1
|
Deb R, Sengar GS, Junghare V, Hazra S, Singh U, Alex R, Kumar A. Characterization of a putative ribosome binding site at the 5' untranslated region of bovine heat shock protein 90. Mol Biol Rep 2020; 47:7061-7071. [PMID: 32888122 DOI: 10.1007/s11033-020-05768-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/28/2020] [Indexed: 11/28/2022]
Abstract
Untranslated regions (UTRs) of the transcripts play significant roles in translation regulation and continue to raise many intriguing questions in our understanding of cellular stress physiology. Internal ribosome entry site (IRES) mediated alternative translation initiations are emerging as unique mechanisms. Present study is aimed to indentify a functional short 92 base pair length putative sequence located at the 5' untranslated region of bovine heat shock protein 90 AA1 (Hsp90AA1) may interact with ribosomal as well as eukaryotic initiation factor binding site. Here we have predicted both the two and three dimensional structures of bovine Hsp90AA1 IRES (MF400854) element with their respective free energy. Molecular interactions between bovine RPS5 and IRES have been determined after the preparation of docking complex of IRES bound RPS5. Structure of bovine ribosomal translational initiation factor (TIF) has also been determined and docked with IRES. Molecular interaction between bovine TIF and IRES was analyzed from the complex structure. We further detected the relative expression efficiency of the viral (original) in relation with Hsp90AA1 IRES-driven GFP expression, which revealed that efficiency under the control of identified bovine Hsp90AA1 IRES was slightly lower than viral origin. It was also noted that identified bovine HSP90 IRES may increase the expression level of GFP under in vitro heat stressed condition.
Collapse
Affiliation(s)
- Rajib Deb
- ICAR-Central Institute for Research on Cattle, Grass Farm Road, Meerutcantt, Meerut, UP, 250 001, India.
| | - Gyanendra Singh Sengar
- ICAR-Central Institute for Research on Cattle, Grass Farm Road, Meerutcantt, Meerut, UP, 250 001, India
| | - Vivek Junghare
- Department of Biotechnology, Center of Nanotechnology, Indian Institute of Technology, Roorkee, India
| | - Saugata Hazra
- Department of Biotechnology, Center of Nanotechnology, Indian Institute of Technology, Roorkee, India.,Center of Nanotechnology, Indian Institute of Technology, Roorkee, India
| | - Umesh Singh
- ICAR-Central Institute for Research on Cattle, Grass Farm Road, Meerutcantt, Meerut, UP, 250 001, India
| | - Rani Alex
- ICAR-Central Institute for Research on Cattle, Grass Farm Road, Meerutcantt, Meerut, UP, 250 001, India
| | - Asish Kumar
- ICAR-Central Institute for Research on Cattle, Grass Farm Road, Meerutcantt, Meerut, UP, 250 001, India
| |
Collapse
|
2
|
Fujita-Sato S, Galeas J, Truitt M, Pitt C, Urisman A, Bandyopadhyay S, Ruggero D, McCormick F. Enhanced MET Translation and Signaling Sustains K-Ras-Driven Proliferation under Anchorage-Independent Growth Conditions. Cancer Res 2015; 75:2851-62. [PMID: 25977330 DOI: 10.1158/0008-5472.can-14-1623] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 05/01/2015] [Indexed: 01/04/2023]
Abstract
Oncogenic K-Ras mutation occurs frequently in several types of cancers, including pancreatic and lung cancers. Tumors with K-Ras mutation are resistant to chemotherapeutic drugs as well as molecular targeting agents. Although numerous approaches are ongoing to find effective ways to treat these tumors, there are still no effective therapies for K-Ras mutant cancer patients. Here we report that K-Ras mutant cancers are more dependent on K-Ras in anchorage-independent culture conditions than in monolayer culture conditions. In seeking to determine mechanisms that contribute to the K-Ras dependency in anchorage-independent culture conditions, we discovered the involvement of Met in K-Ras-dependent, anchorage-independent cell growth. The Met signaling pathway is enhanced and plays an indispensable role in anchorage-independent growth even in cells in which Met is not amplified. Indeed, Met expression is elevated under anchorage-independent growth conditions and is regulated by K-Ras in a MAPK/ERK kinase (MEK)-dependent manner. Remarkably, in spite of a global downregulation of mRNA translation during anchorage-independent growth, we find that Met mRNA translation is specifically enhanced under these conditions. Importantly, ectopic expression of an active Met mutant rescues K-Ras ablation-derived growth suppression, indicating that K-Ras-mediated Met expression drives "K-Ras addiction" in anchorage-independent conditions. Our results indicate that enhanced Met expression and signaling is essential for anchorage-independent growth of K-Ras mutant cancer cells and suggests that pharmacological inhibitors of Met could be effective for K-Ras mutant tumor patients.
Collapse
Affiliation(s)
- Saori Fujita-Sato
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California. Oncology Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Jacqueline Galeas
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Morgan Truitt
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Cameron Pitt
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Anatoly Urisman
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Sourav Bandyopadhyay
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California.
| |
Collapse
|
3
|
Pelletier J, Graff J, Ruggero D, Sonenberg N. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res 2015; 75:250-63. [PMID: 25593033 DOI: 10.1158/0008-5472.can-14-2789] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elevated protein synthesis is an important feature of many cancer cells and often arises as a consequence of increased signaling flux channeled to eukaryotic initiation factor 4F (eIF4F), the key regulator of the mRNA-ribosome recruitment phase of translation initiation. In many cellular and preclinical models of cancer, eIF4F deregulation results in changes in translational efficiency of specific mRNA classes. Importantly, many of these mRNAs code for proteins that potently regulate critical cellular processes, such as cell growth and proliferation, enhanced cell survival and cell migration that ultimately impinge on several hallmarks of cancer, including increased angiogenesis, deregulated growth control, enhanced cellular survival, epithelial-to-mesenchymal transition, invasion, and metastasis. By being positioned as the molecular nexus downstream of key oncogenic signaling pathways (e.g., Ras, PI3K/AKT/TOR, and MYC), eIF4F serves as a direct link between important steps in cancer development and translation initiation. Identification of mRNAs particularly responsive to elevated eIF4F activity that typifies tumorigenesis underscores the critical role of eIF4F in cancer and raises the exciting possibility of developing new-in-class small molecules targeting translation initiation as antineoplastic agents.
Collapse
Affiliation(s)
- Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Québec, Canada. The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada. Department of Oncology, McGill University, Montreal, Québec, Canada.
| | - Jeremy Graff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Québec, Canada. The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada
| |
Collapse
|
4
|
von der Haar T. Mathematical and Computational Modelling of Ribosomal Movement and Protein Synthesis: an overview. Comput Struct Biotechnol J 2012; 1:e201204002. [PMID: 24688632 PMCID: PMC3962216 DOI: 10.5936/csbj.201204002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/31/2011] [Accepted: 11/05/2011] [Indexed: 11/22/2022] Open
Abstract
Translation or protein synthesis consists of a complex system of chemical reactions, which ultimately result in decoding of the mRNA and the production of a protein. The complexity of this reaction system makes it difficult to quantitatively connect its input parameters (such as translation factor or ribosome concentrations, codon composition of the mRNA, or energy availability) to output parameters (such as protein synthesis rates or ribosome densities on mRNAs). Mathematical and computational models of translation have now been used for nearly five decades to investigate translation, and to shed light on the relationship between the different reactions in the system. This review gives an overview over the principal approaches used in the modelling efforts, and summarises some of the major findings that were made.
Collapse
Affiliation(s)
- Tobias von der Haar
- School of Biosciences and Kent Fungal Group, University of Kent, Canterbury, CT2 7NJ, UK
| |
Collapse
|
5
|
Wu D, Matsushita K, Matsubara H, Nomura F, Tomonaga T. An alternative splicing isoform of eukaryotic initiation factor 4H promotes tumorigenesisin vivoand is a potential therapeutic target for human cancer. Int J Cancer 2010; 128:1018-30. [DOI: 10.1002/ijc.25419] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Nishimura K, Sakuma A, Yamashita T, Hirokawa G, Imataka H, Kashiwagi K, Igarashi K. Minor contribution of an internal ribosome entry site in the 5'-UTR of ornithine decarboxylase mRNA on its translation. Biochem Biophys Res Commun 2007; 364:124-30. [PMID: 17927956 DOI: 10.1016/j.bbrc.2007.09.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
The mechanism of synthesis of ornithine decarboxylase (ODC) at the level of translation was studied using cell culture and cell-free systems. Synthesis of firefly luciferase (Fluc) from the second open reading frame (ORF) in a bicistronic construct transfected into FM3A and HeLa cells was enhanced by the presence of the 5'-untranslated region (5'-UTR) of ODC mRNA between the two ORFs. However, cotransfection of the gene encoding 2A protease inhibited the synthesis of Fluc. Synthesis of Fluc from the second cistron in the bicistronic mRNA in a cell-free system was not affected significantly by the 5'-UTR of ODC mRNA. Synthesis of ODC from ODC mRNA in a cell-free system was inhibited by 2A protease and cap analogue (m7GpppG). Rapamycin inhibited ODC synthesis by 40-50% at both the G1/S boundary and the G2/M phase. These results indicate that an IRES in the 5'-UTR of ODC mRNA does not function effectively.
Collapse
Affiliation(s)
- Kazuhiro Nishimura
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Comtesse N, Keller A, Diesinger I, Bauer C, Kayser K, Huwer H, Lenhof HP, Meese E. Frequent overexpression of the genes FXR1, CLAPM1 and EIF4G located on amplicon 3q26-27 in squamous cell carcinoma of the lung. Int J Cancer 2007; 120:2538-44. [PMID: 17290396 DOI: 10.1002/ijc.22585] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previously, we reported gene amplification at chromosome 3q26-27 in more than one third of squamous cell carcinomas of the lung. Frequent amplification of eukaryotic translation initiation factor 4G on 3q27.1 indicated a possible role of this amplification in translation initiation. The analysis of 61 squamous cell lung carcinomas shows that the percentage of carcinomas with a 3q27.1 amplification increases in higher malignant tumors. Non-invasive (T1) and minimal-invasive (T2) tumor stages showed similar percentages of amplified and non-amplified tumors, whereas locally-invasive (T3) tumors revealed a statistically significant (p < 0.05) increased percentage of amplified tumors. Microarrays were used to analyze the expression pattern of genes mapping in the amplified domain and its flanking regions (3q25-28) as well as the expression of genes directly or indirectly associated with translation initiation in squamous cell carcinoma, large cell carcinoma, adenocarcinoma and small cell carcinoma. Three genes, namely FXR1, CLAPM1 and EIF4G, are most frequently overexpressed in the center of the amplified domain in squamous cell carcinomas. The eukaryotic translation initiation factors 4A1, 2B and 4B as well as the poly(A)-binding protein PABPC1 where found to be overexpressed in all lung cancer entities. We found, however, no overexpression of eIF4E. Our results contribute to the understanding of the frequent amplification processes in squamous cell carcinomas of the lung and to the understanding of the translation initiation that appears not to require eIF4E in lung carcinogenesis.
Collapse
Affiliation(s)
- Nicole Comtesse
- Department of Human Genetics, Medical School, Saarland University, Homburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Origanti S, Shantz LM. Ras Transformation of RIE-1 Cells Activates Cap-Independent Translation of Ornithine Decarboxylase: Regulation by the Raf/MEK/ERK and Phosphatidylinositol 3-Kinase Pathways. Cancer Res 2007; 67:4834-42. [PMID: 17510413 DOI: 10.1158/0008-5472.can-06-4627] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ornithine decarboxylase (ODC) is the first and generally rate-limiting enzyme in polyamine biosynthesis. Deregulation of ODC is critical for oncogenic growth, and ODC is a target of Ras. These experiments examine translational regulation of ODC in RIE-1 cells, comparing untransformed cells with those transformed by an activated Ras12V mutant. Analysis of the ODC 5' untranslated region (5'UTR) revealed four splice variants with the presence or absence of two intronic sequences. All four 5'UTR species were found in both cell lines; however, variants containing intronic sequences were more abundant in Ras-transformed cells. All splice variants support internal ribosome entry site (IRES)-mediated translation, and IRES activity is markedly elevated in cells transformed by Ras. Inhibition of Ras effector targets indicated that the ODC IRES element is regulated by the phosphorylation status of the translation factor eIF4E. Dephosphorylation of eIF4E by inhibition of mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK) or the eIF4E kinase Mnk1/2 increases ODC IRES activity in both cell lines. When both the Raf/MEK/ERK and phosphatidylinositol 3-kinase/mammalian target of rapamycin pathways are inhibited in normal cells, ODC IRES activity is very low and cells arrest in G(1). When these pathways are inhibited in Ras-transformed cells, cell cycle arrest does not occur and ODC IRES activity increases, helping to maintain high ODC activity.
Collapse
Affiliation(s)
- Sofia Origanti
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
9
|
Coldwell MJ, Morley SJ. Specific isoforms of translation initiation factor 4GI show differences in translational activity. Mol Cell Biol 2006; 26:8448-60. [PMID: 16982693 PMCID: PMC1636793 DOI: 10.1128/mcb.01248-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The eukaryotic initiation factor (eIF) 4GI gene locus (eIF4GI) contains three identified promoters, generating alternately spliced mRNAs, yielding a total of five eIF4GI protein isoforms. Although eIF4GI plays a critical role in mRNA recruitment to the ribosomes, little is known about the functions of the different isoforms, their partner binding capacities, or the role of the homolog, eIF4GII, in translation initiation. To directly address this, we have used short interfering RNAs (siRNAs) expressed from DNA vectors to silence the expression of eIF4GI in HeLa cells. Here we show that reduced levels of specific mRNA and eIF4GI isoforms in HeLa cells promoted aberrant morphology and a partial inhibition of translation. The latter reflected dephosphorylation of 4E-BP1 and decreased eIF4F complex levels, with no change in eIF2alpha phosphorylation. Expression of siRNA-resistant Myc-tagged eIF4GI isoforms has allowed us to show that the different isoforms exhibit significant differences in their ability to restore translation rates. Here we quantify the efficiency of eIF4GI promoter usage in mammalian cells and demonstrate that even though the longest isoform of eIF4GI (eIF4GIf) was relatively poorly expressed when reintroduced, it was more efficient at promoting the translation of cellular mRNAs than the more highly expressed shorter isoforms used in previous functional studies.
Collapse
Affiliation(s)
- Mark J Coldwell
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | |
Collapse
|
10
|
Lu J, Zhang J, Block ER, Patel JM. Angiotensin IV enhances phosphorylation of 4EBP1 by multiple signaling events in lung endothelial cells. Mol Cell Biochem 2006; 275:181-8. [PMID: 16342424 DOI: 10.1007/s11010-005-1487-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Angiotensin IV (Ang IV)-stimulated cell proliferation is regulated through activation of multiple signaling modules in lung endothelial cells (EC). Because eukaryotic intitiation factor 4E (eIF4E) binding protein 1 (4EBP1) plays a critical role in the RNA translation and the regulation of cell growth, we examined whether Ang IV modulates expression and/or phosphorylation of eIF4E and 4EBP1 as well as the role of multiple signaling events associated with 4EBP1 phosphorylation in EC. Ang IV stimulation increased phosphorylation but not expression of eIF4E and 4EBP1 proteins. Ang IV stimulation selectively phosphorylated Thr46 > Thr70 > Ser65 but not Thr37 residues in 4EBP1. Pretreatment of cells with PD-98059 and rapamycin, inhibitors of mitogen-activated protein kinase (ERK1/2) and mammalian target for rapamycin (mTOR), respectively, partially blocked Ang IV-mediated phosphorylation of 4EBP1. In contrast, overexpression of p70 ribosomal S6 kinase (p70S6K) and protein kinase B (Akt) enhanced phosphorylation of 4EBP1 and eIF4E binding affinity to the cap region of mRNA. These results support critical roles of multiple signaling and phosphorylation of 4EBP1 by Ang IV in translation process and protein synthesis.
Collapse
Affiliation(s)
- Jianghua Lu
- Department of Medicine, University of Florida
| | | | | | | |
Collapse
|
11
|
Ahn NS, Hu H, Park JS, Park JS, Kim JS, An S, Kong G, Aruoma OI, Lee YS, Kang KS. Molecular mechanisms of the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced inverted U-shaped dose responsiveness in anchorage independent growth and cell proliferation of human breast epithelial cells with stem cell characteristics. Mutat Res 2005; 579:189-99. [PMID: 16051281 DOI: 10.1016/j.mrfmmm.2005.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 03/02/2005] [Accepted: 03/07/2005] [Indexed: 05/03/2023]
Abstract
Although 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has a variety of carcinogenic and noncarcinogenic effects in experimental animals, its role in human carcinogenicity remain controversial. A simian virus 40-immortalized cell line from normal human breast epithelial cells with stem cells and luminal characteristics (M13SV1) was used to study whether TCDD can induce AIG positive colony formation and cause increased cell numbers in a inverted U-shaped dose-response manner. TCDD activated Akt, ERK2, and increased the expression of CYP1A1, PAI-2, IL-lb mRNA, and ERK2 protein levels. TCDD was able to increased phosphorylation and expression of ERK2 in same dose-response manner as AIG positive colony formation. Thus, TCDD induced tumorigenicity in M13SV1, possibly through the phosphorylation of ERK2 and/or Akt. Further, cDNA microarray with 7448 sequence-verified clones was used to profile various gene expression patterns after treatment of TCDD. Three clear patterns could be delineated: genes that were dose-dependently up-regulated, genes expressed in either U-shape and/or inverted U-shape. The fact that these genes are intrinsically related to breast epithelial cell proliferation and survival clearly suggests that they may be involved in the TCDD-induced breast tumorigenesis.
Collapse
Affiliation(s)
- Nam-Shik Ahn
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, San 56-1 Sillim-Dong, Kwanak-Gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tinton S, Schepens B, Bruynooghe Y, Beyaert R, Cornelis S. Regulation of the cell-cycle-dependent internal ribosome entry site of the PITSLRE protein kinase: roles of Unr (upstream of N-ras) protein and phosphorylated translation initiation factor eIF-2alpha. Biochem J 2005; 385:155-63. [PMID: 15330758 PMCID: PMC1134683 DOI: 10.1042/bj20040963] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 08/10/2004] [Accepted: 08/26/2004] [Indexed: 12/19/2022]
Abstract
The PITSLRE kinases belong to the large family of cyclin-dependent protein kinases. Their function has been related to cell-cycle regulation, splicing and apoptosis. We have previously shown that the open reading frame of the p110(PITSLRE) transcript contains an IRES (internal ribosome entry site) that allows the expression of a smaller p58(PITSLRE) isoform during the G2/M stage of the cell cycle. In the present study we investigated further the role of cis- and trans-acting factors in the regulation of the PITSLRE IRES. Progressive deletion analysis showed that both a purine-rich sequence and a Unr (upstream of N-ras) consensus binding site are essential for PITSLRE IRES activity. In line with these observations, we demonstrate that the PITSLRE IRES interacts with the Unr protein, which is more prominently expressed at the G2/M stage of the cell cycle. We also show that phosphorylation of the alpha-subunit of the canonical initiation factor eIF-2 is increased at G2/M. Interestingly, phosphorylation of eIF-2alpha has a permissive effect on the efficiency of both the PITSLRE IRES and the ornithine decarboxylase IRES, two cell cycle-dependent IRESs, in mediating internal initiation of translation, whereas this was not observed with the viral EMCV (encephalomyocarditis virus) and HRV (human rhinovirus) IRESs.
Collapse
Key Words
- cap-independent translation
- α-subunit of eukaryotic initiation factor 2 (eif-2α)
- g2/m cell-cycle stage
- internal ribosome-entry-site (ires)-specific trans-acting factor (itaf)
- p58pitslre protein kinase
- upstream of n-ras
- apaf-1, apoptotic-protease-activating factor 1
- cat-1, cationic amino acid transporter protein 1
- dtt, dithiothreitol
- eifs, eukaryotic initiation factors
- eif-2α, α-subunit of eukaryotic initiation factor 2
- emcv, encephalomyocarditis virus
- fcs, fetal-calf serum
- fluc, firefly luciferase
- hnrnp, heterogeneous nuclear ribonucleoprotein
- il-3, interleukin-3
- itaf, ires-specific trans-acting factor
- hrv, human rhinovirus
- ires, internal ribosome entry site
- odc, ornithine decarboxylase
- pars, polypurine (a)-rich sequence
- pdgf, platelet-derived growth factor
- pkr, double-stranded-rna-activated protein kinase
- pkr-k296r, death mutant [lys296→arginine]kpr
- ptb, polypyrimidine-tract-binding protein
- 5′-race, rapid amplification of cdna ends
- rluc, renilla luciferase
- rrl, rabbit reticulocyte lysate
- sv40, simian virus 40
- unr, upstream of n-ras (protein)
- 5′-utr, 5′-untranslated region
Collapse
Affiliation(s)
- Sandrine A. Tinton
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB (Flanders Interuniversity Institute for Biotechnology)–Ghent University, Technologiepark 927, B-9052 Gent-Zwijnaarde, Belgium
| | - Bert Schepens
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB (Flanders Interuniversity Institute for Biotechnology)–Ghent University, Technologiepark 927, B-9052 Gent-Zwijnaarde, Belgium
| | - Yanik Bruynooghe
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB (Flanders Interuniversity Institute for Biotechnology)–Ghent University, Technologiepark 927, B-9052 Gent-Zwijnaarde, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB (Flanders Interuniversity Institute for Biotechnology)–Ghent University, Technologiepark 927, B-9052 Gent-Zwijnaarde, Belgium
| | - Sigrid Cornelis
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB (Flanders Interuniversity Institute for Biotechnology)–Ghent University, Technologiepark 927, B-9052 Gent-Zwijnaarde, Belgium
| |
Collapse
|
13
|
Buechler RD, Peffley DM. Proto oncogene/eukaryotic translation initiation factor (eIF) 4E attenuates mevalonate-mediated regulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase synthesis. Mol Carcinog 2004; 41:39-53. [PMID: 15352124 DOI: 10.1002/mc.20039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The rate-limiting enzyme for mevalonate synthesis in mammalian cells is 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Products of mevalonate synthesis are required for cell cycle progression as well as cell growth and survival. In tumor cells, HMG-CoA reductase is generally elevated because of attenuated sterol-mediated regulation of transcription. However, tumor cell HMG-CoA reductase remains sensitive to post-transcriptional regulation by mevalonate-derived isoprenoid intermediates of cholesterol synthesis. Isoprenoids suppress HMG-CoA reductase synthesis through a mechanism that reduces initiation of translation on HMG-CoA reductase mRNA. Because HMG-CoA reductase mRNA transcripts have 5'-untranslated regions (UTR) that are GC rich and contain stable secondary structure, we tested the hypothesis that overexpression of eIF4E would attenuate isoprenoid-mediated regulation of HMG-CoA reductase. eIF4E is elevated in many tumor cells and behaves as a proto-oncogene by aberrantly translating mRNAs whose translation is normally suppressed by 5-UTRs that are GC rich. A CHO cell line expressing high levels of eIF4E (rb4E) was developed by infecting cells with retroviruses containing a full-length mouse cDNA for eIF4E. Levels of reductase synthesis were elevated fivefold in rb4E cells compared to noninfected CHO cells; HMG-CoA reductase mRNA levels were not increased in rb4E cells compared to normal CHO cells. Total cellular protein synthesis was only increased by approximately 15% in rb4E cells compared to CHO cells. The mTOR inhibitor rapamycin lowered HMG-CoA reductase synthesis by 50 and 60% in rb4E and CHO cells, respectively; no equivalent effect was observed for HMG-CoA reductase mRNA levels with rapamycin treatment. These results indicate that HMG-CoA reductase mRNA is in a class of mRNAs with highly structured 5'-UTRs whose m(7)GpppX cap-dependent translation is closely linked to the rapamycin-sensitive mitogen activated pathway for protein synthesis.
Collapse
Affiliation(s)
- Robbie D Buechler
- Department of Neurology, Duke University Medical Center, Erwin Road, Durham, North Carolina, USA
| | | |
Collapse
|
14
|
Han B, Zhang JT. Regulation of gene expression by internal ribosome entry sites or cryptic promoters: the eIF4G story. Mol Cell Biol 2002; 22:7372-84. [PMID: 12370285 PMCID: PMC135655 DOI: 10.1128/mcb.22.21.7372-7384.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an alternative to the scanning mechanism of initiation, the direct-internal-initiation mechanism postulates that the translational machinery assembles at the AUG start codon without traversing the entire 5' untranslated region (5'-UTR) of the mRNA. Although the existence of internal ribosome entry sites (IRESs) in viral mRNAs is considered to be well established, the existence of IRESs in cellular mRNAs has recently been challenged, in part because when testing is carried out using a conventional dicistronic vector, Northern blot analyses might not be sensitive enough to detect low levels of monocistronic transcripts derived via a cryptic promoter or splice site. To address this concern, we created a new promoterless dicistronic vector to test the putative IRES derived from the 5'-UTR of an mRNA that encodes the translation initiation factor eIF4G. Our analysis of this 5'-UTR sequence unexpectedly revealed a strong promoter. The activity of the internal promoter relies on the integrity of a polypyrimidine tract (PPT) sequence that had been identified as an essential component of the IRES. The PPT sequence overlaps with a binding site for transcription factor C/EBPbeta. Two other transcription factors, Sp1 and Ets, were also found to bind to and mediate expression from the promoter in the 5'-UTR of eIF4G mRNA. The biological significance of the internal promoter in the eIF4G mRNA might lie in the production of an N-terminally truncated form of the protein. Consistent with the idea that the cryptic promoter we identified underlies the previously reported IRES activity, we found no evidence of IRES function when a dicistronic mRNA containing the eIF4G sequence was translated in vitro or in vivo. Using the promoterless dicistronic vector, we also found promoter activities in the long 5'-UTRs of human Sno and mouse Bad mRNAs although monocistronic transcripts were not detectable on Northern blot analyses. The promoterless dicistronic vector might therefore prove useful in future studies to examine more rigorously the claim that there is IRES activity in cellular mRNAs.
Collapse
Affiliation(s)
- Baoguang Han
- Department of Pharmacology and Toxicology, Walther Oncology Center/Walther Cancer Institute and I.U. Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
15
|
Bradley CA, Padovan JC, Thompson TL, Benoit CA, Chait BT, Rhoads RE. Mass spectrometric analysis of the N terminus of translational initiation factor eIF4G-1 reveals novel isoforms. J Biol Chem 2002; 277:12559-71. [PMID: 11821405 DOI: 10.1074/jbc.m111134200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, translation initiation factor 4G (eIF4G) acts as the central binding protein for an unusually large number of proteins involved in mRNA metabolism. Several gene products homologous to eIF4G have been described, the most studied being eIF4G-1. By its association with other initiation factors, eIF4G-1 effects mRNA cap and poly(A) recognition, unwinding of secondary structure, and binding to the 43S initiation complex. Multiple electrophoretic isoforms of eIF4G-1 are observed, and multiple cDNAs have been reported, yet the relationship between the two is not known. We report here a new cDNA for eIF4G-1, present as a previously unidentified human expressed sequence tag, that extends the long open reading frame, provides a new in-frame initiation codon, and predicts a longer form of eIF4G-1 than reported previously. eIF4G isoforms from human K562 cells were cleaved with recombinant Coxsackievirus 2A protease and the N- terminal domains purified by m(7)GTP-Sepharose chromatography and polyacrylamide gel electrophoresis. Proteins were digested with proteolytic enzymes and peptides masses determined by matrix-assisted laser desorption ionization-time of flight mass spectrometry. In selected cases, peptides were sequenced by electrospray-mass spectrometry fragmentation. This identified the N termini of the three most abundant eIF4G-1 isoforms, two of which had not previously been proposed. These proteins appear to have been initiated from three different AUG codons.
Collapse
Affiliation(s)
- Christopher A Bradley
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | | | | | |
Collapse
|
16
|
Watkins SJ, Norbury CJ. Translation initiation and its deregulation during tumorigenesis. Br J Cancer 2002; 86:1023-7. [PMID: 11953842 PMCID: PMC2364173 DOI: 10.1038/sj.bjc.6600222] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2002] [Accepted: 02/08/2002] [Indexed: 12/16/2022] Open
Abstract
Regulation of protein synthesis at the level of translation initiation is fundamentally important for the control of cell proliferation under normal physiological conditions. Conversely, misregulation of protein synthesis is emerging as a major contributory factor in cancer development. Most bulk protein synthesis is initiated via recognition of the mRNA 5' cap and subsequent recognition of the initiator AUG codon by a directional scanning mechanism. However, several key regulators of tumour development are translated by a cap-independent pathway. Here we review eukaryotic translation initiation, its regulation and the ways in which this regulation can break down during tumorigenesis.
Collapse
Affiliation(s)
- S J Watkins
- Cancer Research UK Molecular Oncology Laboratory, University of Oxford, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | |
Collapse
|
17
|
Pedersen SK, Christiansen J, Hansen TVO, Larsen MR, Nielsen FC. Human insulin-like growth factor II leader 2 mediates internal initiation of translation. Biochem J 2002; 363:37-44. [PMID: 11903044 PMCID: PMC1222448 DOI: 10.1042/0264-6021:3630037] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Insulin-like growth factor II (IGF-II) is a fetal growth factor, which belongs to the family of insulin-like peptides. During fetal life, the IGF-II gene generates three mRNAs with different 5' untranslated regions (UTRs), but identical coding regions and 3' UTRs. We have shown previously that IGF-II leader 3 mRNA translation is regulated by a rapamycin-sensitive pathway, whereas leader 4 mRNA is constitutively translated, but so far the significance of leader 2 mRNA has been unclear. Here, we show that leader 2 mRNA is translated efficiently in an eIF4E-independent manner. In a bicistronic vector system, the 411 nt leader 2 was capable of internal initiation via a phylogenetically conserved internal ribosome entry site (IRES), located in the 3' half of the leader. The IRES is composed of an approx. 120 nt ribosome recruitment element, followed by an 80 nt spacer region, which is scanned by the ribosomal pre-initiation complex. Since cap-dependent translation is down-regulated during cell division, leader 2 might facilitate a continuous IGF-II production in rapidly dividing cells during development.
Collapse
Affiliation(s)
- Susanne K Pedersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- C U Hellen
- Department of Microbiology and Immunology, Morse Institute for Molecular Genetics, State University of New York Health Science Center at Brooklyn, Brooklyn, New York 11203, USA.
| | | |
Collapse
|