1
|
Mognetti B, Franco F, Castrignano C, Bovolin P, Berta GN. Mechanisms of Phytoremediation by Resveratrol against Cadmium Toxicity. Antioxidants (Basel) 2024; 13:782. [PMID: 39061851 PMCID: PMC11273497 DOI: 10.3390/antiox13070782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Cadmium (Cd) toxicity poses a significant threat to human health and the environment due to its widespread occurrence and persistence. In recent years, considerable attention has been directed towards exploring natural compounds with potential protective effects against Cd-induced toxicity. Among these compounds, resveratrol (RV) has emerged as a promising candidate, demonstrating a range of beneficial effects attributed to its antioxidant and anti-inflammatory properties. This literature review systematically evaluates the protective role of RV against Cd toxicity, considering the various mechanisms of action involved. A comprehensive analysis of both in vitro and in vivo studies is conducted to provide a comprehensive understanding of RV efficacy in mitigating Cd-induced damage. Additionally, this review highlights the importance of phytoremediation strategies in addressing Cd contamination, emphasizing the potential of RV in enhancing the efficiency of such remediation techniques. Through the integration of diverse research findings, this review underscores the therapeutic potential of RV in combating Cd toxicity and underscores the need for further investigation to elucidate its precise mechanisms of action and optimize its application in environmental and clinical settings.
Collapse
Affiliation(s)
- Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Francesco Franco
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Chiara Castrignano
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Giovanni Nicolao Berta
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| |
Collapse
|
2
|
Gao X, Li G, Pan X, Xia J, Yan D, Xu Y, Ruan X, He H, Wei Y, Zhai J. Environmental and occupational exposure to cadmium associated with male reproductive health risk: a systematic review and meta-analysis based on epidemiological evidence. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7491-7517. [PMID: 37584848 DOI: 10.1007/s10653-023-01719-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
There is an abundance of epidemiological evidence and animal experiments concerning the correlation between cadmium exposure and adverse male reproductive health outcomes. However, the evidence remains inconclusive. We conducted a literature search from PubMed, Embase, and Web of Science over the past 3 decades. Pooled r and 95% confidence intervals (CIs) were derived from Cd levels of the type of biological materials and different outcome indicators to address the large heterogeneity of existing literature. Cd was negatively correlated with semen parameters (r = - 0.122, 95% CI - 0.151 to - 0.092) and positively correlated with sera sex hormones (r = 0.104, 95% CI 0.060 to 0.147). Among them, Cd in three different biological materials (blood, semen, and urine) was negatively correlated with semen parameters, while among sex hormones, only blood and urine were statistically positively correlated. In subgroup analysis, blood Cd was negatively correlated with semen density, sperm motility, sperm morphology, and sperm count. Semen Cd was negatively correlated with semen concentration. As for serum sex hormones, blood Cd had no statistical significance with three hormones, while semen Cd was negatively correlated with testosterone. In summary, cadmium exposure might be associated with the risk of a decline in sperm quality and abnormal levels of sex hormones.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Guangying Li
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Xingchen Pan
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Jiajia Xia
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Di Yan
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Yang Xu
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Xiang Ruan
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| |
Collapse
|
3
|
Mitra S, Patra T, Saha D, Ghosh P, Mustafi SM, Varghese AC, Murmu N. Sub-chronic cadmium and lead compound exposure induces reproductive toxicity and development of testicular germ cell neoplasia in situ in murine model: Attenuative effects of resveratrol. J Biochem Mol Toxicol 2022; 36:e23058. [PMID: 35362238 DOI: 10.1002/jbt.23058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/27/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Cadmium and lead are widespread, nonbiodegradable heavy metals of perpetual environmental concerns. The present study aimed to evaluate whether sub-chronic exposure to cadmium chloride (CdCl2 ) and lead acetate [Pb(CH3 COO)2 ] induces reproductive toxicity and development of testicular germ cell neoplasia in situ (GCNIS) in swiss albino mice. The effects of resveratrol to reverse the metal-induced toxicity were also analyzed. The mice were randomly divided into four groups for metal treatments and two groups received two different doses of each metal, CdCl2 (0.25 and 0.5 mg/kg) and Pb(CH3 COO)2 (3 and 6 mg/kg). The fourth group received oral doses of 20 mg/kg resveratrol in combination with 0.5 mg/kg CdCl2 or 6 mg/kg Pb(CH3 COO)2 for 16 weeks. Toxic effects of both metals were estimated qualitatively and quantitatively by the alterations in sperm parameters, oxidative stress markers, testicular histology, and protein expressions of the treated mice. Pronounced perturbation of sperm parameters, cellular redox balance were observed with severe distortion of testicular histo-architecture in metal exposed mice. Significant overexpression of Akt cascade and testicular GCNIS marker proteins were recorded in tissues treated with CdCl2 . Notable improvements were observed in all the evaluated parameters of resveratrol cotreated mice groups. Taken together, the findings of this study showed that long-term exposure to Cd and Pb compounds, induced acute reproductive toxicity and initiation of GCNIS development in mice. Conversely, resveratrol consumption abrogated metal-induced perturbation of spermatogenesis, testicular morphology, and the upregulation of Akt cascade proteins along with GCNIS markers, which could have induced the development of testicular cancer.
Collapse
Affiliation(s)
- Sreyashi Mitra
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, India
| | - Tapas Patra
- E. Doisy Research Center, Saint Louis University, St. Louis, Missouri, USA
| | - Depanwita Saha
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, India
| | - Paramita Ghosh
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, India
| | | | | | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
4
|
Hao R, Song X, Sun-Waterhouse D, Tan X, Li F, Li D. MiR-34a/Sirt1/p53 signaling pathway contributes to cadmium-induced nephrotoxicity: A preclinical study in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117029. [PMID: 33823310 DOI: 10.1016/j.envpol.2021.117029] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd), as an environmental pollutant, can lead to nephrotoxicity. However, its nephrotoxicological mechanisms have not been fully elucidated. In this study, Cd (1.5 mg/kg body weight, gavaged for 4 weeks) was found to induce the renal damage in mice, based on indicators including Cd concentration, kidney index, serum creatinine and blood urea nitrogen levels, pro-inflammatory cytokines and their mRNA expressions, levels of Bcl-2, Bax and caspase9, and histopathological changes of the kidneys. Furthermore, Cd-caused detrimental changes through inducing inflammation and apoptosis via the miR-34a/Sirt1/p53 axis. This is the first report on the role of miR-34a/Sirt1/p53 axis in regulating Cd-caused apoptosis and nephrotoxicity in mice. The findings obtained in this study provide new insights into miRNA-based regulation of heavy metal induced-nephrotoxicity.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China
| | - Xinyu Song
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Xintong Tan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China.
| |
Collapse
|
5
|
Therachiyil L, Haroon J, Sahir F, Siveen KS, Uddin S, Kulinski M, Buddenkotte J, Steinhoff M, Krishnankutty R. Dysregulated Phosphorylation of p53, Autophagy and Stemness Attributes the Mutant p53 Harboring Colon Cancer Cells Impaired Sensitivity to Oxaliplatin. Front Oncol 2020; 10:1744. [PMID: 32984059 PMCID: PMC7485421 DOI: 10.3389/fonc.2020.01744] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) forms one of the highest ranked cancer types in the world with its increasing incidence and mortality rates despite the advancement in cancer therapeutics. About 50% of human CRCs are reported to have defective p53 expression resultant of TP53 gene mutation often contributing to drug resistance. The current study was aimed to investigate the response of wild-type TP53 harboring HCT 116 and mutant TP53 harboring HT 29 colon cancer cells to chemotherapeutic drug oxaliplatin (OX) and to elucidate the underlying molecular mechanisms of sensitivity/resistance in correlation to their p53 status. OX inhibited growth of wild-type p53-harboring colon cancer cells via p53/p21-Bax mediated apoptosis. Our study revealed that dysregulated phosphorylation of p53, autophagy as well as cancer stemness attributes the mutant p53-harboring colon cancer cells impaired sensitivity to OX.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| | - Javeria Haroon
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fairooz Sahir
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kodappully S. Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- College of Medicine, Qatar University, Doha, Qatar
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
6
|
Abstract
Changes in the intracellular thiol-disulfide balance are considered major determinants in the redox status/signaling of the cell. Cellular signaling is very sensitive to both exogenous and intracellular redox status and respond to many exogenous pro-oxidative or oxidative stresses. Redox status has dual effects on upstream signaling systems and downstream transcription factors. Redox signaling pathways use reactive oxygen species (ROS) to transfer signals from different sources to the nucleus to regulate such functions as growth, differentiation, proliferation, and apoptosis. Mitogen-activated protein kinases are activated by numerous cellular stresses and ligand-receptor bindings. An imbalance in the oxidant/antioxidant system, either resulting from excessive ROS/reactive nitrogen species production and/or antioxidant system impairment, leads to oxidative stress. Glutathione (GSH) is known to play a critical role in the cellular defense against unregulated oxidative stress in mammalian cells and involvement of large molecular antioxidants include classical antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). Cadmium (Cd), a potent toxic heavy metal, is a widespread environmental contaminant. It is known to cause renal dysfunction, hepatic toxicity, genotoxicity, and apoptotic effects depending on the dose, route, and duration of exposure. This review examines the signaling pathways and mechanisms of activation of transcription factors by Cd-induced oxidative stress thus representing an important basis for understanding the mechanisms of Cd effect on the cells.
Collapse
Affiliation(s)
- Saïd Nemmiche
- LSTPA Laboratory, Department of Biology, Faculty of SNV, University of Mostaganem, Mostaganem 27000, Algeria
| |
Collapse
|
7
|
UBE4B targets phosphorylated p53 at serines 15 and 392 for degradation. Oncotarget 2016; 7:2823-36. [PMID: 26673821 PMCID: PMC4823074 DOI: 10.18632/oncotarget.6555] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/21/2015] [Indexed: 12/31/2022] Open
Abstract
Phosphorylation of p53 is a key mechanism responsible for the activation of its tumor suppressor functions in response to various stresses. In unstressed cells, p53 is rapidly turned over and is maintained at a low basal level. After DNA damage or other forms of cellular stress, the p53 level increases, and the protein becomes metabolically stable. However, the mechanism of phosphorylated p53 regulation is unclear. In this study, we studied the kinetics of UBE4B, Hdm2, Pirh2, Cop1 and CHIP induction in response to p53 activation. We show that UBE4B coimmunoprecipitates with phosphorylated p53 at serines 15 and 392. Notably, the affinity between UBE4B and Hdm2 is greatly decreased after DNA damage. Furthermore, we observe that UBE4B promotes endogenous phospho-p53(S15) and phospho-p53(S392) degradation in response to IR. We demonstrate that UBE4B and Hdm2 repress p53S15A, p53S392A, and p53-2A(S15A, S392A) functions, including p53-dependent transactivation and growth inhibition. Overall, our results reveal that UBE4B plays an important role in regulating phosphorylated p53 following DNA damage.
Collapse
|
8
|
LINHARTOVA P, GAZO I, SAMPELS S. Combined Incubation of Cadmium, Docosahexaenoic and Eicosapentaenoic Acid Affecting the Oxidative Stress and Antioxidant Response in Human Hepatocytes In Vitro. Physiol Res 2016; 65:609-616. [DOI: 10.33549/physiolres.933247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human hepatocellular cells Hep G2 were used to investigate the effects of the intake of contaminated fish on oxidative stress. Uptake of heavy metal contaminated fish was mimicked by incubating the cells with a combination of cadmium chloride (Cd2+) as possible contaminant and a combination of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as important fatty acids (FA) specific for fish. The main aim of this study was to determine the effects of these co-incubations (FA, Cd2+) on lipid and protein oxidation. In addition we also evaluated the antioxidant response of the cells using two different methods (SOD and TAC). Pre-incubation with the chosen FA significantly reduced the oxidative stress caused by incubation with Cd2+. We measured an increased level of carbonyl proteins (CP) in the cells pre-incubated with bovine serum albumin (BSA) and post-incubated with Cd2+.
Collapse
Affiliation(s)
- P. LINHARTOVA
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Czech Republic
| | | | | |
Collapse
|
9
|
Lee JY, Tokumoto M, Fujiwara Y, Hasegawa T, Seko Y, Shimada A, Satoh M. Accumulation of p53 via down-regulation of UBE2D family genes is a critical pathway for cadmium-induced renal toxicity. Sci Rep 2016; 6:21968. [PMID: 26912277 PMCID: PMC4766413 DOI: 10.1038/srep21968] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/03/2016] [Indexed: 12/19/2022] Open
Abstract
Chronic cadmium (Cd) exposure can induce renal toxicity. In Cd renal toxicity, p53 is thought to be involved. Our previous studies showed that Cd down-regulated gene expression of the UBE2D (ubiquitin-conjugating enzyme E2D) family members. Here, we aimed to define the association between UBE2D family members and p53-dependent apoptosis in human proximal tubular cells (HK-2 cells) treated with Cd. Cd increased intracellular p53 protein levels and decreased UBE2D2 and UBE2D4 gene expression via inhibition of YY1 and FOXF1 transcription factor activities. Double knockdown of UBE2D2 and UBE2D4 caused an increase in p53 protein levels, and knockdown of p53 attenuated not only Cd-induced apoptosis, but also Cd-induced apoptosis-related gene expression (BAX and PUMA). Additionally, the mice exposed to Cd for 6 months resulted in increased levels of p53 and induction of apoptosis in proximal tubular cells. These findings suggest that down-regulation of UBE2D family genes followed by accumulation of p53 in proximal tubular cells is an important mechanism for Cd-induced renal toxicity.
Collapse
Affiliation(s)
- Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Maki Tokumoto
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yasuyuki Fujiwara
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.,Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tatsuya Hasegawa
- Department of Environmental Biochemistry, Mount Fuji Research Institute, 5597-1 Kenmarubi, Kamiyoshida, Fujiyoshida, Yamanashi 403-0005, Japan
| | - Yoshiyuki Seko
- Department of Environmental Biochemistry, Mount Fuji Research Institute, 5597-1 Kenmarubi, Kamiyoshida, Fujiyoshida, Yamanashi 403-0005, Japan
| | - Akinori Shimada
- Laboratory of Pathology, Department of Medical Technology, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Masahiko Satoh
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
10
|
Phatak VM, Muller PAJ. Metal toxicity and the p53 protein: an intimate relationship. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00117f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The relationship between p53, ROS and transition metals.
Collapse
|
11
|
Miyayama T, Matsuoka M. Increased expression and activation of serum- and glucocorticoid-inducible kinase-1 (SGK1) by cadmium in HK-2 renal proximal tubular epithelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:374-378. [PMID: 25128767 DOI: 10.1016/j.etap.2014.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
In HK-2 cells exposed to cadmium chloride (CdCl2), the level of serum- and glucocorticoid-inducible kinase-1 (SGK1) protein is increased, but the levels of SGK2 and SGK3 proteins are not. Phosphorylation of SGK1 protein is also observed. Treatment with actinomycin D abolished CdCl2-induced elevation of SGK1 mRNA level. Treatment with actinomycin D or cycloheximide suppressed SGK1 protein levels in cells exposed to CdCl2. Treatment with SGK1 inhibitor EMD638683 or knockdown of SGK1 with siRNA suppressed CdCl2-induced phosphorylation of N-Myc downstream-regulated kinase 1 (NDRG1). These results indicate that cadmium induces the transcriptional upregulation of SGK1 expression and regulates NDRG1 in HK-2 cells.
Collapse
Affiliation(s)
- Takamitsu Miyayama
- Department of Hygiene and Public Health I, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Masato Matsuoka
- Department of Hygiene and Public Health I, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| |
Collapse
|
12
|
Detrimental effects of Notch1 signaling activated by cadmium in renal proximal tubular epithelial cells. Cell Death Dis 2014; 5:e1378. [PMID: 25118938 PMCID: PMC4454314 DOI: 10.1038/cddis.2014.339] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 01/10/2023]
Abstract
We examined the roles of Notch1 signaling and its cross-talk with other signaling pathways, including p53 and phosphatidylinositol-3-kinase (PI3K)/Akt, in cadmium-induced cellular damage in HK-2 human renal proximal tubular epithelial cells. Following exposure to cadmium chloride (CdCl2), the level of Notch intracellular domain (NICD), the cleaved form of the Notch1 receptor, was increased and accumulated in the nuclear fraction. Knockdown of Notch1 with siRNA or treatment with the γ-secretase inhibitor, DAPT (N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester), prevented CdCl2-induced morphological change of HK-2 cells and reduction of cell viability. Knockdown of Jagged1 or Jagged2, the ligands of the Notch1 receptor, partially suppressed cadmium cytotoxicity. Inhibition of p53 activity with pifithrin-α or inhibition of PI3K with LY294002 suppressed CdCl2-induced cellular damage and elevation of Notch1-NICD. In addition, treatment with the epidermal growth factor receptor (EGFR) inhibitor, AG1478, and the insulin-like growth factor-1 receptor inhibitor, PPP, suppressed both Notch1-NICD accumulation and Akt phosphorylation in HK-2 cells exposed to CdCl2. However, knockdown of Notch1 did not affect CdCl2-induced p53 accumulation and phosphorylation but suppressed phosphorylation of EGFR, Akt, and p70 S6 kinase. Depletion of Notch1 suppressed CdCl2-induced reduction of E-cadherin expression and elevation of Snail expression. Furthermore, treatment with SB216763, an inhibitor of glycogen synthase kinase-3, suppressed the potency of LY294002 treatment to reduce Snail expression in HK-2 cells exposed to CdCl2. Knockdown of Snail with siRNA partially prevented HK-2 cells from CdCl2-induced reduction of E-cadherin expression and cellular damage. These results suggest that cadmium exposure induces the activation of Notch1 signaling in renal proximal tubular cells with cooperative activation by the p53 and PI3K/Akt signaling pathways; the resultant expression of Snail, a repressor of E-cadherin expression, might lead to cellular damage by decreasing cell-cell adhesion.
Collapse
|
13
|
Tokumoto M, Satoh M. [Cadmium induces p53-dependent apoptosis through the inhibition of Ube2d family gene expression]. Nihon Eiseigaku Zasshi 2013; 67:472-7. [PMID: 23095357 DOI: 10.1265/jjh.67.472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cadmium (Cd), a harmful metal, exerts severe toxic effects on various tissues such as those in the kidney, liver, lung, and bone. In particular, renal toxicity with damage to proximal tubule cells is caused by chronic exposure to Cd. However, the molecular mechanism underlying chronic Cd renal toxicity remains to be understood. In this review, we present our recent findings since we examined to search for the target molecules involved in the renal toxicity of Cd using toxicogenomics. In NRK-52E rat renal tubular epithelial cells, we found using DNA microarrays that Cd suppressed the expression of the gene encoding Ube2d4, a member of the Ube2d family. The Ube2d family consists of selective ubiquitin-conjugating enzymes associated with p53 degradation. Moreover, Cd suppressed the expressions of genes encoding all Ube2d family members (Ube2d1/2/3/4) prior to the appearance of cytotoxicity in NRK-52E cells. Cd markedly increased p53 protein level and induced p53 phosphorylation and apoptosis in the cells. In vivo studies showed that chronic Cd exposure also suppressed Ube2d family gene expression and induced p53 accumulation and apoptosis in the renal tubules of the mouse kidney. These findings suggest that Cd causes p53-dependent apoptosis due to the inhibition of p53 degradation through the down-regulation of Ube2d family genes in NRK-52E cells and mouse kidney. Thus, the Ube2d family genes may be one of the key targets of renal toxicity caused by Cd.
Collapse
Affiliation(s)
- Maki Tokumoto
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University, Nagoya, Japan
| | | |
Collapse
|
14
|
Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 2013; 87:1743-86. [PMID: 23982889 DOI: 10.1007/s00204-013-1110-9] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022]
Abstract
Cellular stress elicited by the toxic metal Cd(2+) does not coerce the cell into committing to die from the onset. Rather, detoxification and adaptive processes are triggered concurrently, allowing survival until normal function is restored. With high Cd(2+), death pathways predominate. However, if sublethal stress levels affect cells for prolonged periods, as in chronic low Cd(2+) exposure, adaptive and survival mechanisms may deregulate, such that tumorigenesis ensues. Hence, death and malignancy are the two ends of a continuum of cellular responses to Cd(2+), determined by magnitude and duration of Cd(2+) stress. Signaling cascades are the key factors affecting cellular reactions to Cd(2+). This review critically surveys recent literature to outline major features of death and survival signaling pathways as well as their activation, interactions and cross talk in cells exposed to Cd(2+). Under physiological conditions, receptor activation generates 2nd messengers, which are short-lived and act specifically on effectors through their spatial and temporal dynamics to transiently alter effector activity. Cd(2+) recruits physiological 2nd messenger systems, in particular Ca(2+) and reactive oxygen species (ROS), which control key Ca(2+)- and redox-sensitive molecular switches dictating cell function and fate. Severe ROS/Ca(2+) signals activate cell death effectors (ceramides, ASK1-JNK/p38, calpains, caspases) and/or cause irreversible damage to vital organelles, such as mitochondria and endoplasmic reticulum (ER), whereas low localized ROS/Ca(2+) levels act as 2nd messengers promoting cellular adaptation and survival through signal transduction (ERK1/2, PI3K/Akt-PKB) and transcriptional regulators (Ref1-Nrf2, NF-κB, Wnt, AP-1, bestrophin-3). Other cellular proteins and processes targeted by ROS/Ca(2+) (metallothioneins, Bcl-2 proteins, ubiquitin-proteasome system, ER stress-associated unfolded protein response, autophagy, cell cycle) can evoke death or survival. Hence, temporary or permanent disruptions of ROS/Ca(2+) induced by Cd(2+) play a crucial role in eliciting, modulating and linking downstream cell death and adaptive and survival signaling cascades.
Collapse
|
15
|
Cadmium modifies the cell cycle and apoptotic profiles of human breast cancer cells treated with 5-fluorouracil. Int J Mol Sci 2013; 14:16600-16. [PMID: 23941782 PMCID: PMC3759927 DOI: 10.3390/ijms140816600] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/15/2013] [Accepted: 07/22/2013] [Indexed: 12/20/2022] Open
Abstract
Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd.
Collapse
|
16
|
|
17
|
Matsuoka M, Igisu H. Effects of heavy metals on mitogen-activated protein kinase pathways. Environ Health Prev Med 2012; 6:210-7. [PMID: 21432337 DOI: 10.1007/bf02897972] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2001] [Accepted: 10/22/2001] [Indexed: 01/07/2023] Open
Abstract
The signaling pathways leading to cellular protection or cell death following exposure to heavy metals have not been fully clarified. Mitogen-activated protein kinases (MAPKs), i.e., extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal kinase (JNK) and p38 MAPK transmit extracellular signals into the nucleus, and have been shown to participate in a diverse array of cellular functions such as cell growth, differentiation and apoptosis. Treatment with cadmium, inorganic mercury or tributyltin can activate ERK, JNK and p38 MAPK, and induces the expression of c-fos and c-jun genes prior to the development of apoptosis. However, the members of the MAPK family appear to be differentially activated depending on the heavy metal and the cell type exposed. Consequently, various cellular responses may be caused by the distinct pattern of MAPKs activation. MAPKs may be one of the important cellular signal transduction pathways affected by various environmental pollutants, including heavy metals.
Collapse
Affiliation(s)
- Masato Matsuoka
- Department of Environmental Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu, Japan,
| | | |
Collapse
|
18
|
Lee JC, Son YO, Pratheeshkumar P, Shi X. Oxidative stress and metal carcinogenesis. Free Radic Biol Med 2012; 53:742-57. [PMID: 22705365 DOI: 10.1016/j.freeradbiomed.2012.06.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 01/18/2023]
Abstract
Occupational and environmental exposures to metals are closely associated with an increased risk of various cancers. Although carcinogenesis caused by metals has been intensively investigated, the exact mechanisms of action are still unclear. Accumulating evidence indicates that reactive oxygen species (ROS) generated by metals play important roles in the etiology of degenerative and chronic diseases. This review covers recent advances in (1) metal-induced generation of ROS and the related mechanisms; (2) the relationship between metal-mediated ROS generation and carcinogenesis; and (3) the signaling proteins involved in metal-induced carcinogenesis, especially intracellular reduction-oxidation-sensitive molecules.
Collapse
Affiliation(s)
- Jeong-Chae Lee
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
19
|
Ray D, Murphy KR, Gal S. The DNA binding and accumulation of p53 from breast cancer cell lines and the link with serine 15 phosphorylation. Cancer Biol Ther 2012; 13:848-57. [PMID: 22785213 DOI: 10.4161/cbt.20835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stress treatment generally causes the post-translational modification and accumulation of the p53 protein, although the role of these aspects has not been always understood in relation to this protein's tumor suppressor activity. We analyzed these attributes of p53 in eight different breast cancer cell lines, with either wild-type or mutant p53 protein, in response to oxidative stress. We found that the wild-type p53 protein from MCF-7 and ZR-75-1 cells binds with different affinity to 12 gene sequences covering several pathways regulated by p53. Treatment of MCF-7 cells with H2O2 caused an increase in this binding affinity while this same treatment of ZR-75-1 cells caused the p53 protein to lose binding affinity to several genes. The mutant p53 proteins from all cell lines had minimal to weak binding to these sequences even after treatment with H2O2. The p53 protein from the ZR-75-1 cells and three cell lines with mutant p53 showed serine 15 phosphorylated protein, but we found no correlation between that modification and the levels or localization of this protein although DNA binding affinity of wild-type protein might be affected by this modification. From this and other work, it appears that the mutation status of the TP53 gene alone cannot predict the activity of this tumor suppressor since cell lines with the same genetic information do not show the same properties of this protein.
Collapse
Affiliation(s)
- Debolina Ray
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | | | | |
Collapse
|
20
|
Fujiwara Y, Lee JY, Tokumoto M, Satoh M. Cadmium Renal Toxicity via Apoptotic Pathways. Biol Pharm Bull 2012; 35:1892-7. [DOI: 10.1248/bpb.b212014] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yasuyuki Fujiwara
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Maki Tokumoto
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University
| | - Masahiko Satoh
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| |
Collapse
|
21
|
Moulis JM. Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. Biometals 2010; 23:877-96. [DOI: 10.1007/s10534-010-9336-y] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 04/01/2010] [Indexed: 01/12/2023]
|
22
|
Williams T, Forsberg LJ, Viollet B, Brenman JE. Basal autophagy induction without AMP-activated protein kinase under low glucose conditions. Autophagy 2009; 5:1155-65. [PMID: 19844161 DOI: 10.4161/auto.5.8.10090] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
When ATP levels in a cell decrease, various homeostatic intracellular mechanisms initiate attempts to restore ATP levels. As a prominent energy sensor, AMP-activated protein kinase (AMPK) represents one molecular gauge that links energy levels to regulation of anabolic and catabolic processes to restore energy balance. Although pharmacological studies have suggested that an AMPK activator, AIC AR (5-aminoimidazole-4-carboxamide ribonucleoside) may link AMPK activation to autophagy, a process that can provide short-term energy within the cell, AICAR can have AMPK-independent effects. Therefore, using a genetic-based approach we investigated the role of AMPK in cellular energy balance. We demonstrate that genetically altered cells, mouse embryonic fibroblasts (MEFs), lacking functional AMPK, display altered energy balance under basal conditions and die prematurely under low glucose-serum starvation challenge. These AMPK mutant cells appear to be abnormally reliant on autophagy under low glucose basal conditions, and therefore cannot rely further on autophagy like wild-type cells during further energetic stress and instead undergo apoptosis. This data suggests that AMPK helps regulate basal energy levels under low glucose. Further, AMPK mutant cells show increased basal phosphorylation of p53 at serine 15, a residue phosphorylated under glucose deprivation. We propose that cells lacking AMPK function have altered p53 activity that may help sensitize these cells to apoptosis under energetic stress.
Collapse
Affiliation(s)
- Tyisha Williams
- The Neuroscience Center UNC Chapel Hill School of Medicine, USA
| | | | | | | |
Collapse
|
23
|
Benoff S, Hauser R, Marmar JL, Hurley IR, Napolitano B, Centola GM. Cadmium concentrations in blood and seminal plasma: correlations with sperm number and motility in three male populations (infertility patients, artificial insemination donors, and unselected volunteers). Mol Med 2009; 15:248-62. [PMID: 19593409 DOI: 10.2119/molmed.2008.00104] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To investigate a possible common environmental exposure that may partially explain the observed decrease in human semen quality, we correlated seminal plasma and blood cadmium levels with sperm concentration and sperm motility. We studied three separate human populations: group 1, infertility patients (Long Island, NY, USA); group 2, artificial insemination donors (AID) (Rochester, NY, USA); and group 3, general population volunteers (Rochester, NY, USA). Information about confounding factors was collected by questionnaire. Seminal plasma cadmium did not correlate with blood cadmium (Spearman correlation, n = 91, r = -0.092, P = 0.386, NS). Both blood and seminal plasma cadmium were significantly higher among infertility patients than the other subjects studied (for example, median seminal plasma cadmium was 0.282 microg/L in infertility patients versus 0.091 microg/L in AID and 0.092 microg/L in general population volunteers; Kruskal-Wallis test, P < 0.001). The percentage of motile sperm and sperm concentration correlated inversely with seminal plasma cadmium among the infertility patients (r = -0.201, P < 0.036 and r = -0.189, P < 0.05, respectively), but not in the other two groups. Age (among infertility patients) was the only positive confounder correlating with seminal plasma cadmium. To validate our human findings in an animal model, we chronically exposed adolescent male Wistar rats to low-moderate cadmium in drinking water. Though otherwise healthy, the rats exhibited decreases in epididymal sperm count and sperm motility associated with cadmium dose and time of exposure. Our human and rat study results are consistent with the hypothesis that environmental cadmium exposures may contribute significantly to reduced human male sperm concentration and sperm motility.
Collapse
Affiliation(s)
- Susan Benoff
- Fertility Research Laboratories, The Feinstein Institute for Medical Research, Manhasset, New York 11030, United States of America.
| | | | | | | | | | | |
Collapse
|
24
|
Effects of cadmium chloride on some mitochondria-related activity and gene expression of human MDA-MB231 breast tumor cells. J Inorg Biochem 2008; 102:1668-76. [DOI: 10.1016/j.jinorgbio.2008.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 11/18/2022]
|
25
|
Nakagawa J, Matsuoka M. Suppression of zinc-induced p53 phosphorylation and p21 expression by wortmannin in A549 human pulmonary epithelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 26:109-112. [PMID: 21783897 DOI: 10.1016/j.etap.2008.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 01/28/2008] [Accepted: 02/02/2008] [Indexed: 05/31/2023]
Abstract
In A549 cells treated with zinc sulfate (ZnSO(4)), the levels of p53 phosphorylated at Ser15 and total p53 protein increased. Treatment with wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K)-related kinases, suppressed ZnSO(4)-induced phosphorylation and accumulation of p53 protein. Expression of cyclin-dependent kinase inhibitor p21, one of the genes regulated by p53, was up-regulated following exposure to ZnSO(4), and suppressed by preincubation with wortmannin. These results suggest that zinc might induce the phosphorylation of p53 at Ser15 through wortmannin-sensitive pathway(s) at least in part, and result in the transactivation of the p21 gene in this human pulmonary epithelial cell line.
Collapse
Affiliation(s)
- Junko Nakagawa
- Department of Hygiene and Public Health I, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | |
Collapse
|
26
|
Sirchia R, Longo A, Luparello C. Cadmium regulation of apoptotic and stress response genes in tumoral and immortalized epithelial cells of the human breast. Biochimie 2008; 90:1578-90. [PMID: 18625282 DOI: 10.1016/j.biochi.2008.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/19/2008] [Indexed: 01/23/2023]
Abstract
Cadmium (Cd) is a widely-disseminated metal which can be imported and accumulated in living cells thereby drastically interfering with their biological mechanisms. Increasing interest has been recently focused on the elucidation of the cellular and molecular aspects of Cd-dependent regulation of gene expression and signal transduction pathways in different model system. Concerning breast cancer, very limited studies have been produced so far on the role played by Cd on estrogen receptor-negative human breast cancer cells, that are expected to be insensitive to the already-proven metallo-estrogenic effect exerted by Cd on the estrogen receptor-positive cell counterparts. Here, we have examined the effects of long-term (96 h) exposure of estrogen receptor-negative MDA-MB231 malignant adenocarcinoma cells to CdCl(2) at 5 microM concentration, corresponding to the IC(50) for this time of incubation, by evaluating the expression levels of genes coding for stress response factors (e.g. heat shock proteins and metallothioneins), and for apoptosis-related factors and enzymes. In parallel, we tested the gene expression pattern of immortalized HB2 breast epithelial cells, taken as non-tumoral counterpart, after the same exposure to the metal which instead did not exert any change in their cell number with respect to controls. Our cumulative results indicate that, whilst HB2 cells appear to activate defense mechanisms against metal stress principally via metallothionein massive up-regulation and appearance of the spliced form of XBP-1 message, MDA-MB231 cells seem to couple the onset of a protective reaction (e.g. up-regulation of hsp27 and metallothioneins) to the switching-on of new intracellular pathways directing cells to a kind of death which shares several aspects with the apoptotic program, such as down-regulation of Bcl-2 and over-expression of Dap kinase and several caspases.
Collapse
Affiliation(s)
- Rosalia Sirchia
- Dipartimento di Biologia Cellulare e dello Sviluppo, Viale delle Scienze, Università di Palermo, Palermo, Italy
| | | | | |
Collapse
|
27
|
Yu X, Hong S, Faustman EM. Cadmium-induced activation of stress signaling pathways, disruption of ubiquitin-dependent protein degradation and apoptosis in primary rat Sertoli cell-gonocyte cocultures. Toxicol Sci 2008; 104:385-96. [PMID: 18463101 DOI: 10.1093/toxsci/kfn087] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cadmium (Cd) is a ubiquitous environmental pollutant that has been associated with male reproductive toxicity in both humans and animal models. The underlying mechanism of this response, however, is still uncharacterized. To address this issue, we employed a recently developed and optimized three-dimensional primary Sertoli cell-gonocyte coculture system and examined the time- and dose-dependent effects of Cd on morphological alterations, cell viability, activation of stress signaling pathway proteins, and the disruption of the ubiquitin proteasome system (UPS). Our results demonstrated that Cd exposure lead to time- and dose-dependent morphological changes that are associated with the induction of apoptosis. In response to Cd, we also saw a disruption of the UPS as evaluated through the accumulation of high-molecular weight polyubiquitinated proteins (HMW-polyUb) as well as alterations in proteasome activity. Robust activation of cellular stress response, measured through the increased phosphorylation of stress-activated protein kinase/c-jun N-terminal kinase and p38, paralleled the accumulation of HMW-polyUb. In addition, p53, a key regulatory protein, was upregulated and underwent increased ubiquitination in response to Cd. To further characterize the role of the UPS in Cd cellular response, we compared the above changes with two classic proteasomal inhibitors, lactacystin, and MG132. The stress response and the accumulation of HWM-polyUb induced by Cd were consistent with the response seen with MG132 but not with lactacystin. In addition, Cd treatment resulted in a dose- and time-dependent effect on proteasome activity, but the overall Cd-induced proteasomal inhibition was unique as compared to MG132 and lactacystin. Taken together, our studies further characterize Cd-induced in vitro testicular toxicity and highlight the potential role of the UPS in this response.
Collapse
Affiliation(s)
- Xiaozhong Yu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA.
| | | | | |
Collapse
|
28
|
Liu Z, Yu X, Shaikh ZA. Rapid activation of ERK1/2 and AKT in human breast cancer cells by cadmium. Toxicol Appl Pharmacol 2008; 228:286-94. [PMID: 18275979 PMCID: PMC3472804 DOI: 10.1016/j.taap.2007.12.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 12/12/2007] [Accepted: 12/18/2007] [Indexed: 12/21/2022]
Abstract
Cadmium (Cd), an endocrine disruptor, can induce a variety of signaling events including the activation of ERK1/2 and AKT. In this study, the involvement of estrogen receptors (ER) in these events was evaluated in three human breast cancer cell lines, MCF-7, MDA-MB-231, and SK-BR-3. The Cd-induced signal activation patterns in the three cell lines mimicked those exhibited in response to 17 beta-estradiol. Specifically, treatment of MCF-7 cells, that express ER alpha, ER beta and GPR30, to 0.5-10 microM Cd for only 2.5 min resulted in transient phosphorylation of ERK1/2. Cd also triggered a gradual increase and sustained activation of AKT during the 60 min treatment period. In SK-BR-3 cells, that express only GPR30, Cd also caused a transient activation of ERK1/2, but not of AKT. In contrast, in MDA-MB-231 cells, that express only ER beta, Cd was unable to cause rapid activation of either ERK1/2 or AKT. A transient phosphorylation of ER alpha was also observed within 2.5 min of Cd exposure in the MCF-7 cells. While the estrogen receptor antagonist, ICI 182,780, did not prevent the effect of Cd on these signals, specific siRNA against hER alpha significantly reduced Cd-induced activation of ERK1/2 and completely blocked the activation of AKT. It is concluded that Cd, like estradiol, can cause rapid activation of ERK1/2 and AKT and that these signaling events are mediated by possible interaction with membrane ER alpha and GPR30, but not ER beta.
Collapse
Affiliation(s)
- Zhiwei Liu
- Department of Biomedical and Pharmaceutical Science, and Center for Molecular Toxicology, College of Pharmacy, University of Rhode Island, Kingston, RI 02881
| | - Xinyuan Yu
- Department of Biomedical and Pharmaceutical Science, and Center for Molecular Toxicology, College of Pharmacy, University of Rhode Island, Kingston, RI 02881
| | - Zahir A Shaikh
- Department of Biomedical and Pharmaceutical Science, and Center for Molecular Toxicology, College of Pharmacy, University of Rhode Island, Kingston, RI 02881
| |
Collapse
|
29
|
Mak IWY, Liu L, Ling V, Kastelic T. The effect of the fungal metabolite radicicol analog A on mRNA degradation. Genomics 2007; 90:723-32. [PMID: 17936575 DOI: 10.1016/j.ygeno.2007.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 07/09/2007] [Accepted: 08/06/2007] [Indexed: 12/30/2022]
Abstract
The AU-rich element (ARE) is a stability determinant found in the 3' UTR of a number of short-lived mRNAs. The best characterized ARE is the Shaw-Kamen (SK) box or AUUUA motif. Previously, a fungal metabolite, radicicol analog A (RAA), was shown to destabilize SK box-containing mRNAs based on 16 mRNAs examined [T. Kastelic et al., Cytokine 8 (1996) 751-761]. Using serial analysis of gene expression (SAGE) to examine the global effect of RAA on mRNA expression in interferon-gamma/lipopolysaccharide-stimulated THP-1 human monocytes, we observed that the expression level of greater than 99% of the SAGE tags was unchanged by RAA treatment and only 34 of the 17,608 unique tags annotated were reduced (p< or =0.0001). RAA destabilized approximately half of the down-regulated transcripts. Whereas all the destabilized mRNAs possessed at least one SK box, for transcripts not destabilized but nonetheless down-regulated, RAA appears to function by a SK box-independent mechanism not currently understood.
Collapse
Affiliation(s)
- Isabella W Y Mak
- BC Cancer Research Centre, BC Cancer Agency, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
30
|
Lasfer M, Vadrot N, Aoudjehane L, Conti F, Bringuier AF, Feldmann G, Reyl-Desmars F. Cadmium induces mitochondria-dependent apoptosis of normal human hepatocytes. Cell Biol Toxicol 2007; 24:55-62. [PMID: 17610031 DOI: 10.1007/s10565-007-9015-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
The heavy metal cadmium, an environmental pollutant, has been widely demonstrated to be toxic, in particular for liver. In murines, cadmium induces apoptosis of hepatocytes and hepatomas. In human cells, apoptosis induced by cadmium has been exclusively demonstrated in tumoral cell lines. Nothing was known in normal liver, in vitro or in vivo. In the present study, we examined the effects of cadmium in nonmalignant human hepatocytes. For that purpose, we investigated whether cadmium was able to induce apoptosis of normal human hepatocytes (NHH) in primary culture and of a SV40-immortalized human hepatocyte (IHH) cell line. Treatment of IHH and NHH with cadmium induced the presence of a sub-G(1) population at 10 and 100 micromol/L, respectively. DAPI staining of both cell types treated with cadmium 100 micromol/L revealed the induction of nuclear apoptotic bodies, supporting the hypothesis of apoptosis. In IHH and NHH, cadmium 100 micromol/L induced PARP cleavage into a 85 kDa fragment. In order to investigate the involvement of mitochondria in cadmium-induced apoptosis, we measured the mitochondrial membrane potential (Delta(Psim)). We observed that in IHH and NHH, cadmium 100 micromol/L induced a decrease of Delta(Psim). As expected, cadmium under the same conditions enhanced caspase-9 and caspase-3 activities. In addition, cadmium from 1 to 100 micromol/L induced the expression of p53 and phosphorylation of its Ser15 in IHH and NHH. In conclusion, we showed in this study that human hepatocytes were sensitive to cadmium and apoptosis induced at concentrations suggested in the literature to inhibit p53 DNA-binding and DNA repair.
Collapse
Affiliation(s)
- M Lasfer
- INSERM, U773, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Cao F, Zhou T, Simpson D, Zhou Y, Boyer J, Chen B, Jin T, Cordeiro-Stone M, Kaufmann W. p53-Dependent but ATM-independent inhibition of DNA synthesis and G2 arrest in cadmium-treated human fibroblasts. Toxicol Appl Pharmacol 2007; 218:174-85. [PMID: 17174997 PMCID: PMC1864945 DOI: 10.1016/j.taap.2006.10.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/30/2006] [Accepted: 10/30/2006] [Indexed: 02/08/2023]
Abstract
This study focused on the activation of cell cycle checkpoint responses in diploid human fibroblasts that were treated with cadmium chloride and the potential roles of ATM and p53 signaling pathways in cadmium-induced responses. The alkaline comet assay indicated that cadmium caused a dose-dependent increase in DNA damage. Cells that were rendered p53-defective by expression of a dominant-negative p53 allele or knockdown of p53 mRNA were more resistant to cadmium-induced inactivation of colony formation than normal and ataxia telangiectasia (AT) cells. Synchronized fibroblasts in S were more sensitive to cadmium toxicity than cells in G1, suggesting that cadmium may target some element of DNA replication. Cadmium produced a dose- and time-dependent inhibition of DNA synthesis. An immediate inhibition was associated with severe delay in progression through S phase and a delayed inhibition seen 24 h after treatment was associated with accumulation of cells in G2. AT and normal cells displayed similar patterns of inhibition of DNA synthesis and G2 delay after treatment with cadmium, while p53-defective cells displayed significantly less of the delayed inhibition of DNA synthesis and accumulation in G2 post-treatment. Total p53 protein and ser15-phosphorylated p53 were induced by cadmium in normal and AT cells. The p53 transactivation target Gadd45alpha was induced in both p53-effective and p53-defective cells after 4 h cadmium treatment, and this was associated with an acute inhibition of mitosis. Cadmium produced a very unusual pattern of toxicity in human fibroblasts, inhibiting DNA replication and inducing p53-dependent growth arrest but without induction of p21(Cip1/Waf1) or activation of Chk1.
Collapse
Affiliation(s)
- Feng Cao
- Department of Toxicology, School of Public Health, Medical Center of Fudan University, Shanghai, China
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Tong Zhou
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Dennis Simpson
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yingchun Zhou
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jayne Boyer
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Bo Chen
- Department of Toxicology, School of Public Health, Medical Center of Fudan University, Shanghai, China
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Taiyi Jin
- Department of Toxicology, School of Public Health, Medical Center of Fudan University, Shanghai, China
| | - Marila Cordeiro-Stone
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - William Kaufmann
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
32
|
Suzuki K, Inageda K, Nishitai G, Matsuoka M. Phosphorylation of p53 at serine 15 in A549 pulmonary epithelial cells exposed to vanadate: involvement of ATM pathway. Toxicol Appl Pharmacol 2007; 220:83-91. [PMID: 17292432 DOI: 10.1016/j.taap.2006.12.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 12/23/2006] [Accepted: 12/28/2006] [Indexed: 11/24/2022]
Abstract
When A549 cells were exposed to sodium metavanadate (NaVO(3)), the pentavalent species of vanadium (vanadate), phosphorylation of p53 protein at Ser15 was found in a time (8-48 h)- and dose (10-200 microM)-dependent manner. After the incubation with 50 or 100 microM NaVO(3) for 48 h, accumulation of p53 protein was accompanied with Ser15 phosphorylation. Among serines in p53 protein immunoprecipitated from A549 cells treated with 100 microM NaVO(3) for 48 h, only Ser15 was markedly phosphorylated. Treatment with other vanadate compounds, sodium orthovanadate (Na(3)VO(4)) and ammonium metavanadate (NH(4)VO(3)), also induced Ser15 phosphorylation and accumulation of p53 protein. While phosphorylation of extracellular signal-regulated protein kinase (ERK) was found in cells treated with NaVO(3), treatment with U0126 did not suppress Ser15 phosphorylation. On the other hand, treatment with wortmannin or caffeine, the inhibitors to phosphatidylinositol 3-kinase related kinases (PIKKs), suppressed both NaVO(3)-induced Ser15 phosphorylation and accumulation of p53 protein. The silencing of ataxia telangiectasia mutated (ATM) expression using short-interference RNA resulted in the marked suppression of Ser15 phosphorylation in A549 cells exposed to NaVO(3). However, treatment with antioxidants such as catalase and N-acetylcysteine did not suppress NaVO(3)-induced Ser15 phosphorylation. Transcriptional activation of p53 and DNA fragmentation in A549 cells treated with NaVO(3) were suppressed only slightly by S15A mutation, suggesting that Ser15 phosphorylation is not essential for these responses. The present results showed that vanadate induces the phosphorylation of p53 at Ser15 depending on ATM, one of the members of PIKK family, in this human pulmonary epithelial cell line.
Collapse
Affiliation(s)
- Katsura Suzuki
- Department of Hygiene and Public Health I, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | |
Collapse
|
33
|
Bertin G, Averbeck D. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006; 88:1549-59. [PMID: 17070979 DOI: 10.1016/j.biochi.2006.10.001] [Citation(s) in RCA: 630] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 10/02/2006] [Indexed: 02/02/2023]
Abstract
Cadmium is an important toxic environmental heavy metal. Occupational and environmental pollution with cadmium results mainly from mining, metallurgy industry and manufactures of nickel-cadmium batteries, pigments and plastic stabilizers. Important sources of human intoxication are cigarette smoke as well as food, water and air contaminations. In humans, cadmium exposures have been associated with cancers of the prostate, lungs and testes. Acute exposures are responsible for damage to these organs. Chronic intoxication is associated with obstructive airway disease, emphysema, irreversible renal failure, bone disorders and immuno-suppression. At the cellular level, cadmium affects proliferation, differentiation and causes apoptosis. It has been classified as a carcinogen by the International Agency for Research on Cancer (IARC). However, it is weakly genotoxic. Indirect effects of cadmium provoke generation of reactive oxygen species (ROS) and DNA damage. Cadmium modulates also gene expression and signal transduction, reduces activities of proteins involved in antioxidant defenses. Several studies have shown that it interferes with DNA repair. The present review focuses on the effects of cadmium in mammalian cells with special emphasis on the induction of damage to DNA, membranes and proteins, the inhibition of different types of DNA repair and the induction of apoptosis. Current data and hypotheses on the mechanisms involved in cadmium genotoxicity and carcinogenesis are outlined.
Collapse
Affiliation(s)
- G Bertin
- Institut Curie-UMR 2027 CNRS Génotoxicologie et cycle cellulaire, LCR V28 du CEA, centre universitaire, 91405 Orsay cedex, France
| | | |
Collapse
|
34
|
Xie J, Shaikh ZA. Cadmium induces cell cycle arrest in rat kidney epithelial cells in G2/M phase. Toxicology 2006; 224:56-65. [PMID: 16730872 DOI: 10.1016/j.tox.2006.04.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 04/01/2006] [Accepted: 04/07/2006] [Indexed: 12/31/2022]
Abstract
Cadmium (Cd) has been reported to cause cell cycle arrest in various cell types by p53-dependent and -independent mechanisms. This study was designed to investigate cell cycle progression in kidney cells that are the target of chronic Cd toxicity. Rat renal proximal tubular epithelial cells, NRK-52E, were treated with up to 20 microM CdCl2 in DMEM containing 10% calf serum for up to 24 h. Flow cytometric analysis revealed time- and concentration-dependent increases in cells in G2/M phase of the cell cycle. As compared to the control cells, the cells exposed to 20 microM Cd showed a doubling of the number of cells in this phase after 24 h. The cell cycle arrest was associated with a decrease in protein levels of both cyclins A and B. Further investigation into the mechanism revealed that Cd treatment led to down-modulation of cyclin-dependent kinases, Cdk1 and Cdk2, apparently by elevating the expression of cyclin kinase inhibitors, KIP1/p27 and WAF1/p21. Furthermore, the wild-type p53 DNA-binding activity was up-regulated. Based on these observations, it appears that Cd causes G2/M phase arrest in NRK-52E cells via elevation of p53 activity, increasing the expression of cyclin kinase inhibitors p27 and p21, and decreasing the expression of cyclin-dependent kinases Cdk1 and 2, and of cyclins A and B.
Collapse
Affiliation(s)
- Jianxun Xie
- Department of Biomedical and Pharmaceutical Sciences and Center for Molecular Toxicology, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | | |
Collapse
|
35
|
Okuno T, Matsuoka M, Sumizawa T, Igisu H. Involvement of the extracellular signal-regulated protein kinase pathway in phosphorylation of p53 protein and exerting cytotoxicity in human neuroblastoma cells (SH-SY5Y) exposed to acrylamide. Arch Toxicol 2005; 80:146-53. [PMID: 16180010 DOI: 10.1007/s00204-005-0022-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
Using human neuroblastoma SH-SY5Y cells, effects of acrylamide on p53 protein and intracellular signal transducting pathways were examined. Acrylamide increased p53, phosphorylated p53, and p53-associated protein murine double minute 2 (MDM2). The phosphorylation of p53 was specific for the Ser15 site. Among mitogen-activated protein kinases (MAPKs), acrylamide caused phosphorylation of extracellular signal-regulated protein kinase (ERK) and p38 but not c-Jun NH(2)-terminal kinase. Nevertheless, blocking p38 pathway by LL-Z1640-2 did not suppress the phosphorylation of p53 at Ser15. In contrast, a specific inhibitor of ERK kinase (U0126 or PD98059) could abolish the accumulation as well as the phosphorylation of p53 at Ser15. Elevation of MDM2 was also abolished by U0126. An inhibitor of phosphatidylinositol 3-kinase-related kinase (PIKK) pathway (wortmannin) suppressed the increase of p53 and its phosphorylation at Ser15. Hence, acrylamide increases p53 protein and its phosphorylation at Ser15 through ERK and/or PIKK pathways. On the other hand, U0126 and PD98059 suppressed to some extent the cytotoxicity of acrylamide evaluated by trypan blue exclusion and lactate dehydrogenase (LDH) leakage, whereas neither LL-Z1640-2 nor wortmannin was effective in suppressing the toxicity. Thus, ERK pathway seems to play a role both in causing the phosphorylation of p53 at Ser15 and in the cytotoxicity of acrylamide in SH-SY5Y cells.
Collapse
Affiliation(s)
- Takeo Okuno
- Department of Environmental Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi, Kitakyushu 807-8555, Japan
| | | | | | | |
Collapse
|
36
|
Grösch S, Schilling K, Janssen A, Maier TJ, Niederberger E, Geisslinger G. Induction of apoptosis by R-flurbiprofen in human colon carcinoma cells: involvement of p53. Biochem Pharmacol 2005; 69:831-9. [PMID: 15710360 DOI: 10.1016/j.bcp.2004.11.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 11/25/2004] [Indexed: 12/11/2022]
Abstract
R-flurbiprofen, a non cyclooxygenase inhibiting non-steroidal anti-inflammatory drug (NSAID), has been found to inhibit tumor growth in various animal models. In vitro experiments have shown that this effect is based on the induction of a cell cycle block and apoptosis. Cell cycle inhibition has been explained by activation of the c-Jun-N-terminal kinase (JNK) and downregulation of cyclin D1 expression. However, the molecular mechanism leading to apoptosis is unknown. Here, we show that treatment of the human colon carcinoma cell line HCT116 with different concentrations of R-flurbiprofen leads to an accumulation of p53 protein which is accompanied by an increase in phosphorylated p53 at serine 15. Mutation of serine 15 to alanine by site directed mutagenesis and overexpression of the mutated p53 gene in HCT116 cells, revealed that these cells are significantly less sensitive to apoptosis induced by R-flurbiprofen than pcDNA control cells, as measured by PARP-cleavage and flow cytometry. By contrast, no difference was detected between HCT116p53ser15ala cells and HCT116 pcDNA cells with respect to induction of a cell cycle block after R-flurbiprofen treatment. Moreover, in nude mice HCT116p53ser15ala overexpressing xenografts were significantly less sensitive to R-flurbiprofen than HCT116 pcDNA control xenografts. In conclusion, we were able to show that induction of apoptosis in HCT116 cells after R-flurbiprofen treatment is at least partly dependent on the tumor suppressor gene p53 and that mutation of p53 at serine 15 impairs the apoptotic potency of R-flurbiprofen.
Collapse
Affiliation(s)
- Sabine Grösch
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe Universität Frankfurt, 60590 Frankfurt/Main, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Leonard SS, Harris GK, Shi X. Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 2004; 37:1921-42. [PMID: 15544913 DOI: 10.1016/j.freeradbiomed.2004.09.010] [Citation(s) in RCA: 402] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 08/24/2004] [Accepted: 09/10/2004] [Indexed: 01/08/2023]
Abstract
Occupational and environmental exposures to metals are associated with the development of various cancers. Although carcinogenesis caused by metals has been intensively investigated, the mechanisms of action, especially at the molecular level, are still unclear. Accumulating evidence indicates that reactive oxygen species generated by metals may play an important role in the etiology of disease. This review covers recent advances in (1) metal-induced generation of reactive oxygen species; (2) the receptors, kinases, and nuclear transcription factors affected by metals and metal-induced oxidative stress, including growth factor receptors, src kinase, ras signaling, mitogen-activated protein kinases, the phosphoinositide 3-phosphate/Akt pathway, nuclear transcription factor kappaB, activator protein 1, p53, nuclear factor of activated T cells, and hypoxia-inducible factor 1; and (3) global cellular phenomena (signal transduction, cell cycle regulation, and apoptosis) associated with metal-induced ROS production and gene expression.
Collapse
Affiliation(s)
- Stephen S Leonard
- National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, Health Effects Laboratory Division, 1095 Willowdale Road, MS/2015, Morgantown, WV 26505, USA.
| | | | | |
Collapse
|
38
|
Huang YP, Cheng J, Zhang SL, Yang YJ, Gao XS, Zhong YW, Yang Y, Bai GQ, Lin SM. Screening of binding protein of hepatitis B virus pre-pre-s promoter by phage display technique. Shijie Huaren Xiaohua Zazhi 2004; 12:2801-2804. [DOI: 10.11569/wcjd.v12.i12.2801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To screen the binding protein gene of hepatitis B virus pre-pre-s promoter using phage display technique.
METHODS: Taking HBV pre-pre-S promoter as a solidified selective molecule, the phage-human liver cDNA library was biopanned and the positive clones were selected. The positive plaques were amplified and then cloned into pGEM-Teasy vector. The selected positive plaques were analyzed using bioinformatics and DNA sequencing.
RESULTS: Twenty positive clones were obtained, which included 17 clones with known function and 3 with unknown function.
CONCLUSION: The binding protein genes of HBV pre-pre-s promoter can be obtained by phage display technique, which may be helpful for further study of the pathogenesis of HBV infection.
Collapse
Affiliation(s)
- Yan-Ping Huang
- Gene Therapy Research Center, Institute of Infectious Diseases, 302 Hospital of Chinese PLA, Beijing 100039, China
| | - Jun Cheng
- Gene Therapy Research Center, Institute of Infectious Diseases, 302 Hospital of Chinese PLA, Beijing 100039, China
| | - Shu-Lin Zhang
- Department of Infectious Diseases, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yan-Jie Yang
- Gene Therapy Research Center, Institute of Infectious Diseases, 302 Hospital of Chinese PLA, Beijing 100039, China
| | - Xue-Song Gao
- Gene Therapy Research Center, Institute of Infectious Diseases, 302 Hospital of Chinese PLA, Beijing 100039, China
| | - Yan-Wei Zhong
- Gene Therapy Research Center, Institute of Infectious Diseases, 302 Hospital of Chinese PLA, Beijing 100039, China
| | - Yuan Yang
- Gene Therapy Research Center, Institute of Infectious Diseases, 302 Hospital of Chinese PLA, Beijing 100039, China
| | - Gui-Qin Bai
- Gene Therapy Research Center, Institute of Infectious Diseases, 302 Hospital of Chinese PLA, Beijing 100039, China
| | - Shu-Mei Lin
- Gene Therapy Research Center, Institute of Infectious Diseases, 302 Hospital of Chinese PLA, Beijing 100039, China
| |
Collapse
|
39
|
Schneiderhan N, Budde A, Zhang Y, Brüne B. Nitric oxide induces phosphorylation of p53 and impairs nuclear export. Oncogene 2003; 22:2857-68. [PMID: 12771937 DOI: 10.1038/sj.onc.1206431] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The tumor suppressor p53 accumulates under diverse stress conditions and affects cell cycle progression and/or apoptosis. This has been exemplified for endogenously produced or exogenously supplied nitric oxide (NO) and thus accounts at least in part for pathophysiological signaling of that bioactive molecule, although detailed mechanisms remain to be elucidated. By using luciferase reporter assays, we show that NO stabilized a transcriptionally active p53 protein. Considering that p53 is targeted by murine double minute (Mdm2) for ubiquitination and subsequent proteasomal degradation and knowing that this interaction is impaired by, for example, UV-treatment with concomitant stabilization of p53 we questioned the p53/Mdm2 interaction in the presence of NO. Although p53 became phosphorylated at serine 15 under the impact of NO, coimmunoprecipitation with Mdm2 and ubiquitination remained intact, thus excluding any interference of NO with this pathway. The importance of N-terminal p53 phosphorylation was verified with p53 mutants where the first six serine residues have been converted to alanine, and which do not accumulate in response to NO. Regulation of p53 stability can be also achieved by affecting nuclear-cytoplasmic shuttling and it was presented that leptomycin B, an inhibitor of nuclear export, caused p53 accumulation. Cell fractionation and immunofluorescence staining following NO-treatment revealed predominant nuclear accumulation of p53 in close association with serine 15-phosphorylation, which suggests impaired nuclear-cytoplasmic shuttling. This was verified by heterokaryon analysis. We conclude that attenuated nuclear export contributes to stabilization and activation of p53 under the influence of NO.
Collapse
Affiliation(s)
- Nicole Schneiderhan
- Department of Cell Biology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse, 67663 Kaiserslautern, Germany
| | | | | | | |
Collapse
|
40
|
MATSUOKA M, IGISU H. Effects of Heavy Metals on Mitogen-Activated Protein Kinase Pathways. Environ Health Prev Med 2002. [DOI: 10.1265/ehpm.2001.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
41
|
Silins I, Finnberg N, Ståhl A, Högberg J, Stenius U. Reduced ATM kinase activity and an attenuated p53 response to DNA damage in carcinogen-induced preneoplastic hepatic lesions in the rat. Carcinogenesis 2001; 22:2023-31. [PMID: 11751435 DOI: 10.1093/carcin/22.12.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In previous studies we have demonstrated that the p53 response to DNA damage in preneoplastic liver lesions, referred to as enzyme-altered foci (EAF), is attenuated. In the present investigation comparative quantitative RT-PCR revealed no major difference in the p53 mRNA levels in EAF and non-EAF tissue. When CoCl(2) was employed to induce hypoxia-inducible factor (HIF-1alpha), both non-EAF and EAF hepatocytes readily accumulated p53, whereas EAF hepatocytes did not accumulate p53 upon treatment with diethylnitrosamine (DEN). The p53 response was also induced in EAF hepatocytes by the inhibitor of nuclear export, leptomycin B. An inhibitor of DNA-dependent protein kinase (DNA-PK) and ataxia telangiectasia mutated (ATM), wortmannin, blocked the DEN-induced p53 response in non-EAF hepatocytes. Assay of kinase activity in immunoprecipitated material from EAF and non-EAF tissue revealed attenuated ATM activity in EAF. Immunohistological and western blot analysis of the level of ATM protein was in agreement with the activity measurements and no phosphorylation of Ser15 in p53 was detected in EAF tissue 24 h after a challenging dose of DEN. Taken together with previously published data, these data indicate selective attenuation of the DNA damage pathway in EAF hepatocytes. Down-regulation of DNA damage-induced and ATM-mediated phosphorylation of p53 may confer a growth advantage on EAF hepatocytes.
Collapse
Affiliation(s)
- I Silins
- Occupational Toxicology Group, Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|