1
|
Togayachi A, Iwaki J, Kaji H, Matsuzaki H, Kuno A, Hirao Y, Nomura M, Noguchi M, Ikehara Y, Narimatsu H. Glycobiomarker, Fucosylated Short-Form Secretogranin III Levels Are Increased in Serum of Patients with Small Cell Lung Carcinoma. J Proteome Res 2017; 16:4495-4505. [DOI: 10.1021/acs.jproteome.7b00484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | | | | | | | - Masaharu Nomura
- Department
of Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Masayuki Noguchi
- Department
of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | |
Collapse
|
2
|
Determinants for chromogranin A sorting into the regulated secretory pathway are also sufficient to generate granule-like structures in non-endocrine cells. Biochem J 2009; 418:81-91. [PMID: 18973469 DOI: 10.1042/bj20071382] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In endocrine cells, prohormones and granins are segregated in the TGN (trans-Golgi network) from constitutively secreted proteins, stored in concentrated form in dense-core secretory granules, and released in a regulated manner on specific stimulation. The mechanism of granule formation is only partially understood. Expression of regulated secretory proteins, both peptide hormone precursors and granins, had been found to be sufficient to generate structures that resemble secretory granules in the background of constitutively secreting, non-endocrine cells. To identify which segment of CgA (chromogranin A) is important to induce the formation of such granule-like structures, a series of deletion constructs fused to either GFP (green fluorescent protein) or a short epitope tag was expressed in COS-1 fibroblast cells and analysed by fluorescence and electron microscopy and pulse-chase labelling. Full-length CgA as well as deletion constructs containing the N-terminal 77 residues generated granule-like structures in the cell periphery that co-localized with co-expressed SgII (secretogranin II). These are essentially the same segments of the protein that were previously shown to be required for granule sorting in wild-type PC12 (pheochromocytoma cells) cells and for rescuing a regulated secretory pathway in A35C cells, a variant PC12 line deficient in granule formation. The results support the notion that self-aggregation is at the core of granule formation and sorting into the regulated pathway.
Collapse
|
3
|
Catino MA, Paladino S, Tivodar S, Pocard T, Zurzolo C. N- andO-Glycans Are Not Directly Involved in the Oligomerization and Apical Sorting of GPI Proteins. Traffic 2008; 9:2141-50. [DOI: 10.1111/j.1600-0854.2008.00826.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Fasciotto BH, Kühn U, Cohn DV, Gorr SU. Secretory cargo composition affects polarized secretion in MDCK epithelial cells. Mol Cell Biochem 2007; 310:67-75. [PMID: 18049865 DOI: 10.1007/s11010-007-9666-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
Polarized epithelial cells secrete proteins at either the apical or basolateral cell surface. A number of non-epithelial secretory proteins also exhibit polarized secretion when they are expressed in polarized epithelial cells but it is difficult to predict where foreign proteins will be secreted in epithelial cells. The question is of interest since secretory epithelia are considered as target tissues for gene therapy protocols that aim to express therapeutic secretory proteins. In the parathyroid gland, parathyroid hormone is processed by furin and co-stored with chromogranin A in secretory granules. To test the secretion of these proteins in epithelial cells, they were expressed in MDCK cells. Chromogranin A and a secreted form of furin were secreted apically while parathyroid hormone was secreted 60% basolaterally. However, in the presence of chromogranin A, the secretion of parathyroid hormone was 65% apical, suggesting that chromogranin can act as a "sorting escort" (sorting chaperone) for parathyroid hormone. Conversely, apically secreted furin did not affect the sorting of parathyroid hormone. The apical secretion of chromogranin A was dependent on cholesterol, suggesting that this protein uses an established cellular sorting mechanism for apical secretion. However, this sorting does not involve the N-terminal membrane-binding domain of chromogranin A. These results suggest that foreign secretory proteins can be used as "sorting escorts" to direct secretory proteins to the apical secretory pathway without altering the primary structure of the secreted protein. Such a system may be of use in the targeted expression of secretory proteins from epithelial cells.
Collapse
|
5
|
Lara-Lemus R, Liu M, Turner MD, Scherer P, Stenbeck G, lyengar P, Arvan P. Lumenal protein sorting to the constitutive secretory pathway of a regulated secretory cell. J Cell Sci 2006; 119:1833-42. [PMID: 16608874 PMCID: PMC2547412 DOI: 10.1242/jcs.02905] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Newly synthesized secretory granule content proteins are delivered via the Golgi complex for storage within mature granules, whereas constitutive secretory proteins are not stored. Most soluble proteins traveling anterograde through the trans-Golgi network are not excluded from entering immature secretory granules, whether or not they have granule-targeting signals. However, the ;sorting-for-entry' hypothesis suggests that soluble lumenal proteins lacking signals enter transport intermediates for the constitutive secretory pathway. We aimed to investigate how these constitutive secretory proteins are sorted. In a pancreatic beta-cell line, we stably expressed two lumenal proteins whose normal sorting information has been deleted: alkaline phosphatase, truncated to eliminate its glycosylphosphatidylinositol membrane anchor (SEAP); and Cab45361, a Golgi lumenal resident, truncated to eliminate its intracellular retention (Cab308Myc). Both truncated proteins are efficiently secreted, but whereas SEAP enters secretory granules, Cab308Myc behaves as a true constitutive marker excluded from granules. Interestingly, upon permeabilization of organelle membranes with saponin, SEAP is extracted as a soluble protein whereas Cab308Myc remains associated with the membrane. These are among the first data to support a model in which association with the lumenal aspect of Golgi and/or post-Golgi membranes can serve as a means for selective sorting of constitutive secretory proteins.
Collapse
Affiliation(s)
- Roberto Lara-Lemus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Ml 48109, USA
| | - Ming Liu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Ml 48109, USA
| | - Mark D. Turner
- Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, Queen Mary’s School of Medicine and Dentistry, University of London, Whitechapel, London, E1 1BB, UK
| | - Philipp Scherer
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gudrun Stenbeck
- Bone and Mineral Centre, University College London, London, WC1E 6JJ, UK
| | - Puneeth lyengar
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Ml 48109, USA
| |
Collapse
|
6
|
Potter BA, Hughey RP, Weisz OA. Role of N- and O-glycans in polarized biosynthetic sorting. Am J Physiol Cell Physiol 2006; 290:C1-C10. [PMID: 16338974 DOI: 10.1152/ajpcell.00333.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The maintenance of proper epithelial function requires efficient sorting of newly synthesized and recycling proteins to the apical and basolateral surfaces of differentiated cells. Whereas basolateral protein sorting signals are generally confined to their cytoplasmic regions, apical targeting signals have been identified that localize to luminal, transmembrane, and cytoplasmic aspects of proteins. In the past few years, both N- and O-linked glycans have been identified as apical sorting determinants. Glycan structures are extraordinarily diverse and have tremendous information potential. Moreover, because the oligosaccharides added to a given protein can change depending on cell type and developmental stage, the potential exists for altering sorting pathways by modulation of the expression pattern of enzymes involved in glycan synthesis. In this review, we discuss the evidence for glycan-mediated apical sorting along the biosynthetic pathway and present possible mechanisms by which these common and heterogeneous posttranslational modifications might function as specific sorting signals.
Collapse
Affiliation(s)
- Beth A Potter
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Univ. of Pittsburgh School of Medicine, 978 Scaife Hall, 3550 Terrace St., Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
7
|
Gorr SU, Venkatesh S, Darling D. Parotid secretory granules: crossroads of secretory pathways and protein storage. J Dent Res 2005; 84:500-9. [PMID: 15914585 PMCID: PMC1939692 DOI: 10.1177/154405910508400604] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Saliva plays an important role in digestion, host defense, and lubrication. The parotid gland contributes a variety of secretory proteins-including amylase, proline-rich proteins, and parotid secretory protein (PSP)-to these functions. The regulated secretion of salivary proteins ensures the availability of the correct mix of salivary proteins when needed. In addition, the major salivary glands are targets for gene therapy protocols aimed at targeting therapeutic proteins either to the oral cavity or to circulation. To be successful, such protocols must be based on a solid understanding of protein trafficking in salivary gland cells. In this paper, model systems available to study the secretion of salivary proteins are reviewed. Parotid secretory proteins are stored in large dense-core secretory granules that undergo stimulated secretion in response to extracellular stimulation. Secretory proteins that are not stored in large secretory granules are secreted by either the minor regulated secretory pathway, constitutive secretory pathways (apical or basolateral), or the constitutive-like secretory pathway. It is proposed that the maturing secretory granules act as a distribution center for secretory proteins in salivary acinar cells. Protein distribution or sorting is thought to involve their selective retention during secretory granule maturation. Unlike regulated secretory proteins in other cell types, salivary proteins do not exhibit calcium-induced aggregation. Instead, sulfated proteoglycans play a role in the storage of secretory proteins in parotid acinar cells. This work suggests that unique sorting and retention mechanisms are responsible for the distribution of secretory proteins to different secretory pathways from the maturing secretory granules in parotid acinar cells.
Collapse
Affiliation(s)
- S.-U. Gorr
- Department of Periodontics, Endodontics and Dental Hygiene and Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| | - S.G. Venkatesh
- Department of Periodontics, Endodontics and Dental Hygiene and Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| | - D.S. Darling
- Department of Periodontics, Endodontics and Dental Hygiene and Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| |
Collapse
|
8
|
Vogel LK, Larsen JE, Hansen M, Truffer R. Conversion of proteins from a non-polarized to an apical secretory pattern in MDCK cells. Biochem Biophys Res Commun 2005; 330:665-72. [PMID: 15809049 DOI: 10.1016/j.bbrc.2005.03.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Indexed: 11/15/2022]
Abstract
Previously it was shown that fusion proteins containing the amino terminus of an apical targeted member of the serpin family fused to the corresponding carboxyl terminus of the non-polarized secreted serpin, antithrombin, are secreted mainly to the apical side of MDCK cells. The present study shows that this is neither due to the transfer of an apical sorting signal from the apically expressed proteins, since a sequence of random amino acids acts the same, nor is it due to the deletion of a conserved signal for correct targeting from the non-polarized secreted protein. Our results suggest that the polarity of secretion is determined by conformational sensitive sorting signals.
Collapse
Affiliation(s)
- Lotte K Vogel
- Department of Medical Biochemistry and Genetics, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
9
|
Pang S, Urquhart P, Hooper NM. N-Glycans, not the GPI anchor, mediate the apical targeting of a naturally glycosylated, GPI-anchored protein in polarised epithelial cells. J Cell Sci 2004; 117:5079-86. [PMID: 15456847 DOI: 10.1242/jcs.01386] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glycosyl-phosphatidylinositol (GPI) anchor mediates the apical sorting of proteins in polarised epithelial cells through its interaction with lipid rafts. Here we investigated the signals required for the apical targeting of the naturally N-glycosylated and GPI-anchored membrane dipeptidase by selective point mutation to remove the GPI anchor addition signal or the sites for N-linked glycosylation, or both. Activity assays, immunoblotting and immunofluorescence microscopy revealed that the constructs lacking the GPI anchor were secreted from Madin-Darby canine kidney (MDCK) cells, whereas those retaining the GPI anchor were attached at the cell surface, irrespective of the glycosylation status. Wild-type membrane dipeptidase was expressed preferentially on the apical surface of both MDCK and CaCo-2 cells. By contrast, the GPI-anchored construct lacking the N-glycans was targeted preferentially to the basolateral surface of both cell types. In constructs lacking the GPI anchor, the N-glycans also targeted the protein to the apical surface. Both the apically targeted, glycosylated and the basolaterally targeted, unglycosylated GPI-anchored forms of the protein were located in detergent-insoluble lipid rafts. These data indicate that it is the N-glycans, not the association of the GPI anchor with lipid rafts, which determine apical targeting of an endogenously N-glycosylated, GPI-anchored protein in polarised epithelial cells.
Collapse
Affiliation(s)
- Susan Pang
- School of Biochemistry and Microbiology, University of Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
10
|
Maruyama M, Nishio T, Kato T, Yoshida T, Ishida C, Watanabe Y, Nishikawa M, Kaneda Y, Takakura Y. Subcellular trafficking of exogenously expressed interferon-? in Madin-Darby canine kidney cells. J Cell Physiol 2004; 201:117-25. [PMID: 15281094 DOI: 10.1002/jcp.20038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have recently demonstrated that when IFN-beta was exogenously expressed in epithelial cells, transiently expressed IFN-beta was predominantly secreted from the cell side to which the transfection was performed, while stably expressed one was almost equally secreted to the apical and basolateral sides. In the present study, we analyzed the subcellular transport of IFN-beta using confocal imaging with green fluorescent protein (GFP)-tagged IFN-beta in Madin-Darby canine kidney (MDCK) cells. Stably expressed and transiently expressed human IFN-beta (HuIFN-beta)-GFPs were seen in upper regions of the nucleus. In stable HuIFN beta-GFP-producing transformants, transiently expressed mouse IFN-beta (MuIFN-beta) was apparently co-localized with the bulk of the constitutive HuIFN beta-GFP proteins at TGN, and a significant quantity of them then appeared to pass into distinct post-TGN vesicles, accepting either type of IFN. Meanwhile, when cells were co-transfected with both expression vectors, transiently expressed both IFNs tended to co-localize not only at TGN but in post-TGN vesicles. These results suggest that stably and transiently expressed IFN-betas, albeit co-localized at TGN, were transported through apparently discriminated post-TGN routes.
Collapse
Affiliation(s)
- Masato Maruyama
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Potter BA, Ihrke G, Bruns JR, Weixel KM, Weisz OA. Specific N-glycans direct apical delivery of transmembrane, but not soluble or glycosylphosphatidylinositol-anchored forms of endolyn in Madin-Darby canine kidney cells. Mol Biol Cell 2003; 15:1407-16. [PMID: 14699065 PMCID: PMC363156 DOI: 10.1091/mbc.e03-08-0550] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The sialomucin endolyn is a transmembrane protein with a unique trafficking pattern in polarized Madin-Darby canine kidney cells. Despite the presence of a cytoplasmic tyrosine motif that, in isolation, is sufficient to mediate basolateral sorting of a reporter protein, endolyn predominantly traverses the apical surface en route to lysosomes. Apical delivery of endolyn is disrupted in tunicamycin-treated cells, implicating a role for N-glycosylation in apical sorting. Site-directed mutagenesis of endolyn's eight N-glycosylation sites was used to identify two N-glycans that seem to be the major determinants for efficient apical sorting of the protein. In addition, apical delivery of endolyn was disrupted when terminal processing of N-glycans was blocked using glycosidase inhibitors. Missorting of endolyn occurred independently of the presence or absence of the basolateral sorting signal, because apical delivery was also inhibited by tunicamycin when the cytoplasmic tyrosine motif was mutated. However, we found that apical secretion of a soluble mutant of endolyn was N-glycan independent, as was delivery of glycosylphosphatidylinositol-anchored endolyn. Thus, specific N-glycans are only essential for the apical sorting of transmembrane endolyn, suggesting fundamental differences in the mechanisms by which soluble, glycosylphosphatidylinositol-anchored, and transmembrane proteins are sorted.
Collapse
Affiliation(s)
- Beth A Potter
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
12
|
Han SJ, Lee JH, Kim CG, Hong SH. Identification of p115 as a PLCgamma1-binding protein and the role of Src homology domains of PLCgamma1 in the vesicular transport. Biochem Biophys Res Commun 2003; 300:649-55. [PMID: 12507498 DOI: 10.1016/s0006-291x(02)02884-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In order to gain further insight into the function(s) of PLCgamma1, we tried to identify the binding partners that can interact with the SH223 domains of PLCgamma1. Immunoscreening was performed with the purified antisera that are specific to SH223-binding proteins. Several immunoreactive clones were identified as the putative binding proteins and one of them was identified as p115. p115 was reported to be required for transcytotic fusion and subsequent binding of the vesicles to the target membrane. The interaction between PLCgamma1 and p115 was specific to carboxyl-terminal SH2 domain and SH3 domain of PLCgamma1, and also confirmed by biochemical approaches such as co-immunoprecipitation, pull-down assay, and glycerol gradient fractionation. To further characterize the role of SH domains of PLCgamma1 in the vesicle transport pathway, secreted form of alkaline phosphatase (SEAP) reporter assay was carried out. When the SH2 and/or SH3 domains of PLCgamma1 were deleted, the secretion of SEAP was significantly reduced. These findings indicate that the SH2 and SH3 domains of PLCgamma1 may play a role(s) in the process of the vesicle transport via interaction with other vesicle-associated proteins such as p115.
Collapse
Affiliation(s)
- Seung Jin Han
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
13
|
Vogel LK, Sahkri S, Sjostrom H, Noren O, Spiess M. Secretion of antithrombin is converted from nonpolarized to apical by exchanging its amino terminus for that of apically secreted family members. J Biol Chem 2002; 277:13883-8. [PMID: 11839735 DOI: 10.1074/jbc.m107997200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three members of the serpin family, corticosteroid binding globulin, alpha1-antitrypsin, and C1 inhibitor are secreted apically from Madin-Darby canine kidney (MDCK) cells, whereas two homologous family members, antithrombin and plasminogen activator inhibitor-1, are secreted in a nonpolarized fashion. cDNAs coding for chimeras composed of complementary portions of an apically targeted serpin and a nonsorted serpin were generated, expressed in MDCK cells, and the ratio between apical and basolateral secretion was analyzed. These experiments identified an amino-terminal sequence of corticosteroid binding globulin (residues 1-19) that is sufficient to direct a chimera with antithrombin mainly to the apical side. A deletion/mutagenesis analysis showed that no individual amino acid is absolutely required for the apical targeting ability of amino acids 1-30 of corticosteroid binding globulin. The corresponding amino-terminal sequences of alpha1-antitrypsin and C1 inhibitor were also sufficient to confer apical sorting. Based on our results we suggest that the apical targeting ability is encoded in the conformation of the protein.
Collapse
Affiliation(s)
- Lotte K Vogel
- Department of Medical Biochemistry and Genetics, Biochemistry Laboratory C, University of Copenhagen, The Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
14
|
Fasciotto BH, Cohn DV, Gorr SU. N-terminal proteolytic processing of porcine chromogranin A in parathyroid tissue. REGULATORY PEPTIDES 2002; 103:53-8. [PMID: 11738248 DOI: 10.1016/s0167-0115(01)00328-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chromogranin A (CgA) is a glycoprotein stored in secretory granules of many endocrine and neuroendocrine cells. CgA undergoes tissue specific processing to release regulatory peptides. In the parathyroid, although processing is limited and variable, several CgA-derived peptides have been characterized including parastatin and betagranin. An early stage of CgA processing is the generation of a 64-kDa fragment (CgA64). In this study, we have purified CgA64 from porcine parathyroid glands by chromatographic separations. Edman degradation of this CgA64 yielded the N-terminal sequence NDQAELKEGTEEASSKEAAEKRGDXAVEKND corresponding to pCgA(94-125). Amino acid composition suggests that CgA64 corresponds to CgA(94-430) (i.e. the entire CgA molecule, less the N-terminal residues 1-93). To determine the origin of CgA64, we fractionated parathyroid membrane vesicles by sucrose gradient centrifugation. Intact CgA is predominantly located in dense sucrose fractions (secretory granules), whereas CgA64 is located near the top of the gradient (soluble protein fraction). In vitro incubation of these fractions revealed that the conversion of CgA did not occur in intact granules. These results indicate that CgA64 is not present in intact granules suggesting that it is not a naturally occurring secretory product in parathyroid cells.
Collapse
Affiliation(s)
- Brigitte H Fasciotto
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville Health Sciences Center, Louisville, KY, USA
| | | | | |
Collapse
|
15
|
Bublitz R, Hoppe H, Cumme GA, Thiele M, Attey A, Horn A. Structural study on the carbohydrate moiety of calf intestinal alkaline phosphatase. JOURNAL OF MASS SPECTROMETRY : JMS 2001; 36:960-972. [PMID: 11523097 DOI: 10.1002/jms.200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Surprisingly alkaline phosphatase (AP) (EC 3.1.3.1) of calf intestine is found in large amounts, e.g. 80%, within chyme. Most of the enzyme is present as a mixture of four differently hydrophobic anchor-bearing forms and only the minor part is present as an anchorless enzyme. To investigate whether changes in the N-glycosylation pattern are signals responsible for large-scale liberation from mucosa into chyme, the glycans of the two potential glycosylation sites predicted from cDNA were investigated by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry in combination with exoglycosidase treatment after tryptic digestion and reversed-phase chromatography. The glycans linked to Asn249 are at least eight different, mainly non-fucosylated, biantennary or triantennary structures with a bisecting N-acetylglucosamine. For the most abundant glycopeptide (40%) the following glycan structure is proposed: [carbostructure: see text]. The glycans linked to Asn410 are a mixture of at least nine, mainly tetraantennary, fucosylated structures with a bisecting N-acetylglucosamine. For the most abundant glycopeptide (35%) the following glycan structure is proposed: [carbostructure: see text]. For the structures the linkage data were deduced from the reported specificities of the exoglycosidases used and the specificities of the transglycosidases active in biosynthesis. The majority of glycans are capped by alpha-galactose residues at their non-reducing termini. In contrast to the glycans linked to other AP isoenzymes, no sialylation was observed. Glycopeptide 'mass fingerprints' of both glycosylation sites and glycan contents do not differ between AP from mucosa and chyme. These results suggest that the observed large-scale liberation of vesicle-bound glycosylphosphatidylinositol (GPI)-anchored AP from mucosa into chyme is unlikely to be mediated by alteration of glycan structures of the AP investigated. Rather, the exocytotic vesicle formation seems to be mediated by the controlled organization of the raft structures embedding GPI-AP. (c) 2001 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- R Bublitz
- Institute of Biochemistry, Medical Faculty, Friedrich Schiller University, D-07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The rho GTPase cdc42 is implicated in several aspects of cell polarity. A recent study (Kroschewski R, Hall A, Mellman I. Nat Cell Biol 1999;1:8-13) demonstrated that a dominant negative mutant of cdc42 abolishes the polarity of basolateral membrane proteins in MDCK cells, but did not elucidate whether this effect was selective for basolateral proteins or nonselective for all secreted proteins. To answer this question, we analyzed the polarity of newly synthesized membrane and soluble proteins in MDCK cell lines previously induced to overexpress mutant forms of cdc42. GTPase-deficient and dominant negative cdc42 did not affect the apical targeting of a newly synthesized apical membrane protein, but reversed to apical the distribution of two exogenous basolateral membrane proteins. In striking contrast, GTPase-deficient cdc42 did not affect polarized exocytosis of endogenous soluble proteins, either apical or basolateral. The exquisitely selective regulation of polarized protein targeting by cdc42 may allow cells to fine-tune their membrane composition in response to extracellular signals during development, migration and in response to injury.
Collapse
Affiliation(s)
- D Cohen
- Dyson Institute of Vision Research, Department of Biochemistry, Joan and Sanford Weill Medical College of Cornell University, New York, New York, 10021, USA
| | | | | |
Collapse
|