1
|
Ma J, Guo Q, Shen MQ, Li W, Zhong QX, Qian ZM. Apolipoprotein E is required for brain iron homeostasis in mice. Redox Biol 2023; 64:102779. [PMID: 37339558 PMCID: PMC10363452 DOI: 10.1016/j.redox.2023.102779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Apolipoprotein E deficiency (ApoE-/-) increases progressively iron in the liver, spleen and aortic tissues with age in mice. However, it is unknown whether ApoE affects brain iron. METHODS We investigated iron contents, expression of transferrin receptor 1 (TfR1), ferroportin 1 (Fpn1), iron regulatory proteins (IRPs), aconitase, hepcidin, Aβ42, MAP2, reactive oxygen species (ROS), cytokines and glutathione peroxidase 4 (Gpx4) in the brain of ApoE-/- mice. RESULTS We demonstrated that ApoE-/- induced a significant increase in iron, TfR1 and IRPs and a reduction in Fpn1, aconitase and hepcidin in the hippocampus and basal ganglia. We also showed that replenishment of ApoE absent partly reversed the iron-related phenotype in ApoE-/- mice at 24-months old. In addition, ApoE-/- induced a significant increase in Aβ42, MDA, 8-isoprostane, IL-1β, IL-6, and TNFα and a reduction in MAP2 and Gpx4 in hippocampus, basal ganglia and/or cortex of mice at 24-months old. CONCLUSIONS Our findings implied that ApoE is required for brain iron homeostasis and ApoE-/--induced increase in brain iron is due to the increased IRP/TfR1-mediated cell-iron uptake as well as the reduced IRP/Fpn1 associated cell-iron export and suggested that ApoE-/- induced neuronal injury resulted mainly from the increased iron and subsequently ROS, inflammation and ferroptosis.
Collapse
Affiliation(s)
- Juan Ma
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China; Laboratory of Neuropharmacology of Pharmacy School, and National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, Jiangsu, 226001, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Meng-Qi Shen
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| | - Wei Li
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| | - Qi-Xin Zhong
- Department of Cardiovascular Medicine, Shenzhen Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518034, China.
| | - Zhong-Ming Qian
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
2
|
Ma J, Ma HM, Shen MQ, Wang YY, Bao YX, Liu Y, Ke Y, Qian ZM. The Role of Iron in Atherosclerosis in Apolipoprotein E Deficient Mice. Front Cardiovasc Med 2022; 9:857933. [PMID: 35669479 PMCID: PMC9163807 DOI: 10.3389/fcvm.2022.857933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
The role of iron in atherosclerosis is still a controversial and unsolved issue. Here, we investigated serum iron, expression of iron regulatory, transport and storage proteins, pro-inflammatory chemokines and cytokines in ApoE–/– mice. We demonstrated that ApoE–/– induced atherosclerosis and an increase in iron contents, expression of transferrin receptor 1 (TfR1), iron regulatory proteins (IRPs), heme oxygenase 1 (HO1), cellular adhesion molecules and pro-inflammatory cytokines, production of reactive oxygen species (ROS), and a reduction in expression of superoxide dismutase and glutathione peroxidase enzyme in aortic tissues. All of these changes induced by ApoE deficiency could be significantly abolished by deferoxamine. The data showed that the increased iron in aortic tissues was mainly due to the increased iron uptake via IRP/TfR1 upregulation. These findings plus a brief analysis of the controversial results reported previously showed that ApoE deficiency-induced atherosclerosis is partly mediated by the increased iron in aortic tissues.
Collapse
Affiliation(s)
- Juan Ma
- Institute of Translational and Precision Medicine, Nantong University, Nantong, China
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hui-Min Ma
- Institute of Translational and Precision Medicine, Nantong University, Nantong, China
| | - Meng-Qi Shen
- Institute of Translational and Precision Medicine, Nantong University, Nantong, China
| | - Yuan Yuan Wang
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, China
| | - Yong Liu
- Department of Pain and Rehabilitation, The Second Affiliated Hospital, The Army Medical University, Chongqing, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Center, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- *Correspondence: Ya Ke,
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong, China
- Zhong-Ming Qian,
| |
Collapse
|
3
|
Tao LX, Huang XT, Chen YT, Tang XC, Zhang HY. Acetylcholinesterase-independent protective effects of huperzine A against iron overload-induced oxidative damage and aberrant iron metabolism signaling in rat cortical neurons. Acta Pharmacol Sin 2016; 37:1391-1400. [PMID: 27498774 PMCID: PMC5099413 DOI: 10.1038/aps.2016.78] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
AIM Iron dyshomeostasis is one of the primary causes of neuronal death in Alzheimer's disease (AD). Huperzine A (HupA), a natural inhibitor of acetylcholinesterase (AChE), is a licensed anti-AD drug in China and a nutraceutical in the United Sates. Here, we investigated the protective effects of HupA against iron overload-induced injury in neurons. METHODS Rat cortical neurons were treated with ferric ammonium citrate (FAC), and cell viability was assessed with MTT assays. Reactive oxygen species (ROS) assays and adenosine triphosphate (ATP) assays were performed to assess mitochondrial function. The labile iron pool (LIP) level, cytosolic-aconitase (c-aconitase) activity and iron uptake protein expression were measured to determine iron metabolism changes. The modified Ellman's method was used to evaluate AChE activity. RESULTS HupA significantly attenuated the iron overload-induced decrease in neuronal cell viability. This neuroprotective effect of HupA occurred concurrently with a decrease in ROS and an increase in ATP. Moreover, HupA treatment significantly blocked the upregulation of the LIP level and other aberrant iron metabolism changes induced by iron overload. Additionally, another specific AChE inhibitor, donepezil (Don), at a concentration that caused AChE inhibition equivalent to that of HupA negatively, influenced the aberrant changes in ROS, ATP or LIP that were induced by excessive iron. CONCLUSION We provide the first demonstration of the protective effects of HupA against iron overload-induced neuronal damage. This beneficial role of HupA may be attributed to its attenuation of oxidative stress and mitochondrial dysfunction and elevation of LIP, and these effects are not associated with its AChE-inhibiting effect.
Collapse
Affiliation(s)
- Ling-xue Tao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao-tian Huang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-ting Chen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi-can Tang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hai-yan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
4
|
Larsen FJ, Schiffer TA, Ørtenblad N, Zinner C, Morales‐Alamo D, Willis SJ, Calbet JA, Holmberg H, Boushel R. High‐intensity sprint training inhibits mitochondrial respiration through aconitase inactivation. FASEB J 2015; 30:417-27. [DOI: 10.1096/fj.15-276857] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/14/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Filip J. Larsen
- Department of Physiology and PharmacologyKarolinska InstituteStockholmSweden
- Swedish School of Sport and Health SciencesStockholmSweden
| | - Tomas A. Schiffer
- Department of Physiology and PharmacologyKarolinska InstituteStockholmSweden
| | - Niels Ørtenblad
- Institute of Sports Science and Clinical BiomechanicsMuscle Research ClusterUniversity of Southern DenmarkOdenseDenmark
| | - Christoph Zinner
- Swedish Winter Sports Research Centre, Department of Health SciencesMid Sweden UniversityÖstersundSweden
- Department of Sport ScienceJulius Maximilians UniversityWürzburgGermany
| | - David Morales‐Alamo
- Research Institute of Biomedical and Health Sciences (IUIBS)Las Palmas de Gran CanariaCanary IslandsSpain
| | - Sarah J. Willis
- Swedish Winter Sports Research Centre, Department of Health SciencesMid Sweden UniversityÖstersundSweden
| | - Jose A. Calbet
- Research Institute of Biomedical and Health Sciences (IUIBS)Las Palmas de Gran CanariaCanary IslandsSpain
| | - Hans‐Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health SciencesMid Sweden UniversityÖstersundSweden
| | - Robert Boushel
- Swedish School of Sport and Health SciencesStockholmSweden
- School of Kinesiology, University of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
5
|
Effects of physical activity upon the liver. Eur J Appl Physiol 2014; 115:1-46. [DOI: 10.1007/s00421-014-3031-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 10/14/2014] [Indexed: 02/07/2023]
|
6
|
Belviranlı M, Gökbel H, Okudan N, Büyükbaş S. Effects of grape seed polyphenols on oxidative damage in liver tissue of acutely and chronically exercised rats. Phytother Res 2012; 27:672-7. [PMID: 22745005 DOI: 10.1002/ptr.4772] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 05/28/2012] [Accepted: 06/05/2012] [Indexed: 11/06/2022]
Abstract
The objective of the present study was to investigate the effects of grape seed extract (GSE) supplementation on oxidative stress and antioxidant defense markers in liver tissue of acutely and chronically exercised rats. Rats were randomly assigned to six groups: Control (C), Control Chronic Exercise (CE), Control Acute Exercise (AE), GSE-supplemented Control (GC), GSE-supplemented Chronic Exercise(GCE) and GSE-supplemented Acute Exercise (GAE). Rats in the chronic exercise groups were subjected to a six-week treadmill running and in the acute exercise groups performed an exhaustive running. Rats in the GSE supplemented groups received GSE (100 mg.kg(-1) .day(-1) ) in drinking water for 6 weeks. Liver tissues of the rats were taken for the analysis of malondialdehyde (MDA), nitric oxide (NO) levels and total antioxidant activity (AOA) and xanthine oxidase (XO) activities. MDA levels decreased with GSE supplementation in control groups but increased in acute and chronic exercise groups compared to their non-supplemented control. NO levels increased with GSE supplementation. XO activities were higher in AE group compared to the CE group. AOA decreased with GSE supplementation. In conclusion, while acute exercise triggers oxidative stress, chronic exercise has protective role against oxidative stress. GSE has a limited antioxidant effect on exercise-induced oxidative stress in liver tissue.
Collapse
Affiliation(s)
- Muaz Belviranlı
- Department of Physiology, Meram Faculty of Medicine, Selçuk University, Konya, Turkey.
| | | | | | | |
Collapse
|
7
|
Che LL, Xiao DS, Xu HX, Lu L. Changes of iron stores and duodenal transepithelial iron transfer during regular exercise in rats. Biol Trace Elem Res 2011; 143:1044-53. [PMID: 21174168 DOI: 10.1007/s12011-010-8919-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 12/05/2010] [Indexed: 11/28/2022]
Abstract
It is unclear whether regular exercise depletes body iron stores and how exercise regulates iron absorption. In this study, growing female Sprague-Dawley rats were fed a high-iron diet (300 mg iron/kg) and subjected to swimming for 1, 3, or 12 months. Their body weight, liver nonheme iron content (NHI), spleen NHI, blood hemoglobin (Hb) concentration, hematocrit (Hct), and kinetics of 59Fe transfer across isolated duodenal segments were then compared with sedentary controls. The main results were as follows: exercise for 1 month enhanced the transepithelial 59Fe transfer and increased liver NHI content and Hb concentration; exercise for 3 months inhibited transepithelial 59Fe transfer without affecting the liver and spleen NHI content, Hb concentration, and Hct; exercise for 12 months did not affect these parameters as compared with the corresponding sedentary controls; and the changes in transepithelial iron transfer were not associated with basolateral iron transfer. Our findings demonstrated that chronic, regular exercise in growing rats with a high dietary iron content does not deplete iron stores in the liver and spleen and may possibly enhance or inhibit duodenal iron absorption and even maintain duodenal iron absorption at the sedentary level, at least, in part depending on growth.
Collapse
Affiliation(s)
- Li-Long Che
- Department of Physiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013, China
| | | | | | | |
Collapse
|
8
|
Wang H, Duan X, Liu J, Zhao H, Liu Y, Chang Y. Nitric Oxide contributes to the regulation of iron metabolism in skeletal muscle in vivo and in vitro. Mol Cell Biochem 2010; 342:87-94. [PMID: 20411304 DOI: 10.1007/s11010-010-0471-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/12/2010] [Indexed: 12/13/2022]
Abstract
Nitric Oxide (NO) plays an important role in iron redistribution during exercise, while its molecular regulatory mechanism is still not clear. Our present studies were to investigate the effects of NO on iron metabolism and to elucidate the regulatory mechanism of iron transport in skeletal muscle both in vivo and in vitro. One group of male Wistar rats (300 +/- 10 g) were subjected to an exercise of 30 min on a treadmill for 5 weeks (exercise group, EG, 6 rats) and the other one was placed on the treadmill without running (control group, CG, 6 rats). The cultured L6 rat skeletal muscle cells were treated with either 0.5 mM SNAP (NO donor) or not for 24 h, and their iron release and intake amount were examined by measuring radiolabelled (55)Fe. The results showed: (1) The NO content (CG, 1.09 +/- 0.18 micromol/g vs. EG, 1.49 +/- 0.17 micromol/g) and non-heme iron in gastrocnemius (CG, 118.35 +/- 11.41 microg/g vs. EG, 216.65 +/- 11.10 microg/g) of EG were significantly increased compared with CG. (2) The expression of DMT1 (IRE) and TfR1 of EG was increased. (3) The iron intake was increased in L6 cells treated with SNAP (P < 0.01). (4) Western blot results showed the protein level of both TfR1 and DMT1 (IRE) in SNAP cells were up-regulated, while the expression of FPN1 was down-regulated (P < 0.05). The data suggested that the induced elevation of NO level by exercise lead to the up-regulation of both TfR1 and DMT1 (IRE), which in turn increasing the iron absorption in skeletal muscle.
Collapse
Affiliation(s)
- Haitao Wang
- College of Physical Education, Hebei Normal University, Shijiazhuang, Hebei Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Ke Y, Qian ZM. Brain iron metabolism: neurobiology and neurochemistry. Prog Neurobiol 2007; 83:149-73. [PMID: 17870230 DOI: 10.1016/j.pneurobio.2007.07.009] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/10/2007] [Accepted: 07/26/2007] [Indexed: 01/09/2023]
Abstract
New findings obtained during the past years, especially the discovery of mutations in the genes associated with brain iron metabolism, have provided key insights into the homeostatic mechanisms of brain iron metabolism and the pathological mechanisms responsible for neurodegenerative diseases. The accumulated evidence demonstrates that misregulation in brain iron metabolism is one of the initial causes for neuronal death in some neurodegenerative disorders. The errors in brain iron metabolism found in these disorders have a multifactorial pathogenesis, including genetic and nongenetic factors. The disturbances of iron metabolism might occur at multiple levels, including iron uptake and release, storage, intracellular metabolism and regulation. It is the increased brain iron that triggers a cascade of deleterious events, leading to neuronal death in these diseases. In the article, the recent advances in studies on neurochemistry and neuropathophysiology of brain iron metabolism were reviewed.
Collapse
Affiliation(s)
- Ya Ke
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, NT, Hong Kong
| | | |
Collapse
|
10
|
Blantz RC, Deng A. Coordination of kidney filtration and tubular reabsorption: considerations on the regulation of metabolic demand for tubular reabsorption. ACTA ACUST UNITED AC 2007; 94:83-94. [PMID: 17444277 DOI: 10.1556/aphysiol.94.2007.1-2.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kidney blood flow is highly regulated by a combination of myogenic autoregulation, multiple neurohormonal systems and the tubuloglomerular feedback system, the later of which specifically relates tubular reabsorption to the filtered load. Oxygen and substrate requirements of the kidney are dictated by both supply of oxygen and substrates and metabolic demands of the kidney. The tubuloglomerular feedback system utilizes mediators which are intimately linked to cellular metabolism, ATP and adenosine. This system based upon communication transfer between the macular densa and the afferent arteriole stabilizes kidney function and is not static but temporally adapts or resets to new external physiologic conditions. Such temporal adaptation occurs via modulators such as nitric oxide (NO), primarily derived from NOS-1, angiotensin II and COX-2 products. These hormonal influences also exert capacities to modulate cellular demands for oxygen, particularly NO which decreases oxygen consumption via multiple mechanisms. The several mechanisms whereby NO and other hormonal systems and transporter activity can regulate and produce changes in kidney metabolic demands are discussed. Modulators which influence temporal adaptation and resetting of TGF are also significant contributors to the regulation of cellular oxygen consumption in the kidney. These systems may act in concert to preserve the coordination of filtered load and tubular reabsorption and the metabolic demands of kidney function, thereby determining the ischemic threshold for kidney function.
Collapse
Affiliation(s)
- R C Blantz
- Division of Nephrology-Hypertension, School of Medicine, University of California, & VASDHS 3350 La Jolla Village Drive (111-H) San Diego, California 92161, USA.
| | | |
Collapse
|
11
|
Liu M, Xiao DS, Qian ZM. Identification of transcriptionally regulated genes in response to cellular iron availability in rat hippocampus. Mol Cell Biochem 2006; 300:139-47. [PMID: 17186380 DOI: 10.1007/s11010-006-9377-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 11/06/2006] [Indexed: 12/11/2022]
Abstract
The present study was attempted to identify transcriptionally regulated genes of the normal neurocytes responsive to iron availability. Postnatal rat hippocampus cells were primarily cultured either under the iron-loaded or depleted conditions. These cultured cells were applied for the generation of subtracted complementary DNA libraries by the suppression subtraction hybridization (SSH) and for the subsequent identification of differentially expressed transcripts by reverse Northern blot. The differentially expressed genes were chosen to perform sequencing, and then some of them were performed by Northern blot analysis for observation of their expression in the hippocampus of rats with the different iron status. The results indicated that five unique transcripts were strong candidates for differential expression in cellular iron repletion, one of them is a novel sequence (GenBank No. AF 433878), while 26 unique transcripts were strong candidates for differential expression in cellular iron deprivation, one of them is a novel sequence (GenBank No. AY 912101). The revealed known genes responsive to iron availability were previously unknown to respond to iron availability, or have not been determined in the brain, have not even been currently determined in their physiological and biological functions. Interestingly, the proteins encoded by most of the known genes are either directly pointed to or indirectly associated with the molecules that play important, even key roles in cellular signal transduction and the cell cycle. These findings lead to the important suggestion that the cellular responses to iron availability involve extensive transcriptional regulation and cellular signal transduction. Therefore, iron may serve as a signal, which directly and/or indirectly regulates or modulates cell functions.
Collapse
Affiliation(s)
- Mei Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China
| | | | | |
Collapse
|
12
|
Wang J, Qian ZM, Jiang H, Xie J, Ke Y. Treatment with nerve growth factor decreases expression of divalent metal transporter 1 and transferrin receptor in PC12 cells. Neurochem Int 2005; 47:514-7. [PMID: 16137791 DOI: 10.1016/j.neuint.2005.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 02/24/2005] [Accepted: 02/28/2005] [Indexed: 11/22/2022]
Abstract
Divalent metal transporter 1 (DMT1) and transferrin receptor (TfR) might play a key role in non-transferrin-bound iron (NTBI) and transferrin-bound iron (Tf-Fe) uptake by neuronal cells. Recent studies demonstrated that nerve growth factor (NGF)-treated PC12 cells (the neuronal phenotype) have higher NTBI as well as Tf-Fe uptake compared with untreated cells (the undifferentiated cells). We speculated the increased NTBI and Tf-Fe uptake induced by NGF treatment might be associated with the increased expression of DMT1 and TfR. In this study, we investigated the effect of NGF treatment on DMT1 and TfR expression in PC12 cells. Contrary to our expectation, treatment with NGF induced a significant decrease rather than increase in DMT1+IRE, DMT1-IRE and TfR expression in the cells. The data demonstrate that the increase in iron uptake is not associated with the DMT1 and TfR in NGF-treated PC12 cells. The RT-PCR findings of no change in DMT1 mRNA plus our data suggest that regulation of DMT1 expression by NGF might be at the post-transcriptional level.
Collapse
Affiliation(s)
- Jun Wang
- Laboratory of Iron Metabolism, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong, PR China
| | | | | | | | | |
Collapse
|
13
|
Venditti P, De Rosa R, Caldarone G, Di Meo S. Effect of prolonged exercise on oxidative damage and susceptibility to oxidants of rat tissues in severe hyperthyroidism. Arch Biochem Biophys 2005; 442:229-37. [PMID: 16197916 DOI: 10.1016/j.abb.2005.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 08/22/2005] [Accepted: 08/24/2005] [Indexed: 01/12/2023]
Abstract
We investigated effects of prolonged aerobic exercise and severe hyperthyroidism on indices of oxidative damage, susceptibility to oxidants, and respiratory capacity of homogenates from rat liver, heart and skeletal muscle. Both treatments induced increases in hydroperoxide and protein-bound carbonyl levels. Moreover, the highest increases were found when hyperthyroid animals were subjected to exercise. These changes, which were associated to reduced exercise endurance capacity, were in part due to higher susceptibility to oxidants of hyperthyroid tissues. Levels of oxidative damage indices were scarcely related to changes in antioxidant enzyme activities and lipid-soluble antioxidant concentrations. However, the finding that, following exercise the scavenger levels generally decreased in liver homogenates and increased in heart and muscles ones, suggested a net shuttle of antioxidants from liver to other tissues under need. Aerobic capacity, evaluated by cytochrome oxidase activity, was not modified by exercise, which, conversely, affected the rates of oxygen consumption of hyperthyroid preparations. These results seem to confirm the higher susceptibility of hyperthyroid tissues to oxidative challenge, because the mechanisms underlying the opposite changes in respiration rates during State 4 and State 3 likely involve oxidative modifications of components of mitochondrial respiratory chain, different from cytochrome aa3.
Collapse
Affiliation(s)
- P Venditti
- Dipartimento di Fisiologia Generale ed Ambientale, Università di Napoli, Federico II, Via Mezzocannone 8, I-80134 Napoli, Italy.
| | | | | | | |
Collapse
|
14
|
Xiao DS, Ho KP, Qian ZM. Nitric oxide inhibition decreases bleomycin-detectable iron in spleen, bone marrow cells and heart but not in liver in exercise rats. Mol Cell Biochem 2004; 260:31-7. [PMID: 15228083 DOI: 10.1023/b:mcbi.0000026048.93795.03] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The possible role of nitric oxide on the exercise-induced changes in bleomycin-detectable iron (BDI) in the liver, spleen, bone marrow cells and heart was investigated. Female Sprague-Dawley rats were randomly assigned to four groups: S1 (Sedentary), S2 (Sedentary + L-NAME [N-nitro-L-arginine methyl ester]), E1 (Exercise) and E2 (Exercise + L-NAME). Animals in the E1 and E2 swam for 2 h/day for 3 months. L-NAME in the drinking water (1 mg/ml) was administrated to rats in the S2 and E2 groups for the same period. At the end of the 3rd month, nitrite and nitrate (NOx), BDI and non-heme iron (NHI) contents in the liver, spleen, bone marrow cells and heart were measured. The ratio of BDI/NHI was calculated. The exercise induced a significant increase in NOx and BDI contents and/or BDI/NHI ratio in the spleen, bone morrow cells and heart. Treatment with L-NAME, an inhibitor of NOS, led to a significant decrease in NOx and an increase in BDI levels and BDI/NHI ratios in these tissues. The correlative analysis showed that there is significantly positive correlation between NOx levels and BDI contents and/or BDI/NHI ratios in the spleen, bone marrow cells and heart. These results suggest that the increased nitric oxide might be one of the reasons leading to the increased BDI levels in these tissues in the exercised rats. In contrast to the above tissues, in the liver, exercise led to a significant decrease rather than increase in BDI levels and BDI/NHI ratios with a significant increase in NOx contents. Treatment with L-NAME led to a significant increase in BDI levels and BDI/NHI ratios and a decrease in NOx contents in the tissue. These findings plus the results reported by others imply that nitric oxide might have an inhibitory effect on BDI in the liver.
Collapse
Affiliation(s)
- De Sheng Xiao
- Laboratory of Iron Metabolism, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | | | |
Collapse
|
15
|
Xiao DS, Jiang L, Che LL, Lu L. Nitric oxide and iron metabolism in exercised rat with L-arginine supplementation. Mol Cell Biochem 2004; 252:65-72. [PMID: 14577577 DOI: 10.1023/a:1025517216681] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present study was designed to investigate whether L-arginine (Arg) supplementation in exercise affects nitric oxide (NO) synthesis in tissues and thus iron metabolism. Rats were assigned to one of four groups: EG (Exercise), SG (Sedentary), EAG (Exercise + Arg), and SAG (Sedentary + Arg). Both EG and EAG swam 2 h/day for 3 months. Both SAG and EAG received 3% Arg supplementation in their drinking water. The results showed that Arg supplementation in exercise (EAG) significantly increased nitrite and nitrate (NOx) concentration in the kidney and BMC, rather than in the liver, spleen and heart. Arg supplementation significantly increased both nonheme iron (NHI) and catalytic iron (CI) content in the kidney, to the extent that the ratio of CI/NHI or storage iron (SI)/NHI was not significantly affected, and significantly decreased NHI content and increased CI content in BMC, to the extent that SI content or SI/NHI was significantly decreased. These findings suggest that Arg supplementation in exercise, possibly through increasing NO synthesis, may change CI formation in the kidney and BMC, and affect iron storage in BMC rather than in the kidney.
Collapse
Affiliation(s)
- De-Sheng Xiao
- School of Medical Technology, Jiangsu University, Jiangsu Province, Hong Kong, P R China.
| | | | | | | |
Collapse
|
16
|
|
17
|
Abstract
Accumulated data imply that exercise itself might not lead to a true iron deficiency or 'sport anaemia' in a healthy athlete who has adequate iron intake. The higher prevalence of iron deficiency anaemia in younger female athletes might be not due to exercise itself, but probably results from dietary choices, inadequate iron intake and menstruation. These factors can also induce iron deficiency or anaemia in the general population. However, exercise does affect iron metabolism, leading to low or sub-optimal iron status. The underlying mechanism is unknown. In this review, recent advances in the study of the effect of exercise on iron metabolism and nitric oxide, and the relationship between nitric oxide and iron status in exercise are discussed. A hypothesis that increased production of nitric oxide might contribute to sub-optimal iron status in exercise is proposed.
Collapse
Affiliation(s)
- Zhong Ming Qian
- Laboratory of Iron Metabolism, Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Kowloon.
| |
Collapse
|