+)-dependent exocytosis as seen in synaptic neurotransmission), and the GTP-binding protein Rab3A are also identified by northern blot analysis. Finally, we demonstrate that osteoblastic cells actively release glutamate in a differentiation-dependent manner. These data provide compelling evidence that osteoblasts are able to direct glutamate release by regulated vesicular exocytosis, mimicking presynaptic glutamatergic neurons, showing that a process with striking similarity to synaptic neurotransmission occurs in bone.
Collapse
Affiliation(s)
- P S Bhangu
- Department of Biology, University of York, York, UK
| | | | | | | | | |
Collapse
|
42
|
Genever PG, Skerry TM. Regulation of spontaneous glutamate release activity in osteoblastic cells and its role in differentiation and survival: evidence for intrinsic glutamatergic signaling in bone. FASEB J 2001; 15:1586-8. [PMID: 11427494 DOI: 10.1096/fj.00-0594fje] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- P G Genever
- Department of Biology, University of York, York, YO10 5YW, UK.
| | | |
Collapse
|
43
|
Itzstein C, Cheynel H, Burt-Pichat B, Merle B, Espinosa L, Delmas PD, Chenu C. Molecular identification of NMDA glutamate receptors expressed in bone cells. J Cell Biochem 2001; 82:134-44. [PMID: 11400170 DOI: 10.1002/jcb.1114] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor has recently been identified in bone, but the molecular composition of this receptor expressed by bone cells is unknown. NMDA receptor (NMDAR) is a hetero-oligomeric protein composed of two classes of subunits, the essential subunit NR1 and NR2A to D subunits that do not by themselves produce functional channels but potentiate NR1 activity and confer functional variability to the receptor. These subunits coassemble in different combinations to form functionally distinct NMDAR. In this study, we have investigated the molecular composition of NMDAR expressed by osteoblasts and osteoclasts in culture, using RT-PCR analysis, in situ hybridization and immunocytochemistry. Specific probes were designed for the different subunits of the NMDAR, and we showed by RT-PCR analysis that mammalian osteoclasts expressed NR2B and NR2D subunits mRNAs but not NR2A and NR2C mRNAs. Rat calvaria and MG63 osteoblastic cells also expressed several NR2 subunits mRNAs, namely NR2A, NR2B, and NR2D. In situ hybridization on isolated rabbit osteoclasts and MG63 cells has confirmed the localization of NR1, NR2B, and NR2D transcripts in osteoclasts and NR1, NR2A, NR2B, and NR2D transcripts in MG63 cells. The expression of NR2D protein by bone cells was shown by immunofluorescence. These results demonstrate for the first time that osteoblasts and osteoclasts express several NR2 subunits, suggesting a molecular diversity of NMDAR channels similar to what was shown for brain. The presence of distinct functional NMDAR on bone cells may be associated with various states of bone cell differentiation and function.
Collapse
Affiliation(s)
- C Itzstein
- INSERM Unit 403, Hôpital E. HERRIOT, Pavillon F, 69437 LYON Cedex 03, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Since the discovery of its role in the CNS, glutamate, together with its involvement in signalling at synapses, has been the subject of a vast amount of research. More recently, it has become clear that glutamate signalling is also functional in non-neuronal tissues and occurs in sites as diverse as bone, pancreas and skin. These findings raise the possibility that glutamate acts as a more widespread 'cytokine' and is able to influence cellular activity in a range of tissue types. The impact of these discoveries is significant because they offer a rapid way to advance the development of therapeutics. Agents developed for use in neuroscience applications might be beneficial in the modulation of pathology peripherally, impacting on conditions such as osteoporosis, diabetes and wound healing.
Collapse
Affiliation(s)
- T M Skerry
- Dept of Biology, University of York, PO Box 373, YO10 5YW, UK.
| | | |
Collapse
|