1
|
Simstein R, Burow M, Parker A, Weldon C, Beckman B. Apoptosis, Chemoresistance, and Breast Cancer: Insights From the MCF-7 Cell Model System. Exp Biol Med (Maywood) 2016; 228:995-1003. [PMID: 14530507 DOI: 10.1177/153537020322800903] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The MCF-7 cell line was derived from a patient with metastatic breast cancer in 1970. Since then it has become a prominent model system for the study of estrogen receptor-positive breast cancer. With this model as a focus, this review summarizes important studies addressing tumor necrosis factor-α as a prototypical apoptosis-inducing cytokine in MCF-7 cells. Both survival and death receptor signaling pathways are discussed in terms of their role in chemotherapy-induced apoptosis as well as in chemoresistance. Novel therapeutic approaches to the treatment of breast cancer are proposed utilizing knowledge of these signaling pathways as targets. Specifically, ceramide metabolism is proposed as a novel target for chemosensitivity, perhaps combined with selective inhibitors of Bcl-2 or PI3K/Akt/nuclear factor-κB. Suggested areas of future research include translational studies manipulating candidate survival and death signaling pathways.
Collapse
Affiliation(s)
- Rebecca Simstein
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
2
|
Liu P, Feng J, Kong F, Lu Q, Xu H, Meng J, Jiang Y. Gax inhibits perivascular preadipocyte biofunction mediated by IGF-1 induced FAK/Pyk2 and ERK2 cooperative pathways. Cell Signal 2014; 26:3036-45. [DOI: 10.1016/j.cellsig.2014.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/25/2014] [Indexed: 02/06/2023]
|
3
|
Lau MT, Leung PCK. The PI3K/Akt/mTOR signaling pathway mediates insulin-like growth factor 1-induced E-cadherin down-regulation and cell proliferation in ovarian cancer cells. Cancer Lett 2012; 326:191-8. [PMID: 22922215 DOI: 10.1016/j.canlet.2012.08.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 08/03/2012] [Accepted: 08/14/2012] [Indexed: 12/30/2022]
Abstract
Insulin-like growth factor 1 (IGF1) is produced by ovarian cancer cells and it has been suggested that it plays an important role in tumor progression. In this study, we report that IGF1 treatment down-regulated E-cadherin by up-regulating E-cadherin transcriptional repressors, Snail and Slug, in human ovarian cancer cells. The pharmacological inhibition of phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) suggests that PI3K/Akt/mTOR signaling is required for IGF1-induced E-cadherin down-regulation. Moreover, IGF1 up-regulated Snail and Slug expression via the PI3K/Akt/mTOR signaling pathway. Finally, IGF1-induced cell proliferation was abolished by inhibiting PI3K/Akt/mTOR signaling. This study demonstrates a novel mechanism in which IGF1 down-regulates E-cadherin expression through the activation of PI3K/Akt/mTOR signaling and the up-regulation of Snail and Slug in human ovarian cancer cells.
Collapse
Affiliation(s)
- Man-Tat Lau
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
4
|
Graham TR, Zhau HE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M, Liu T, Simons JW, O'Regan RM. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 2008; 68:2479-88. [PMID: 18381457 DOI: 10.1158/0008-5472.can-07-2559] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is crucial for the migration and invasion of many epithelial tumors, including prostate cancer. Although it is known that ZEB1 overexpression promotes EMT primarily through down-regulation of E-cadherin in a variety of cancers, the soluble ligands responsible for the activation of ZEB1 have yet to be identified. In the present study, we investigated the role of insulin-like growth factor-I (IGF-I) in the regulation of ZEB1 during EMT associated with prostate tumor cell migration. We found that ZEB1 is expressed in highly aggressive prostate cancer cells and that its expression correlates directly with Gleason grade in human prostate tumors (P < 0.001). IGF-I up-regulates ZEB1 expression in prostate cancer cells exhibiting an epithelial phenotype. In prostate cancer cells displaying a mesenchymal phenotype, ZEB1 inhibition reverses the suppression of E-cadherin protein and down-regulates the expression of the mesenchymal markers N-cadherin and fibronectin. Furthermore, ZEB1 blockade decreases migratory and invasive potential in ARCaP(M) compared with the control. These results identify ZEB1 as a key transcriptional regulator of EMT in prostate cancer and suggest that the aberrant expression of ZEB1 in prostate cancer cells occurs in part in response to IGF-I stimulation.
Collapse
Affiliation(s)
- Tisheeka R Graham
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cahuana GM, Tejedo JR, Hmadcha A, Ramírez R, Cuesta AL, Soria B, Martin F, Bedoya FJ. Nitric oxide mediates the survival action of IGF-1 and insulin in pancreatic beta cells. Cell Signal 2007; 20:301-10. [PMID: 18023142 DOI: 10.1016/j.cellsig.2007.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/26/2007] [Accepted: 10/03/2007] [Indexed: 02/08/2023]
Abstract
Generation of low levels of nitric oxide (NO) contributes to beta cell survival in vitro. The purpose of this study was to explore the link between NO and the survival pathway triggered by insulin-like growth factor-1 (IGF-1) and insulin in insulin producing RINm5F cells and in pancreatic islets. Results show that exposure of cells to IGF-1/insulin protects against serum deprivation-induced apoptosis. This action is prevented with inhibitors of NO generation, PI3K and Akt. Moreover, transfection with the negative dominant form of the tyrosine kinase c-Src abrogates the effect of IGF-1 and insulin on DNA fragmentation. An increase in the expression level of NOS3 protein and in the enzyme activity is observed following exposure of serum-deprived RINm5F cells to IGF-1 and insulin. Phosphorylation of IRS-1, IRS-2 and to less extent IRS-3 takes place when serum-deprived RINm5F cells and rat pancreatic islets are exposed to either IGF-1, insulin, or diethylenetriamine nitric oxide adduct (DETA/NO). In human islets, IRS-1 and IRS-2 proteins are present and tyrosine phosphorylated upon exposure to IGF-1, insulin and DETA/NO. Both rat and human pancreatic islets undergo DNA fragmentation when cultured in serum-free medium and IGF-1, insulin and DETA/NO protect efficiently from this damage. We then conclude that generation of NO participates in the activation of survival pathways by IGF-1 and insulin in beta cells.
Collapse
Affiliation(s)
- Gladys M Cahuana
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)-University Pablo de Olavide, Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Clark MA, Perks CM, Winters ZE, Holly JMP. DNA damage uncouples the mitogenic response to IGF-I in MCF-7 malignant breast cancer cells by switching the roles of PI3 kinase and p21WAF1/Cip1. Int J Cancer 2005; 116:506-13. [PMID: 15818613 DOI: 10.1002/ijc.21029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In addition to its mitogenic and survival actions, recent evidence indicates that IGF-I can enhance DNA repair, implying IGF activity may limit the efficacy of many therapeutic strategies that rely on induction of DNA damage. Although the individual pathways by which DNA damage and IGF-I act are well understood, the cross-talk between these signaling events is not well defined. We examined the effects of DNA damage on the IGF-I response of MCF-7 breast cancer cells. Cells were exposed to the UV mimetic, 4-NQO, or the gamma-irradiation mimetic and chemotherapeutic drug, bleomycin; cellular proliferation was assessed by cell counting, tritiated thymidine incorporation and FACS cell cycle analysis. Although IGF-I acutely suppressed the p53 response to both agents, it subsequently enhanced the chronic increase in p53 and p21(WAF1/Cip1), resulting in cell cycle arrest; however, no apoptosis was observed. Use of specific inhibitors demonstrated that PI3 kinase was utilized with p38 MAPK to induce the p53 response to DNA damage, but was also utilized by IGF-I to diminish the acute p53 response. In addition, p21WAF1/Cip1 was increased by IGF-I, which has previously been shown to contribute to the mitogenic response. Here we demonstrate that with DNA damage IGF-I can also enhance the chronic p53-dependent increase in p21WAF1/Cip1, culminating in growth arrest. Overall, we have shown that PI3 kinase and p21WAF1/Cip1 play dual roles in mediating the mitogenic response to IGF-I, but these are both switched by cellular DNA damage to mediate a growth arrest.
Collapse
Affiliation(s)
- Martin A Clark
- Department of Clinical Sciences South Bristol, University of Bristol, Bristol Royal Infirmary, Bristol, United Kingdom
| | | | | | | |
Collapse
|
7
|
Miglietta A, Panno ML, Bozzo F, Gabriel L, Bocca C. Insulin can modulate MCF-7 cell response to paclitaxel. Cancer Lett 2004; 209:139-45. [PMID: 15159015 DOI: 10.1016/j.canlet.2003.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 11/04/2003] [Accepted: 12/19/2003] [Indexed: 11/28/2022]
Abstract
Insulin regulates metabolism through homologous receptor tyrosine kinases, and plays a role in proliferation of breast cancer cells. Our research studied whether insulin, administered separately or in combination with paclitaxel, interferes with paclitaxel-mediated biological activity in human breast cancer cells. Not only did insulin influence paclitaxel-mediated cell microtubule reorganization, but it also influenced MCF-7 cell sensitivity to paclitaxel. Furthermore, combined administrations of insulin and paclitaxel affected MAPK pathway, Raf-1 activation and p53 expression levels. Our findings indicate that insulin seems to modulate MCF-7 cell response to paclitaxel; consequently, elevated levels of insulin could influence tumor cell resistance.
Collapse
Affiliation(s)
- Antonella Miglietta
- Department of Experimental Medicine and Oncology, University of Torino, Corso Raffaello 30, Torino 10125, Italy.
| | | | | | | | | |
Collapse
|
8
|
Tejedo JR, Cahuana GM, Ramírez R, Esbert M, Jiménez J, Sobrino F, Bedoya FJ. nitric oxide triggers the phosphatidylinositol 3-kinase/Akt survival pathway in insulin-producing RINm5F cells by arousing Src to activate insulin receptor substrate-1. Endocrinology 2004; 145:2319-27. [PMID: 14764634 DOI: 10.1210/en.2003-1489] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mechanisms involved in the protective action of nitric oxide (NO) in insulin-producing cells are a matter of debate. We have previously shown that pharmacological inhibition of c-Src cancels the antiapoptotic action of low and sustained concentrations of exogenous NO. In this study, using insulin-producing RINm5F cells that overexpress Src either permanently active (v-Src) or dominant negative (dn-Src) forms, we determine that this tyrosine kinase is the principal mediator of the protective action of NO. We also show that Src-directed activation of insulin receptor substrate-1, phosphatidylinositol 3-kinase (PI3K), Akt, and Bad phosphorylation conform a substantial component of the survival route because pharmacological inhibition of PI3K and Akt canceled the antiapoptotic effects of NO. Studies performed with the protein kinase G (PKG) inhibitor KT-5823 revealed that NO-dependent activation of c-Src/ insulin receptor substrate-1 is not affected by PKG activation. By contrast, Akt and Bad activation are partially dependent on PKG activation. Endogenous production of NO after overexpression of endothelial nitric oxide synthase in RINm5F cells mimics the effects produced by generation of low amounts of NO from exogenous diethylenetriamine/NO. In addition, we found that NO produces c-Src/PI3K- and PKG-dependent activation of ERK 1/2. The MAPK kinase inhibitor PD 98059 suppresses NO-dependent protection from DNA fragmentation induced by serum deprivation. The protective action of low and sustained concentration of NO is also observed in staurosporine- and Taxol-induced apoptosis. Finally, NO also protects isolated rat islets from DNA fragmentation induced by serum deprivation. These data strengthen the notion that NO production at physiological levels plays a role in protection from apoptosis in pancreatic beta-cells.
Collapse
Affiliation(s)
- Juan R Tejedo
- Laboratory of Biochemistry of the Immune System, Department of Medical Biochemistry and Molecular Biology, University of Sevilla, 41009 Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
Uttamsingh S, Zong CS, Wang LH. Matrix-independent activation of phosphatidylinositol 3-kinase, Stat3, and cyclin A-associated Cdk2 Is essential for anchorage-independent growth of v-Ros-transformed chicken embryo fibroblasts. J Biol Chem 2003; 278:18798-810. [PMID: 12646574 DOI: 10.1074/jbc.m211522200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The question remains open whether the signaling pathways shown to be important for growth and transformation in adherent cultures proceed similarly and play similar roles for cells grown under anchorage-independent conditions. Chicken embryo fibroblasts (CEF) infected with the avian sarcoma virus UR2, encoding the oncogenic receptor protein-tyrosine kinase (RPTK) v-Ros, or with two of its transformation-impaired mutants were grown in nonadherent conditions in methylcellulose (MC)-containing medium, and the signaling functions essential for Ros-induced anchorage-independent growth were analyzed. We found that the overall tyrosine phosphorylation of cellular proteins in CEF transformed by v-Ros or by two oncogenic nonreceptor protein-tyrosine kinases (PTKs), v-Src and v-Yes, was dramatically reduced in nonadherent conditions compared with that in adherent conditions, indicating that cell adhesion to the extracellular matrix plays an important role in efficient substrate phosphorylation by these constitutively activated PTKs. The UR2 transformation-defective mutants were differentially impaired compared with UR2 in the activation of phosphatidylinositol 3-kinase (PI 3-kinase) and Stat3 in nonadherent conditions. Consistently, the constitutively activated mutants of PI 3-kinase and Stat3 rescued the ability of the UR2 mutants to promote anchorage-independent growth. Conversely, dominant negative mutants of PI 3-kinase and Stat3 inhibited UR2-induced anchorage-independent growth. UR2-infected CEF grown in nonadherent conditions displayed faster cell cycle progression than the control or the UR2 mutant-infected cells, and this appeared to correlate with a PI 3-kinase-dependent increase in cyclin A-associated Cdk2 activity. Treatment of UR2-infected cells with Cdk2 inhibitors led to the loss of the anchorage-independent growth-promoting activity of UR2. In conclusion, we have adopted an experimental system enabling us to study the signaling pathways in cells grown under anchorage-independent conditions and have identified matrix-independent activation of PI 3-kinase and Stat3 signaling functions, as well as the PI 3-kinase-dependent increase of cyclin A-associated Cdk2 kinase activity, to be critical for the Ros-PTK-induced anchorage-independent growth.
Collapse
Affiliation(s)
- Shailaja Uttamsingh
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
10
|
Bilderback TR, Lee F, Auersperg N, Rodland KD. Phosphatidylinositol 3-kinase-dependent, MEK- independent proliferation in response to CaR activation. Am J Physiol Cell Physiol 2002; 283:C282-8. [PMID: 12055097 DOI: 10.1152/ajpcell.00437.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although ovarian surface epithelial (OSE) cells are responsible for the majority of ovarian tumors, we know relatively little about the pathway(s) that is responsible for regulating their proliferation. We found that phosphatidylinositol 3-kinase (PI3K) is activated in OSE cells in response to elevated extracellular calcium, and the PI3K inhibitors wortmannin and LY-294002 inhibited extracellular signal-regulated kinase (ERK) activation by approximately 75%, similar to effects of the mitogen-activated protein kinase/ERK kinase inhibitor PD-98059. However, in assays of proliferation, we found that PD-98059 inhibited proliferation by approximately 50%, whereas wortmannin inhibited >90% of the proliferative response to elevated calcium. Expression of a dominant negative PI3K totally inhibited ERK activation in response to calcium. These results demonstrate that ERK activation cannot account for the full proliferative effect of elevated calcium in OSE cells and suggest the presence of an ERK-independent, PI3K-dependent component in the proliferative response.
Collapse
Affiliation(s)
- Tim R Bilderback
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | | | |
Collapse
|
11
|
Zhao M, Christie MR, Heaton N, George S, Amiel S, Cai Huang G. Amelioration of streptozotocin-induced diabetes in mice using human islet cells derived from long-term culture in vitro. Transplantation 2002; 73:1454-60. [PMID: 12023624 DOI: 10.1097/00007890-200205150-00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Long-term maintenance of the phenotype of beta cells in vitro is difficult. The objective of this study was to examine an in vitro method for preserving the capacity of adult human beta cells to express insulin. We evaluated the use of long-term cultured islet cells for the treatment of diabetic SCID mice. METHODS Human islets were isolated from cadaveric donors. The islets were cultured as monolayers and clusters in repeating cycles for 4 months. Thereafter, the cells were tested in vitro for their capacity to express insulin and to secrete insulin in response to glucose challenge. Finally, the cluster-cultured cells were transplanted under the kidney capsule and into the kidney tissue in streptozotocin (STZ)-induced diabetic SCID mice. RESULTS Approximately 3.6% of cultured islet cells in cluster phase expressed insulin at 4 months and this was confirmed using immuno-gold-labeling electron microscopy. The cultured islet cells secreted insulin in response to glucose challenge in a dose-dependent manner. After transplantation, the islet cells redifferentiated and generated >20% insulin positive cells. The 4-month cultured cells rendered the blood glucose level near normal in mild diabetic mice (7.25 mM+/-1.595 vs. 15.225 mM+/-2.55, P<0.0025). CONCLUSION It is possible to preserve the capacity of adult human islets to express insulin over a 4-month period in vitro, and this capacity was enhanced significantly by transplantation into SCID mice. The described system will be useful in studies of beta cell proliferation and differentiation.
Collapse
Affiliation(s)
- Min Zhao
- Department of Diabetes, Endocrinology, and Internal Medicine and Institutes of Liver Studies, King's College GKT Medical School, London SE5 9PJ, UK
| | | | | | | | | | | |
Collapse
|
12
|
Tack I, Elliot SJ, Potier M, Rivera A, Striker GE, Striker LJ. Autocrine activation of the IGF-I signaling pathway in mesangial cells isolated from diabetic NOD mice. Diabetes 2002; 51:182-8. [PMID: 11756339 DOI: 10.2337/diabetes.51.1.182] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mesangial cells isolated from NOD mice after the onset of diabetes have undergone a stable phenotypic change. This phenotype is characterized by increased expression of IGF-I and downregulation of collagen degradation, which is associated with decreased MMP-2 activity. Here, we investigated the IGF-I signaling pathway in mesangial cells isolated from NOD mice before (nondiabetic NOD mice [ND-NOD]) and after (diabetic NOD mice [D-NOD]) the onset of diabetes. We found that the IGF-I signaling pathway in D-NOD cells was activated by autocrine IGF-I. They had phosphorylation of the IGF-I receptor beta-subunit, phosphorylation of insulin receptor substrate (IRS)-1, and association of the p85 subunit (phosphatidylinositol 3-kinase [PI3K]) with the IGF-I receptor and IRS-1 in D-NOD cells in the basal state. This was also associated with increased phosphorylation of ERK2 in D-NOD mesangial cells. Inhibiting autocrine IGF-I from binding to its receptor using an IGF-I-neutralizing antibody or inhibiting IGF-I signaling pathways using a specific PI3K inhibitor or a specific mitogen-activated protein kinase/extracellular response kinase kinase inhibitor decreased phosphorylated ERKs in D-NOD cells. Importantly, this was associated with increased MMP-2 activity. The addition of exogenous IGF-I to ND-NOD activated signal transduction. Therefore, we conclude that the IGF-I signaling pathway is intact in both D-NOD and ND-NOD cells. However, the phenotypic change in D-NOD cells is associated with constitutive activation of the IGF-I signaling pathways, which may participate in the development and progression of diabetic glomerulosclerosis.
Collapse
Affiliation(s)
- Ivan Tack
- Physiology Laboratory, University of Toulouse School of Medicine, Toulouse, France
| | | | | | | | | | | |
Collapse
|
13
|
Hii CS, Moghadammi N, Dunbar A, Ferrante A. Activation of the Phosphatidylinositol 3-Kinase-Akt/Protein Kinase B Signaling Pathway in Arachidonic Acid-stimulated Human Myeloid and Endothelial Cells. J Biol Chem 2001; 276:27246-55. [PMID: 11359783 DOI: 10.1074/jbc.m103250200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although arachidonic acid has been demonstrated to stimulate a wide variety of cellular functions, the responsible mechanisms remain poorly defined. We now report that arachidonic acid stimulated the activity of class Ia phosphatidylinositol 3-kinase (PI3K) in human umbilical vein endothelial cells, HL60 cells, and human neutrophils. Pretreatment of endothelial cells with AG-1478, an inhibitor of the ErbB receptor family, resulted in the suppression of PI3K activation by arachidonic acid. The fatty acid enhanced the tyrosine phosphorylation of ErbB4 but not of ErbB2 or ErbB3. The ability of arachidonic acid to stimulate PI3K activity in neutrophils was suppressed by indomethacin and nordihydroguaiaretic acid, inhibitors of the cyclooxygenases and lipoxygenases, respectively, but not by 17-octadecynoic acid, an inhibitor of omega-hydroxylation of arachidonic acid by cytochrome P450 monooxygenases. Consistent with this, the activity of PI3K in neutrophils was stimulated by 5-hydroxyeicosatetraenoic acid. Arachidonic acid also transiently stimulated the phosphorylation of Akt on Thr-308 and Ser-473. Although PI3K was not required for the activation of the mitogen-activated protein kinases, ERK1, ERK2, and p38, in arachidonic acid-stimulated neutrophils, the fatty acid acted via PI3K to stimulate the respiratory burst. These results not only define a novel mechanism through which some of the actions of arachidonic acid are mediated but also demonstrate that, in addition to ErbB1 (epidermal growth factor receptor), ErbB4 can also be transactivated by a non-epidermal growth factor-like ligand.
Collapse
Affiliation(s)
- C S Hii
- Department of Immunopathology, Women's and Children's Hospital, North Adelaide 5006, South Australia.
| | | | | | | |
Collapse
|
14
|
Aikin R, Rosenberg L, Maysinger D. Phosphatidylinositol 3-kinase signaling to Akt mediates survival in isolated canine islets of Langerhans. Biochem Biophys Res Commun 2000; 277:455-61. [PMID: 11032744 DOI: 10.1006/bbrc.2000.3664] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The isolation of islet cells from the pancreas by enzymatic digestion causes many of these cells to undergo apoptosis. The aim of this work was to investigate the role of phosphatidylinositol 3-kinase (PI3-K)/Akt signaling in mediating the survival of isolated islets. Insulin-like growth factor-1 (IGF-I) was examined as a potential culture media supplement that could rescue isolated islets from their apoptotic fate. Western blot analysis demonstrated that Akt phosphorylation peaks 20 h after routine islet isolation. PI3-K inhibition with wortmannin abolished both basal and IGF-I-mediated Akt phosphorylation. IGF-I did not increase survival of isolated islets under normal conditions but it did have a protective effect against cytokine (TNF-alpha, IL-1beta, INF-gamma)-mediated cell death. The protective effect of IGF-I against cytokine-stimulated apoptosis was blocked by wortmannin. In addition, inhibition of basal levels of PI3-K activity caused a 31% decrease in islet survival, as shown by MTT assay. These results demonstrate that the PI3-K/Akt pathway mediates survival of isolated islets of Langerhans.
Collapse
Affiliation(s)
- R Aikin
- Department of Surgery, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | | | | |
Collapse
|