1
|
Almeras L, Costa MM, Amalvict R, Guilliet J, Dusfour I, David JP, Corbel V. Potential of MALDI-TOF MS biotyping to detect deltamethrin resistance in the dengue vector Aedes aegypti. PLoS One 2024; 19:e0303027. [PMID: 38728353 PMCID: PMC11086877 DOI: 10.1371/journal.pone.0303027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Insecticide resistance in mosquitoes is spreading worldwide and represents a growing threat to vector control. Insecticide resistance is caused by different mechanisms including higher metabolic detoxication, target-site modification, reduced penetration and behavioral changes that are not easily detectable with simple diagnostic methods. Indeed, most molecular resistance diagnostic tools are costly and labor intensive and then difficult to use for routine monitoring of insecticide resistance. The present study aims to determine whether mosquito susceptibility status against the pyrethroid insecticides (mostly used for mosquito control) could be established by the protein signatures of legs and/or thoraxes submitted to MALDI-TOF Mass Spectrometry (MS). The quality of MS spectra for both body parts was controlled to avoid any bias due to unconformity protein profiling. The comparison of MS profiles from three inbreeds Ae. aegypti lines from French Guiana (IRF, IR03, IR13), with distinct deltamethrin resistance genotype / phenotype and the susceptible reference laboratory line BORA (French Polynesia), showed different protein signatures. On both body parts, the analysis of whole protein profiles revealed a singularity of BORA line compared to the three inbreeding lines from French Guiana origin, suggesting that the first criteria of differentiation is the geographical origin and/or the breeding history rather than the insecticide susceptibility profile. However, a deeper analysis of the protein profiles allowed to identify 10 and 11 discriminating peaks from leg and thorax spectra, respectively. Among them, a specific peak around 4870 Da was detected in legs and thoraxes of pyrethroid resistant lines compared to the susceptible counterparts hence suggesting that MS profiling may be promising to rapidly distinguish resistant and susceptible phenotypes. Further work is needed to confirm the nature of this peak as a deltamethrin resistant marker and to validate the routine use of MS profiling to track insecticide resistance in Ae. aegypti field populations.
Collapse
Affiliation(s)
- Lionel Almeras
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Parasitologie et Entomologie, Marseille, 13005, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
| | - Monique Melo Costa
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Parasitologie et Entomologie, Marseille, 13005, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
| | - Rémy Amalvict
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Parasitologie et Entomologie, Marseille, 13005, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
- Centre National de Référence du Paludisme, Marseille, 13005, France
| | - Joseph Guilliet
- Laboratoire d’Ecologie Alpine, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, Grenoble, 38041, France
| | - Isabelle Dusfour
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Unité de Contrôle et Adaptation des Vecteurs, Cayenne, France
| | - Jean-Philippe David
- Laboratoire d’Ecologie Alpine, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, Grenoble, 38041, France
| | - Vincent Corbel
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Avenida Brasil, Rio de Janeiro–RJ, Brazil
| |
Collapse
|
2
|
Perzova R, Graziano E, Sanghi S, Welch C, Benz P, Abbott L, Lalone D, Glaser J, Loughran T, Sheremata W, Poiesz BJ. Increased seroreactivity to human T cell lymphoma/leukemia virus-related endogenous sequence-1 Gag peptides in patients with human T cell lymphoma/leukemia virus myelopathy. AIDS Res Hum Retroviruses 2015; 31:242-9. [PMID: 25295378 DOI: 10.1089/aid.2014.0171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previously, we had shown that although only 8% of patients with large granular lymphocytic leukemia (LGLL) were infected with human T cell lymphoma/leukemia virus (HTLV)-2, almost half had antibodies to HTLV Gag and Env peptides. Herein, we investigated whether this could be due to cross-reactive antibodies to two homologous peptides in the Gag protein of the endogenous retrovirus HTLV-related endogenous sequence-1 (HRES-1). In addition, we had previously shown that patients with HTLV neurodegenerative diseases had increased seroreactivity to homologous HERV-K10 endogenous retrovirus peptides. Hence, in this study we also examined whether these patients had increased seroreactivity to the aforementioned HRES-1 Gag peptides. Sera from 100 volunteer blood donors (VBD), 53 patients with LGLL, 74 subjects with HTLV-1 or 2 infection (58 nonmyelopathy and 16 myelopathy), and 83 patients with multiple sclerosis (MS) were evaluated. The HTLV-positive myelopathy (HAM) patients had a statistically increased prevalence of antibodies to both HRES-1 Gag peptides (81%) vs. the VBD (0%), LGLL patients (13%), and MS patients (1%), and the HTLV-positive nonmyelopathy subjects (21%). The data suggest that cross-reactivity to HRES-1 peptides could be involved in the pathogenesis of HAM. The difference between the VBD and LGLL patients was also statistically significant, also suggesting a possible association in a minority of patients.
Collapse
Affiliation(s)
- Raisa Perzova
- Department of Medicine, Division of Hematology/Oncology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Elliot Graziano
- Department of Medicine, Division of Hematology/Oncology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Swathi Sanghi
- Department of Medicine, Division of Hematology/Oncology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Caitlin Welch
- Department of Medicine, Division of Hematology/Oncology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Patricia Benz
- Department of Medicine, Division of Hematology/Oncology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Lynn Abbott
- Department of Medicine, Division of Hematology/Oncology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Danielle Lalone
- Department of Medicine, Division of Hematology/Oncology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Jordan Glaser
- Division of Infectious Diseases, Department of Medicine, Staten Island Hospital, New York, New York
| | - Thomas Loughran
- Emily Couric Clinical Cancer Center, Charlottesville, Virginia
| | | | - Bernard J. Poiesz
- Department of Medicine, Division of Hematology/Oncology, State University of New York, Upstate Medical University, Syracuse, New York
| |
Collapse
|
3
|
Activation of LTRs from different human endogenous retrovirus (HERV) families by the HTLV-1 tax protein and T-cell activators. Viruses 2011; 3:2146-59. [PMID: 22163338 PMCID: PMC3230845 DOI: 10.3390/v3112146] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/22/2011] [Indexed: 11/16/2022] Open
Abstract
Human endogenous retroviruses (HERVs) represent approximately 8% of our genome. HERVs influence cellular gene expression and contribute to normal physiological processes such as cellular differentiation and morphogenesis. HERVs have also been associated with certain pathological conditions, including cancer and neurodegenerative diseases. As HTLV-1 causes adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and has been shown to modulate host gene expression mainly through the expression of the powerful Tax transactivator, herein we were interested in looking at the potential modulation capacity of HTLV-1 Tax on HERV expression. In order to evaluate the promoter activity of different HERV LTRs, pHERV-LTR-luc constructs were co-transfected in Jurkat T-cells with a Tax expression vector. Tax expression potently increased the LTR activity of HERV-W8 and HERV-H (MC16). In parallel, Jurkat cells were also stimulated with different T-cell-activating agents and HERV LTRs were observed to respond to different combination of Forskolin, bpV[pic] a protein tyrosine phosphatase inhibitor, and PMA. Transfection of expression vectors for different Tax mutants in Jurkat cells showed that several transcription factors including CREB appeared to be important for HERV-W8 LTR activation. Deletion mutants were derived from the HERV-W8 LTR and the region from −137 to −123 was found to be important for LTR response following Tax expression in Jurkat cells, while a different region was shown to be required in cells treated with activators. Our results thus demonstrated that HTLV-1 Tax activates several HERV LTRs. This raises the possibility that upregulated HERV expression could be involved in diseases associated with HTLV-1 infection.
Collapse
|
4
|
Brudek T, Christensen T, Aagaard L, Petersen T, Hansen HJ, Møller-Larsen A. B cells and monocytes from patients with active multiple sclerosis exhibit increased surface expression of both HERV-H Env and HERV-W Env, accompanied by increased seroreactivity. Retrovirology 2009; 6:104. [PMID: 19917105 PMCID: PMC2780989 DOI: 10.1186/1742-4690-6-104] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 11/16/2009] [Indexed: 02/04/2023] Open
Abstract
Background The etiology of the neurogenerative disease multiple sclerosis (MS) is unknown. The leading hypotheses suggest that MS is the result of exposure of genetically susceptible individuals to certain environmental factor(s). Herpesviruses and human endogenous retroviruses (HERVs) represent potentially important factors in MS development. Herpesviruses can activate HERVs, and HERVs are activated in MS patients. Results Using flow cytometry, we have analyzed HERV-H Env and HERV-W Env epitope expression on the surface of PBMCs from MS patients with active and stable disease, and from control individuals. We have also analyzed serum antibody levels to the expressed HERV-H and HERV-W Env epitopes. We found a significantly higher expression of HERV-H and HERV-W Env epitopes on B cells and monocytes from patients with active MS compared with patients with stable MS or control individuals. Furthermore, patients with active disease had relatively higher numbers of B cells in the PBMC population, and higher antibody reactivities towards HERV-H Env and HERV-W Env epitopes. The higher antibody reactivities in sera from patients with active MS correlate with the higher levels of HERV-H Env and HERV-W Env expression on B cells and monocytes. We did not find such correlations for stable MS patients or for controls. Conclusion These findings indicate that both HERV-H Env and HERV-W Env are expressed in higher quantities on the surface of B cells and monocytes in patients with active MS, and that the expression of these proteins may be associated with exacerbation of the disease.
Collapse
Affiliation(s)
- Tomasz Brudek
- Department of Medical Microbiology and Immunology, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|