1
|
Lang M, Pramstaller PP, Pichler I. Crosstalk of organelles in Parkinson's disease - MiT family transcription factors as central players in signaling pathways connecting mitochondria and lysosomes. Mol Neurodegener 2022; 17:50. [PMID: 35842725 PMCID: PMC9288732 DOI: 10.1186/s13024-022-00555-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Living organisms constantly need to adapt to their surrounding environment and have evolved sophisticated mechanisms to deal with stress. Mitochondria and lysosomes are central organelles in the response to energy and nutrient availability within a cell and act through interconnected mechanisms. However, when such processes become overwhelmed, it can lead to pathologies. Parkinson's disease (PD) is a common neurodegenerative disorder (NDD) characterized by proteinaceous intracellular inclusions and progressive loss of dopaminergic neurons, which causes motor and non-motor symptoms. Genetic and environmental factors may contribute to the disease etiology. Mitochondrial dysfunction has long been recognized as a hallmark of PD pathogenesis, and several aspects of mitochondrial biology are impaired in PD patients and models. In addition, defects of the autophagy-lysosomal pathway have extensively been observed in cell and animal models as well as PD patients' brains, where constitutive autophagy is indispensable for adaptation to stress and energy deficiency. Genetic and molecular studies have shown that the functions of mitochondria and lysosomal compartments are tightly linked and influence each other. Connections between these organelles are constituted among others by mitophagy, organellar dynamics and cellular signaling cascades, such as calcium (Ca2+) and mTOR (mammalian target of rapamycin) signaling and the activation of transcription factors. Members of the Microphthalmia-associated transcription factor family (MiT), including MITF, TFE3 and TFEB, play a central role in regulating cellular homeostasis in response to metabolic pressure and are considered master regulators of lysosomal biogenesis. As such, they are part of the interconnection between mitochondria and lysosome functions and therefore represent attractive targets for therapeutic approaches against NDD, including PD. The activation of MiT transcription factors through genetic and pharmacological approaches have shown encouraging results at ameliorating PD-related phenotypes in in vitro and in vivo models. In this review, we summarize the relationship between mitochondrial and autophagy-lysosomal functions in the context of PD etiology and focus on the role of the MiT pathway and its potential as pharmacological target against PD.
Collapse
Affiliation(s)
- Martin Lang
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
2
|
Lang M, Grünewald A, Pramstaller PP, Hicks AA, Pichler I. A genome on shaky ground: exploring the impact of mitochondrial DNA integrity on Parkinson's disease by highlighting the use of cybrid models. Cell Mol Life Sci 2022; 79:283. [PMID: 35513611 PMCID: PMC9072496 DOI: 10.1007/s00018-022-04304-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
Mitochondria play important roles in the regulation of key cellular processes, including energy metabolism, oxidative stress response, and signaling towards cell death or survival, and are distinguished by carrying their own genome (mtDNA). Mitochondrial dysfunction has emerged as a prominent cellular mechanism involved in neurodegeneration, including Parkinson’s disease (PD), a neurodegenerative movement disorder, characterized by progressive loss of dopaminergic neurons and the occurrence of proteinaceous Lewy body inclusions. The contribution of mtDNA variants to PD pathogenesis has long been debated and is still not clearly answered. Cytoplasmic hybrid (cybrid) cell models provided evidence for a contribution of mtDNA variants to the PD phenotype. However, conclusive evidence of mtDNA mutations as genetic cause of PD is still lacking. Several models have shown a role of somatic, rather than inherited mtDNA variants in the impairment of mitochondrial function and neurodegeneration. Accordingly, several nuclear genes driving inherited forms of PD are linked to mtDNA quality control mechanisms, and idiopathic as well as familial PD tissues present increased mtDNA damage. In this review, we highlight the use of cybrids in this PD research field and summarize various aspects of how and to what extent mtDNA variants may contribute to the etiology of PD.
Collapse
Affiliation(s)
- Martin Lang
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| |
Collapse
|
3
|
Mitochondrial Dysfunction in Parkinson's Disease: Focus on Mitochondrial DNA. Biomedicines 2020; 8:biomedicines8120591. [PMID: 33321831 PMCID: PMC7763033 DOI: 10.3390/biomedicines8120591] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria, the energy stations of the cell, are the only extranuclear organelles, containing their own (mitochondrial) DNA (mtDNA) and the protein synthesizing machinery. The location of mtDNA in close proximity to the oxidative phosphorylation system of the inner mitochondrial membrane, the main source of reactive oxygen species (ROS), is an important factor responsible for its much higher mutation rate than nuclear DNA. Being more vulnerable to damage than nuclear DNA, mtDNA accumulates mutations, crucial for the development of mitochondrial dysfunction playing a key role in the pathogenesis of various diseases. Good evidence exists that some mtDNA mutations are associated with increased risk of Parkinson’s disease (PD), the movement disorder resulted from the degenerative loss of dopaminergic neurons of substantia nigra. Although their direct impact on mitochondrial function/dysfunction needs further investigation, results of various studies performed using cells isolated from PD patients or their mitochondria (cybrids) suggest their functional importance. Studies involving mtDNA mutator mice also demonstrated the importance of mtDNA deletions, which could also originate from abnormalities induced by mutations in nuclear encoded proteins needed for mtDNA replication (e.g., polymerase γ). However, proteomic studies revealed only a few mitochondrial proteins encoded by mtDNA which were downregulated in various PD models. This suggests nuclear suppression of the mitochondrial defects, which obviously involve cross-talk between nuclear and mitochondrial genomes for maintenance of mitochondrial functioning.
Collapse
|
4
|
Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: can mitochondria be targeted therapeutically? Biochem Soc Trans 2018; 46:891-909. [PMID: 30026371 DOI: 10.1042/bst20170501] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Mitochondrial abnormalities have been identified as a central mechanism in multiple neurodegenerative diseases and, therefore, the mitochondria have been explored as a therapeutic target. This review will focus on the evidence for mitochondrial abnormalities in the two most common neurodegenerative diseases, Parkinson's disease and Alzheimer's disease. In addition, we discuss the main strategies which have been explored in these diseases to target the mitochondria for therapeutic purposes, focusing on mitochondrially targeted antioxidants, peptides, modulators of mitochondrial dynamics and phenotypic screening outcomes.
Collapse
|
5
|
Mitochondrial DNA mutations in neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1401-11. [PMID: 26014345 DOI: 10.1016/j.bbabio.2015.05.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction is observed in both the aging brain, and as a core feature of several neurodegenerative diseases. A central mechanism mediating this dysfunction is acquired molecular damage to mitochondrial DNA (mtDNA). In addition, inherited stable mtDNA variation (mitochondrial haplogroups), and inherited low level variants (heteroplasmy) have also been associated with the development of neurodegenerative disease and premature neural aging respectively. Herein we review the evidence for both inherited and acquired mtDNA mutations contributing to neural aging and neurodegenerative disease. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.
Collapse
|
6
|
Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biol 2014; 2:619-31. [PMID: 25460729 PMCID: PMC4297942 DOI: 10.1016/j.redox.2014.03.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic hybrid (cybrid) cell lines can incorporate human subject mitochondria and perpetuate its mitochondrial DNA (mtDNA)-encoded components. Since the nuclear background of different cybrid lines can be kept constant, this technique allows investigators to study the influence of mtDNA on cell function. Prior use of cybrids has elucidated the contribution of mtDNA to a variety of biochemical parameters, including electron transport chain activities, bioenergetic fluxes, and free radical production. While the interpretation of data generated from cybrid cell lines has technical limitations, cybrids have contributed valuable insight into the relationship between mtDNA and phenotype alterations. This review discusses the creation of the cybrid technique and subsequent data obtained from cybrid applications. The cytoplasmic hybrid (cybrid) model can be used to determine mitochondrial DNA (mtDNA) contributions to phenotypic alterations. Cybrids are used to study mitochondriopathies such as Parkinson’s disease and Alzheimer’s disease. mtDNA heteroplasmy threshold and nuclear DNA-mtDNA compatibility can be determined using cybrid models.
Collapse
|
7
|
Chaturvedi RK, Flint Beal M. Mitochondrial diseases of the brain. Free Radic Biol Med 2013; 63:1-29. [PMID: 23567191 DOI: 10.1016/j.freeradbiomed.2013.03.018] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders are debilitating diseases of the brain, characterized by behavioral, motor and cognitive impairments. Ample evidence underpins mitochondrial dysfunction as a central causal factor in the pathogenesis of neurodegenerative disorders including Parkinson's disease, Huntington's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, Friedreich's ataxia and Charcot-Marie-Tooth disease. In this review, we discuss the role of mitochondrial dysfunction such as bioenergetics defects, mitochondrial DNA mutations, gene mutations, altered mitochondrial dynamics (mitochondrial fusion/fission, morphology, size, transport/trafficking, and movement), impaired transcription and the association of mutated proteins with mitochondria in these diseases. We highlight the therapeutic role of mitochondrial bioenergetic agents in toxin and in cellular and genetic animal models of neurodegenerative disorders. We also discuss clinical trials of bioenergetics agents in neurodegenerative disorders. Lastly, we shed light on PGC-1α, TORC-1, AMP kinase, Nrf2-ARE, and Sirtuins as novel therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Rajnish K Chaturvedi
- CSIR-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India.
| | | |
Collapse
|
8
|
Swerdlow RH. Does mitochondrial DNA play a role in Parkinson's disease? A review of cybrid and other supportive evidence. Antioxid Redox Signal 2012; 16:950-64. [PMID: 21338319 PMCID: PMC3643260 DOI: 10.1089/ars.2011.3948] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Mitochondria are currently believed to play an important role in the neurodysfunction and neurodegeneration that underlie Parkinson's disease (PD). RECENT ADVANCES While it increasingly appears that mitochondrial dysfunction in PD can have different causes, it has been proposed that mitochondrial DNA (mtDNA) may account for or drive mitochondrial dysfunction in the majority of the cases. If correct, the responsible mtDNA signatures could represent acquired mutations, inherited mutations, or population-distributed polymorphisms. CRITICAL ISSUES AND FUTURE DIRECTIONS This review discusses the case for mtDNA as a key mediator of PD, and especially focuses on data from studies of PD cytoplasmic hybrid (cybrid) cell lines.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Departments of Neurology, Biochemistry and Molecular Biology, and Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
9
|
Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol Rev 2011; 91:1161-218. [PMID: 22013209 DOI: 10.1152/physrev.00022.2010] [Citation(s) in RCA: 422] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common motor disorder of mysterious etiology. It is due to the progressive degeneration of the dopaminergic neurons of the substantia nigra and is accompanied by the appearance of intraneuronal inclusions enriched in α-synuclein, the Lewy bodies. It is becoming increasingly clear that genetic factors contribute to its complex pathogenesis. Over the past decade, the genetic basis of rare PD forms with Mendelian inheritance, representing no more than 10% of the cases, has been investigated. More than 16 loci and 11 associated genes have been identified so far; genome-wide association studies have provided convincing evidence that polymorphic variants in these genes contribute to sporadic PD. The knowledge acquired of the functions of their protein products has revealed pathways of neurodegeneration that may be shared between inherited and sporadic PD. An impressive set of data in different model systems strongly suggest that mitochondrial dysfunction plays a central role in clinically similar, early-onset autosomal recessive PD forms caused by parkin and PINK1, and possibly DJ-1 gene mutations. In contrast, α-synuclein accumulation in Lewy bodies defines a spectrum of disorders ranging from typical late-onset PD to PD dementia and including sporadic and autosomal dominant PD forms due to mutations in SCNA and LRRK2. However, the pathological role of Lewy bodies remains uncertain, as they may or may not be present in PD forms with one and the same LRRK2 mutation. Impairment of autophagy-based protein/organelle degradation pathways is emerging as a possible unifying but still fragile pathogenic scenario in PD. Strengthening these discoveries and finding other convergence points by identifying new genes responsible for Mendelian forms of PD and exploring their functions and relationships are the main challenges of the next decade. It is also the way to follow to open new promising avenues of neuroprotective treatment for this devastating disorder.
Collapse
Affiliation(s)
- Olga Corti
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale U.975, Paris, France
| | | | | |
Collapse
|
10
|
Esteves AR, Lu J, Rodova M, Onyango I, Lezi E, Dubinsky R, Lyons KE, Pahwa R, Burns JM, Cardoso SM, Swerdlow RH. Mitochondrial respiration and respiration-associated proteins in cell lines created through Parkinson's subject mitochondrial transfer. J Neurochem 2010; 113:674-82. [PMID: 20132468 DOI: 10.1111/j.1471-4159.2010.06631.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is associated with perturbed mitochondrial function. Studies of cytoplasmic hybrid (cybrid) cell lines containing mitochondria from PD subjects suggest complex I dysfunction in particular is a relatively upstream biochemical defect. To evaluate potential downstream consequences of PD mitochondrial dysfunction, we used a cybrid approach to model PD mitochondrial dysfunction; our cybrid cell lines were generated via transfer of PD or control subject platelet mitochondria to mtDNA-depleted NT2 cells. To confirm our PD cybrid mitochondria did indeed differ from control cybrid mitochondria we measured complex I V(max) activities. Consistent with other PD cybrid reports, relative to control cybrid cell lines the PD cybrid cell line mean complex I V(max) activity was reduced. In this validated model, we used an oxygen electrode to characterize PD cybrid mitochondrial respiration. Although whole cell basal oxygen consumption was comparable between the PD and control cybrid groups, the proton leak was increased and maximum respiratory capacity was decreased in the PD cybrids. PD cybrids also had reduced SIRT1 phosphorylation, reduced peroxisome proliferator-activated receptor-gamma coactivator-1alpha levels, and increased NF-kB activation. We conclude mitochondrial respiration and pathways influenced by aerobic metabolism are altered in NT2 cybrid cell lines generated through transfer of PD subject platelet mitochondria.
Collapse
Affiliation(s)
- A Raquel Esteves
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mitochondrial dysfunction in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2009; 1802:29-44. [PMID: 19733240 DOI: 10.1016/j.bbadis.2009.08.013] [Citation(s) in RCA: 406] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 12/21/2022]
Abstract
Mitochondria are highly dynamic organelles which fulfill a plethora of functions. In addition to their prominent role in energy metabolism, mitochondria are intimately involved in various key cellular processes, such as the regulation of calcium homeostasis, stress response and cell death pathways. Thus, it is not surprising that an impairment of mitochondrial function results in cellular damage and is linked to aging and neurodegeneration. Many lines of evidence suggest that mitochondrial dysfunction plays a central role in the pathogenesis of Parkinson's disease (PD), starting in the early 1980s with the observation that an inhibitor of complex I of the electron transport chain can induce parkinsonism. Remarkably, recent research indicated that several PD-associated genes interface with pathways regulating mitochondrial function, morphology, and dynamics. In fact, sporadic and familial PD seem to converge at the level of mitochondrial integrity.
Collapse
|
12
|
Hanagasi HA, Ayribas D, Baysal K, Emre M. MITOCHONDRIAL COMPLEX I, II/III, AND IV ACTIVITIES IN FAMILIAL AND SPORADIC PARKINSON'S DISEASE. Int J Neurosci 2009; 115:479-93. [PMID: 15809215 DOI: 10.1080/00207450590523017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A possible role of mitochondrial respiratory chain dysfunction in the pathogenesis of sporadic Parkinson's disease (PD) has been described. There are only a few reports concerning mitochondrial involvement in familial Parkinson's disease. The present study investigated mitochondrial complex I-IV activity in patients with sporadic and familial PD, compared to controls. Platelets were isolated from venous blood and platelet mitochondria were obtained through sonication and differential centrifugation. Complex I, II/III, and IV activities were measured in 17 patients with family history of Parkinson's disease (PDF), 15 patients with sporadic Parkinson disease (PDS), and 17 age-matched, healthy controls. The mitochondrial enzyme activities did not differ significantly between patient groups and controls. In addition, there was no correlation between mitochondrial complex activities and age, severity of disease, or age at onset of disease in the patient groups. In this study, the data indicate no significant differences in mitochondrial complex I-IV activities in PDF and PDS.
Collapse
Affiliation(s)
- Hasmet Ayhan Hanagasi
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, Behavioral Neurology and Movement Disorders Unit, Istanbul, Turkey.
| | | | | | | |
Collapse
|
13
|
Banerjee R, Starkov AA, Beal MF, Thomas B. Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1792:651-63. [PMID: 19059336 PMCID: PMC2867353 DOI: 10.1016/j.bbadis.2008.11.007] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/07/2008] [Accepted: 11/08/2008] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder with unknown etiology. It is marked by widespread neurodegeneration in the brain with profound loss of A9 midbrain dopaminergic neurons in substantia nigra pars compacta. Several theories of biochemical abnormalities have been linked to pathogenesis of PD of which mitochondrial dysfunction due to an impairment of mitochondrial complex I and subsequent oxidative stress seems to take the center stage in experimental models of PD and in postmortem tissues of sporadic forms of illness. Recent identification of specific gene mutations and their influence on mitochondrial functions has further reinforced the relevance of mitochondrial abnormalities in disease pathogenesis. In both sporadic and familial forms of PD abnormal mitochondrial paradigms associated with disease include impaired functioning of the mitochondrial electron transport chain, aging associated damage to mitochondrial DNA, impaired calcium buffering, and anomalies in mitochondrial morphology and dynamics. Here we provide an overview of specific mitochondrial functions affected in sporadic and familial PD that play a role in disease pathogenesis. We propose to utilize these gained insights to further streamline and focus the research to better understand mitochondria's role in disease development and exploit potential mitochondrial targets for therapeutic interventions in PD pathogenesis.
Collapse
Affiliation(s)
- Rebecca Banerjee
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 525 East 68th Street, A-501, New York, New York 10065, USA
| | - Anatoly A. Starkov
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 525 East 68th Street, A-501, New York, New York 10065, USA
| | - M. Flint Beal
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 525 East 68th Street, A-501, New York, New York 10065, USA
| | - Bobby Thomas
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 525 East 68th Street, A-501, New York, New York 10065, USA
| |
Collapse
|
14
|
Reeve AK, Krishnan KJ, Turnbull D. Mitochondrial DNA mutations in disease, aging, and neurodegeneration. Ann N Y Acad Sci 2009; 1147:21-9. [PMID: 19076427 DOI: 10.1196/annals.1427.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Patients with disorders from mutations in the mitochondrial genome have variable phenotypes, but common to many of these disorders are underlying changes in postmitotic cells, particularly neurons and muscle fibers. The mitochondrial dysfunction caused by these mutations has been shown to be associated with signs of apoptosis and to cause cell loss. Mutations of the mitochondrial genome have also been shown to accumulate with age and in common neurodegenerative diseases, such as Parkinson's disease. This review presents recent data to show that the information gained from studying patients with mitochondrial disorders can help our understanding of the role of mitochondrial DNA mutations in brain aging and neurodegeneration.
Collapse
Affiliation(s)
- Amy K Reeve
- Mitochondrial Research Group, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
15
|
Abstract
A large body of evidence from postmortem brain tissue and genetic analysis in humans and biochemical and pathological studies in animal models (transgenic and toxin) of neurodegeneration suggest that mitochondrial dysfunction is a common pathological mechanism. Mitochondrial dysfunction from oxidative stress, mitochondrial DNA deletions, pathological mutations, altered mitochondrial morphology, and interaction of pathogenic proteins with mitochondria leads to neuronal demise. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. This review discusses the potential therapeutic efficacy of creatine, coenzyme Q10, idebenone, synthetic triterpenoids, and mitochondrial targeted antioxidants (MitoQ) and peptides (SS-31) in in vitro studies and in animal models of Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. We have also reviewed the current status of clinical trials of creatine, coenzyme Q10, idebenone, and MitoQ in neurodegenerative disorders. Further, we discuss newly identified therapeutic targets, including peroxisome proliferator-activated receptor-gamma-coactivator and sirtuins, which provide promise for future therapeutic developments in neurodegenerative disorders.
Collapse
Affiliation(s)
- Rajnish K Chaturvedi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | |
Collapse
|
16
|
Fukui H, Moraes CT. The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis? Trends Neurosci 2008; 31:251-6. [PMID: 18403030 PMCID: PMC2731695 DOI: 10.1016/j.tins.2008.02.008] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 02/15/2008] [Accepted: 02/19/2008] [Indexed: 01/26/2023]
Abstract
Aging is the most important risk factor for common neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. Aging in the central nervous system has been associated with elevated mutation load in mitochondrial DNA, defects in mitochondrial respiration and increased oxidative damage. These observations support a 'vicious cycle' theory which states that there is a feedback mechanism connecting these events in aging and age-associated neurodegeneration. Despite being an extremely attractive hypothesis, the bulk of the evidence supporting the mitochondrial vicious cycle model comes from pharmacological experiments in which the modes of mitochondrial enzyme inhibition are far from those observed in real life. Furthermore, recent in vivo evidence does not support this model. In this review, we focus on the relationship among the components of the putative vicious cycle, with particular emphasis on the role of mitochondrial defects on oxidative stress.
Collapse
Affiliation(s)
- Hirokazu Fukui
- Neuroscience Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | |
Collapse
|
17
|
Abstract
A decline in mitochondrial function has long been shown to exist in neurodegenerative disease. Whether this decline is a secondary consequence of other factors or whether it causes the eventual death of a cell is unknown. In this review, we will discuss some of the major evidence surrounding mitochondrial DNA mutations leading to mitochondrial dysfunction in neurodegenerative disease and discuss their possible role in neurodegeneration.
Collapse
|
18
|
Swerdlow RH. Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies. J Neurosci Res 2008; 85:3416-28. [PMID: 17243174 DOI: 10.1002/jnr.21167] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cytoplasmic hybrid (cybrid) technique allows investigators to express selected mitochondrial DNA (mtDNA) sequences against fixed nuclear DNA (nDNA) backgrounds. Cybrids have been used to study the effects of known mtDNA mutations on mitochondrial biochemistry, mtDNA-nDNA inter-species compatibility, and mtDNA integrity in persons without mtDNA mutations defined previously. This review discusses events leading up to creation of the cybrid technique, as well as data obtained via application of the cybrid strategies listed above. Although interpreting cybrid data requires awareness of technique limitations, valuable insights into mtDNA genotype-functional phenotype relationships are suggested.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
19
|
Khan SM, Smigrodzki RM, Swerdlow RH. Cell and animal models of mtDNA biology: progress and prospects. Am J Physiol Cell Physiol 2006; 292:C658-69. [PMID: 16899549 DOI: 10.1152/ajpcell.00224.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The past two decades have witnessed an evolving understanding of the mitochondrial genome's (mtDNA) role in basic biology and disease. From the recognition that mutations in mtDNA can be responsible for human disease to recent efforts showing that mtDNA mutations accumulate over time and may be responsible for some phenotypes of aging, the field of mitochondrial genetics has greatly benefited from the creation of cell and animal models of mtDNA mutation. In this review, we critically discuss the past two decades of efforts and insights gained from cell and animal models of mtDNA mutation. We attempt to reconcile the varied and at times contradictory findings by highlighting the various methodologies employed and using human mtDNA disease as a guide to better understanding of cell and animal mtDNA models. We end with a discussion of scientific and therapeutic challenges and prospects for the future of mtDNA transfection and gene therapy.
Collapse
Affiliation(s)
- Shaharyar M Khan
- Gencia Corp., 706 B Forrest St., Charlottesville, VA 22903, USA.
| | | | | |
Collapse
|
20
|
Howell N, Elson JL, Chinnery PF, Turnbull DM. mtDNA mutations and common neurodegenerative disorders. Trends Genet 2005; 21:583-6. [PMID: 16154228 DOI: 10.1016/j.tig.2005.08.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 08/03/2005] [Accepted: 08/30/2005] [Indexed: 11/21/2022]
Abstract
The incidence and prevalence of Alzheimer's disease (AD) and Parkinson's disease (PD) are increasing as the population ages. Both disorders have been associated with oxidative stress and mitochondrial dysfunction, and it has been proposed that mutations in the mitochondrial genome have a key role in neurodegeneration in AD and PD patients. Two recent publications propose that heteroplasmic mtDNA mutations are involved in AD and PD. However, when these new studies are considered in relation to the sum of previous evidence, the role of mtDNA mutations in the development of either AD or PD still remains to be established.
Collapse
Affiliation(s)
- Neil Howell
- Migenix Corporation, San Diego, CA 92130, USA
| | | | | | | |
Collapse
|
21
|
Munakata K, Tanaka M, Mori K, Washizuka S, Yoneda M, Tajima O, Akiyama T, Nanko S, Kunugi H, Tadokoro K, Ozaki N, Inada T, Sakamoto K, Fukunaga T, Iijima Y, Iwata N, Tatsumi M, Yamada K, Yoshikawa T, Kato T. Mitochondrial DNA 3644T-->C mutation associated with bipolar disorder. Genomics 2005; 84:1041-50. [PMID: 15533721 DOI: 10.1016/j.ygeno.2004.08.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 08/18/2004] [Indexed: 11/21/2022]
Abstract
Mitochondrial dysfunction associated with mutant mitochondrial DNA (mtDNA) has been suggested in bipolar disorder, and comorbidity with neurodegenerative diseases was often noted. We examined the entire sequence of mtDNA in six subjects with bipolar disorder having comorbid somatic symptoms suggestive of mitochondrial disorders and found several uncharacterized homoplasmic nonsynonymous nucleotide substitutions of mtDNA. Of these, 3644C was found in 5 of 199 patients with bipolar disorder but in none of 258 controls (p = 0.015). The association was significant in the extended samples [bipolar disorder, 9/630 (1.43%); controls, 1/734 (0.14%); p = 0.007]. On the other hand, only 5 of 25 family members with this mutation developed bipolar disorder, of which 4 patients with 3644C had comorbid physical symptoms. The 3644T-->C mutation converts amino acid 113, valine, to alanine in the NADH-ubiquinone dehydrogenase subunit I, a subunit of complex I, and 113 valine is well conserved from Drosophila to 61 mammalian species. Using transmitochondrial cybrids, 3644T-->C was shown to decrease mitochondrial membrane potential and complex I activity compared with haplogroup-matched controls. According to human mitochondrial genome polymorphism databases, 3644C was not found in centenarians but was found in 3% of patients with Alzheimer disease and 2% with Parkinson disease. The result of modest functional impairment caused by 3644T-->C suggests that this mutation could increase the risk for bipolar disorder.
Collapse
Affiliation(s)
- Kae Munakata
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Beal MF. Bioenergetic approaches for neuroprotection in Parkinson's disease. Ann Neurol 2003; 53 Suppl 3:S39-47; discussion S47-8. [PMID: 12666097 DOI: 10.1002/ana.10479] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is considerable evidence suggesting that mitochondrial dysfunction and oxidative damage may play a role in the pathogenesis of Parkinson's disease (PD). This possibility has been strengthened by recent studies in animal models, which have shown that a selective inhibitor of complex I of the electron transport gene can produce an animal model that closely mimics both the biochemical and histopathological findings of PD. Several agents are available that can modulate cellular energy metabolism and that may exert antioxidative effects. There is substantial evidence that mitochondria are a major source of free radicals within the cell. These appear to be produced at both the iron-sulfur clusters of complex I as well as the ubiquinone site. Agents that have shown to be beneficial in animal models of PD include creatine, coenzyme Q(10), Ginkgo biloba, nicotinamide, and acetyl-L-carnitine. Creatine has been shown to be effective in several animal models of neurodegenerative diseases and currently is being evaluated in early stage trials in PD. Similarly, coenzyme Q(10) is also effective in animal models and has shown promising effects both in clinical trials of PD as well as in clinical trials in Huntington's disease and Friedreich's ataxia. Many other agents show good human tolerability. These agents therefore are promising candidates for further study as neuroprotective agents in PD.
Collapse
Affiliation(s)
- M Flint Beal
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
23
|
Affiliation(s)
- L V P Korlipara
- University Department of Clinical Neurosciences, Royal Free and University College Medical School, London, United Kingdom, NW3 2PF
| | | |
Collapse
|
24
|
Abstract
Impairments of glucose and mitochondrial function are important causes of brain dysfunction and therefore of brain disease. Abnormalities have been found in association with disease of the nervous system in most of the components of glucose/mitochondrial metabolism. In many, molecular genetic abnormalities have been defined. Brain glucose oxidation is abnormal in common diseases of the nervous system, including Alzheimer disease and other dementias, Parkinson disease, delirium, probably schizophrenia and other psychoses, and of course cerebrovascular disease. Defects in a single component and even a single mutation can be associated with different clinical phenotypes. The same clinical phenotype can result from different genotypes. The complex relationship between biological abnormality in brain glucose utilization and clinical disorder is similar to that in other disorders that have been intensively studied at the genetic level. Genes for components of the pathways of brain glucose oxidation are good candidate genes for disease of the brain. Preliminary data support the proposal that treatments to normalize abnormalities in brain glucose oxidation may benefit many patients with common brain diseases.
Collapse
Affiliation(s)
- John P Blass
- Weill Medical College of Cornell University, Burke Medical Research Institute White Plains, New York 10605, USA
| |
Collapse
|
25
|
Gajewski CD, Lin MT, Cudkowicz ME, Beal MF, Manfredi G. Mitochondrial DNA from platelets of sporadic ALS patients restores normal respiratory functions in rho(0) cells. Exp Neurol 2003; 179:229-35. [PMID: 12618129 DOI: 10.1016/s0014-4886(02)00022-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, which affects the anterior horn cells of the spinal cord and cortical motor neurons. A pathophysiological role for mtDNA mutations was postulated based on the finding that cybrids obtained from mitochondria of sporadic ALS patients exhibited impaired respiratory chain activities, increased free radical scavenging enzymes, and altered calcium homeostasis. To date, however, no distinct mtDNA alterations associated with ALS have been reported. Therefore, we reexamined the hypotheses that mtDNA mutations accumulate in ALS and that cybrids generated from ALS patients' blood have impaired mitochondrial respiration. Cybrid cell lines were generated from 143B osteosarcoma rho(0) cells and platelet mitochondria of sporadic ALS patients or age-matched controls. We found no statistically significant differences in mitochondrial respiration between ALS and control cybrids, even when the electron transport chain was stressed with low concentrations of respiratory chain inhibitors. Mitochondrial respiratory chain enzyme activities were also normal in ALS cybrids, and there was no increase in free radical production. Therefore, we showed that mtDNA from platelets of ALS patients was able to restore normal respiratory function in rho(0) cells, suggesting that the presence of mtDNA mutations capable of affecting mitochondrial respiration was unlikely.
Collapse
Affiliation(s)
- Carl D Gajewski
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Vives-Bauza C, Andreu AL, Manfredi G, Beal MF, Janetzky B, Gruenewald TH, Lin MT. Sequence analysis of the entire mitochondrial genome in Parkinson's disease. Biochem Biophys Res Commun 2002; 290:1593-601. [PMID: 11820805 DOI: 10.1006/bbrc.2002.6388] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pathogenesis of Parkinson's disease (PD) is largely unknown. Indirect evidence suggests that mutations in mitochondrial DNA (mtDNA) might play a role, but previous studies have not consistently associated any specific mutations with PD. However, these studies have generally been confined to limited areas of the mitochondrial genome. We therefore sequenced the entire mitochondrial genome from substantia nigra of 8 PD and 9 control subjects. Several sequence variants were distributed differently between PD and control subjects, but all were previously reported polymorphisms. Several secondary LHON mutations were found, as well as a number of novel missense mutations, but all were rare and did not differ between PD and control subjects. Finally, PD and control subjects did not differ in the total number of all mutations, nor the total number of missense mutations. Thus, mtDNA involvement in PD, if any, is likely to be complex and should be reconsidered carefully.
Collapse
Affiliation(s)
- Cristofol Vives-Bauza
- Centre d' Investigacions en Bioquimica i Biologia Molecular, Hospital Vall d' Hebron, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Murakami H, Soma R, Hayashi J, Katsuta S, Matsuda M, Ajisaka R, Okada M, Kuno S. Relationship between mitochondrial DNA polymorphism and the individual differences in aerobic performance. THE JAPANESE JOURNAL OF PHYSIOLOGY 2001; 51:563-8. [PMID: 11734076 DOI: 10.2170/jjphysiol.51.563] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study focused on the mitochondrial DNA (mtDNA) as the genetic factor most likely to bring about the individual difference in endurance capacity or its trainability. Platelets contain mtDNA but no nuclear DNA, whereas rho(0)-HeLa cells have nuclear DNA but no mtDNA. The oxidative capacity of mitochondria in the cultured cells, which were fused rho(0)-HeLa cell with platelets obtained from individual subjects (the so-called "cybrids"), reflects the individual mtDNA polymorphism in the gene-coding region. The purpose of this study was to investigate the relationship between the oxidative capacity of cybrids and the individual difference in endurance capacity, or its trainability. Forty-one sedentary young males took part in an 8-week endurance training program. They were determined by using their VO(2 max) as an index of endurance capacity on an ergocycle before and after the endurance training program. The relations between VO(2 max) before endurance training or the change of it by endurance training and the oxidative capacity of cybrids were investigated. There was no relation between them, and two groups were drawn from all subjects, based on one standard division of their initial VO(2 max): the higher pre-VO(2 max) group (n = 6) and the lower pre-VO(2 max) group (n = 5) (51.8 +/- 3.5 ml/min/kg vs. 33.3 +/- 3.8 ml/min/kg, p < 0.01). No significant difference was found between the O(2) consumption of the cybrids in the higher initial VO(2 max) group and that in the lower initial VO(2 max) group (16.3 +/- 4.9 vs. 15.9 +/- 2.0 nmol O(2)/min/10(7) cells, NS). Furthermore, neither the cytochrome c oxidase (COX) activity nor the complex I + III activity of cybrids showed a significant difference between the two groups. The oxidative capacity of cybrids between the high trainability group (n = 6) (Delta VO(2 max) 12.1 +/- 1.6 ml/min/kg) and the low trainability group (n = 9) (Delta VO(2 max) 2.3 +/- 0.5 ml/min/kg) was also similar. Thus the mtDNA polymorphism is very unlikely to relate to the individual difference in endurance capacity or its trainability in young sedentary healthy subjects.
Collapse
Affiliation(s)
- H Murakami
- Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, 305-8574 Japan
| | | | | | | | | | | | | | | |
Collapse
|