1
|
The Role of H 2S in the Gastrointestinal Tract and Microbiota. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:67-98. [PMID: 34302689 DOI: 10.1007/978-981-16-0991-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathways and mechanisms of the production of H2S in the gastrointestinal tract are briefly described, including endogenous H2S produced by the organism and H2S from microorganisms in the gastrointestinal tract. In addition, the physiological regulatory functions of H2S on gastrointestinal motility, sensation, secretion and absorption, endocrine system, proliferation and differentiation of stem cells, and the possible mechanisms involved are introduced. In view of the complexity of biosynthesis, physiological roles, and the mechanism of H2S, this chapter focuses on the interactions and dynamic balance among H2S, gastrointestinal microorganisms, and the host. Finally, we focus on some clinical gastrointestinal diseases, such as inflammatory bowel disease, colorectal cancer, functional gastrointestinal disease, which might occur or develop when the above balance is broken. Pharmacological regulation of H2S or the intestinal microorganisms related to H2S might provide new therapeutic approaches for some gastrointestinal diseases.
Collapse
|
2
|
Shibata N, Ueda Y, Takeuchi D, Haruyama Y, Kojima S, Sato J, Niimura Y, Kitamura M, Higuchi Y. Structure analysis of the flavoredoxin from Desulfovibrio vulgaris Miyazaki F reveals key residues that discriminate the functions and properties of the flavin reductase family. FEBS J 2009; 276:4840-53. [PMID: 19708087 DOI: 10.1111/j.1742-4658.2009.07184.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The crystal structure of flavoredoxin from Desulfovibrio vulgaris Miyazaki F was determined at 1.05 A resolution and its ferric reductase activity was examined. The aim was to elucidate whether flavoredoxin has structural similarity to ferric reductase and ferric reductase activity, based on the sequence similarity to ferric reductase from Archaeoglobus fulgidus. As expected, flavoredoxin shared a common overall structure with A. fulgidus ferric reductase and displayed weak ferric reductase and flavin reductase activities; however, flavoredoxin contains two FMN molecules per dimer, unlike A. fulgidus ferric reductase, which has only one FMN molecule per dimer. Compared with A. fulgidus ferric reductase, flavoredoxin forms three additional hydrogen bonds and has a significantly smaller solvent-accessible surface area. These observations explain the higher affinity of flavoredoxin for FMN. Unexpectedly, an electron-density map indicated the presence of a Mes molecule on the re-side of the isoalloxazine ring of FMN, and that two zinc ions are bound to the two cysteine residues, Cys39 and Cys40, adjacent to FMN. These two cysteine residues are close to one of the putative ferric ion binding sites of ferric reductase. Based on their structural similarities, we conclude that the corresponding site of ferric reductase is the most plausible site for ferric ion binding. Comparing the structures with related flavin proteins revealed key structural features regarding the discrimination of function (ferric ion or flavin reduction) and a unique electron transport system.
Collapse
Affiliation(s)
- Naoki Shibata
- Department of Life Science, University of Hyogo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Broco M, Marques A, Oliveira S, Rodrigues-Pousada C. Characterisation of the 11 Kb DNA region adjacent to the gene encodingDesulfovibrio gigasflavoredoxin. ACTA ACUST UNITED AC 2009; 16:207-16. [PMID: 16147877 DOI: 10.1080/10425170500088296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Flavoredoxin is an FMN binding protein that functions as an electron carrier in the sulphate metabolism of Desulfovibrio gigas. The neighbouring DNA regions of the gene encoding flavoredoxin were sequenced and characterised. Transcript analysis of the flavoredoxin gene resulted in a positive band corresponding to the size of the coding region, suggesting that flavoredoxin is encoded by a monocystronic unit, as previously suggested by sequence analysis. Analysis of the adjacent DNA regions revealed several interesting genes. The sequenced DNA regions contain nine open reading frames (ORFs) organised in two polycystronic and two monocystronic units. These genes encode proteins involved in different metabolic pathways, namely in DNA methylation, tRNA and rRNA modification, mRNA metabolism, cell division, CoA synthesis and lipoprotein transport across the membrane.
Collapse
Affiliation(s)
- Manuela Broco
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida República (EAN), Oeiras, Portugal
| | | | | | | |
Collapse
|
4
|
Suharti S, Murakami KS, de Vries S, Ferry JG. Structural and biochemical characterization of flavoredoxin from the archaeon Methanosarcina acetivorans. Biochemistry 2008; 47:11528-35. [PMID: 18842001 DOI: 10.1021/bi801012p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flavoredoxin is a FMN-containing electron transfer protein that functions in the energy-yielding metabolism of Desulfovibrio gigas of the Bacteria domain. Although characterization of this flavoredoxin is the only one reported, a database search revealed homologues widely distributed in both the Bacteria and Archaea domains that define a novel family. To improve our understanding of this family, a flavoredoxin from Methanosarcina acetivorans of the Archaea domain was produced in Escherichia coli and biochemically characterized, and a high-resolution crystal structure was determined. The protein was shown to be a homodimer with a subunit molecular mass of 21 kDa containing one noncovalently bound FMN per monomer. Redox titration showed an E(m) of -271 mV with two electrons, consistent with no semiquinone observed in the potential range studied, a result suggesting the flavoredoxin functions as a two-electron carrier. However, neither of the obligate two-electron carriers, NAD(P)H and coenzyme F420H2, was a competent electron donor, whereas 2[4Fe-4S] ferredoxin reduced the flavoredoxin. The X-ray crystal structure determined at 2.05 A resolution revealed a homodimer containing one FMN per monomer, consistent with the biochemical characterization. The isoalloxazine ring of FMN was shown buried within a narrow groove approximately 10 A from the positively charged protein surface that possibly facilitates interaction with the negatively charged ferredoxin. The structure provides a basis for predicting the mechanism by which electrons are transferred between ferredoxin and FMN. The FMN is bound with hydrogen bonds to the isoalloxazine ring and electrostatic interactions with the phosphate moiety that, together with sequence analyses of homologues, indicate a novel FMN binding motif for the flavoredoxin family.
Collapse
Affiliation(s)
- Suharti Suharti
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
5
|
Ueda Y, Shibata N, Takeuchi D, Kitamura M, Higuchi Y. Crystallization and preliminary X-ray crystallographic study of flavoredoxin from Desulfovibrio vulgaris Miyazaki F. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:851-3. [PMID: 18765921 PMCID: PMC2531261 DOI: 10.1107/s1744309108025840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/11/2008] [Indexed: 11/10/2022]
Abstract
Flavoredoxin from Desulfovibrio vulgaris Miyazaki F has been overexpressed, purified and crystallized using the sitting-drop vapour-diffusion method with 10%(w/v) PEG 8000, 0.2 M zinc acetate and 100 mM MES pH 6.0. The diffraction pattern of the crystal extended to 1.05 A resolution under cryogenic conditions. The space group was determined to be P3(1)21, with unit-cell parameters a = b = 53.35, c = 116.22 A. Phase determination was carried out by the SAD method using methylmercuric chloride.
Collapse
Affiliation(s)
- Yasufumi Ueda
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Naoki Shibata
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5248, Japan
| | - Daisuke Takeuchi
- Department of Applied and Bioapplied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Masaya Kitamura
- Department of Applied and Bioapplied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5248, Japan
| |
Collapse
|
6
|
Wildschut JD, Lang RM, Voordouw JK, Voordouw G. Rubredoxin:oxygen oxidoreductase enhances survival of Desulfovibrio vulgaris hildenborough under microaerophilic conditions. J Bacteriol 2006; 188:6253-60. [PMID: 16923892 PMCID: PMC1595363 DOI: 10.1128/jb.00425-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes for superoxide reductase (Sor), rubredoxin (Rub), and rubredoxin:oxygen oxidoreductase (Roo) are located in close proximity in the chromosome of Desulfovibrio vulgaris Hildenborough. Protein blots confirmed the absence of Roo from roo mutant and sor-rub-roo (srr) mutant cells and its presence in sor mutant and wild-type cells grown under anaerobic conditions. Oxygen reduction rates of the roo and srr mutants were 20 to 40% lower than those of the wild type and the sor mutant, indicating that Roo functions as an O2 reductase in vivo. Survival of single cells incubated for 5 days on agar plates under microaerophilic conditions (1% air) was 85% for the sor, 4% for the roo, and 0.7% for the srr mutant relative to that of the wild type (100%). The similar survival rates of sor mutant and wild-type cells suggest that O2 reduction by Roo prevents the formation of reactive oxygen species (ROS) under these conditions; i.e., the ROS-reducing enzyme Sor is only needed for survival when Roo is missing. In contrast, the sor mutant was inactivated much more rapidly than the roo mutant when liquid cultures were incubated in 100% air, indicating that O2 reduction by Roo and other terminal oxidases did not prevent ROS formation under these conditions. Competition of Sor and Roo for limited reduced Rub was suggested by the observation that the roo mutant survived better than the wild type under fully aerobic conditions. The roo mutant was more strongly inhibited than the wild type by the nitric oxide (NO)-generating compound S-nitrosoglutathione, indicating that Roo may also serve as an NO reductase in vivo.
Collapse
Affiliation(s)
- Janine D Wildschut
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | | | | | | |
Collapse
|
7
|
Broco M, Rousset M, Oliveira S, Rodrigues-Pousada C. Deletion of flavoredoxin gene inDesulfovibrio gigasreveals its participation in thiosulfate reduction. FEBS Lett 2005; 579:4803-7. [PMID: 16099456 DOI: 10.1016/j.febslet.2005.07.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 07/14/2005] [Accepted: 07/25/2005] [Indexed: 11/25/2022]
Abstract
The gene encoding Desulfovibrio gigas flavoredoxin was deleted to elucidate its physiological role in the sulfate metabolism. Disruption of flr gene strongly inhibited the reduction of thiosulfate and exhibited a reduced growth in the presence of sulfite with lactate as electron donor. The growth with sulfate was not however affected by the lack of this protein. Additionally, flr mutant cells revealed a decrease of about 50% in the H2 consumption rate using thiosulfate as electron acceptor. Altogether, our results show in vivo that during sulfite respiration, trithionate and thiosulfate are produced and that flavoredoxin is specific for thiosulfate reduction.
Collapse
Affiliation(s)
- Manuela Broco
- Genomics and Stress Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República (EAN), 2784-505 Oeiras, Portugal
| | | | | | | |
Collapse
|
8
|
Adak S, Sharma M, Meade AL, Stuehr DJ. A conserved flavin-shielding residue regulates NO synthase electron transfer and nicotinamide coenzyme specificity. Proc Natl Acad Sci U S A 2002; 99:13516-21. [PMID: 12359874 PMCID: PMC129705 DOI: 10.1073/pnas.192283399] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitric oxide synthases (NOSs) are flavoheme enzymes that contain a ferredoxin:NADP(+)-reductase (FNR) module for binding NADPH and FAD and are unusual because their electron transfer reactions are controlled by the Ca(2+)-binding protein calmodulin. A conserved aromatic residue in the FNR module of NOS shields the isoalloxazine ring of FAD and is known to regulate NADPH binding affinity and specificity in related flavoproteins. We mutated Phe-1395 (F1395) in neuronal NOS to Tyr and Ser and tested their effects on nucleotide coenzyme specificity, catalytic activities, and electron transfer in the absence or presence of calmodulin. We found that the aromatic side chain of F1395 controls binding specificity with respect to NADH but does not greatly affect affinity for NADPH. Measures of flavin and heme reduction kinetics, ferricyanide and cytochrome c reduction, and NO synthesis established that the aromatic side chain of F1395 is required to repress electron transfer into and out of the flavins of neuronal NOS in the calmodulin-free state, and is also required for calmodulin to fully relieve this repression. We speculate that the phenyl side chain of F1395 is part of a conformational trigger mechanism that negatively or positively controls NOS electron transfer depending on the presence of calmodulin. Such use of the conserved aromatic residue broadens our understanding of flavoprotein structure and regulation.
Collapse
Affiliation(s)
- Subrata Adak
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | |
Collapse
|