1
|
Hall KE, McDonald MW, Grisé KN, Campos OA, Noble EG, Melling CWJ. The role of resistance and aerobic exercise training on insulin sensitivity measures in STZ-induced Type 1 diabetic rodents. Metabolism 2013; 62:1485-94. [PMID: 23810201 DOI: 10.1016/j.metabol.2013.05.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 11/21/2022]
Abstract
UNLABELLED Individuals with Type 1 Diabetes Mellitus (T1DM) can develop insulin resistance. Regular exercise may improve insulin resistance partially through increased expression of skeletal muscle GLUT4 content. OBJECTIVE To examine if different exercise training modalities can alter glucose tolerance through changes in skeletal muscle GLUT4 content in T1DM rats. METHODS Fifty rats were divided into 5 groups; control, diabetic control, diabetic resistance exercised, and diabetic high and low intensity treadmill exercised. Diabetes was induced using multiple low dose Streptozotocin (20 mg/kg/day) injections and blood glucose concentrations were maintained moderately hyperglycemic through subcutaneous insulin pellets. Resistance trained rats climbed a ladder with incremental loads, while treadmill trained rats ran on a treadmill at 27 or 15 m/min, respectively, all for 6 weeks. RESULTS At weeks 3 and 6, area under the curve measurements following an intravenous glucose tolerance test (AUC-IVGTT) in all diabetic groups were higher than control rats (p<0.05). At 6 weeks, all exercise groups had significantly lower AUC-IVGTT values than diabetic control animals (p<0.05). Treadmill trained rats had the lowest insulin dose requirement of the T1DM rats and the greatest reduction in insulin dosage was evident in high intensity treadmill exercise. Concomitant with improvements in glucose handling improvements, tissue-specific elevations in GLUT4 content were demonstrated in both red and white portions of vastus lateralis and gastrocnemius muscles, suggesting that glucose handling capacity was altered in the skeletal muscle of exercised T1DM rats. CONCLUSIONS These results suggest that, while all exercise modalities can improve glucose tolerance, each mode leads to differential improvements in insulin requirements and protein content alterations.
Collapse
MESH Headings
- Animals
- Blood Glucose/physiology
- Body Weight/physiology
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Glucose Tolerance Test/methods
- Glucose Transporter Type 4/metabolism
- Insulin/blood
- Insulin/metabolism
- Insulin Resistance/physiology
- Male
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Physical Conditioning, Animal/methods
- Rats
- Rats, Sprague-Dawley
- Resistance Training/methods
- Streptozocin/pharmacology
Collapse
Affiliation(s)
- Katharine E Hall
- Health and Rehabilitation Sciences, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
2
|
Colberg SR, Albright AL, Blissmer BJ, Braun B, Chasan-Taber L, Fernhall B, Regensteiner JG, Rubin RR, Sigal RJ. Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: joint position statement. Exercise and type 2 diabetes. Med Sci Sports Exerc 2011; 42:2282-303. [PMID: 21084931 DOI: 10.1249/mss.0b013e3181eeb61c] [Citation(s) in RCA: 360] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although physical activity (PA) is a key element in the prevention and management of type 2 diabetes mellitus (T2DM), many with this chronic disease do not become or remain regularly active. High-quality studies establishing the importance of exercise and fitness in diabetes were lacking until recently, but it is now well established that participation in regular PA improves blood glucose control and can prevent or delay T2DM, along with positively affecting lipids, blood pressure, cardiovascular events, mortality, and quality of life. Structured interventions combining PA and modest weight loss have been shown to lower T2DM risk by up to 58% in high-risk populations. Most benefits of PA on diabetes management are realized through acute and chronic improvements in insulin action, accomplished with both aerobic and resistance training. The benefits of physical training are discussed, along with recommendations for varying activities, PA-associated blood glucose management, diabetes prevention, gestational diabetes, and safe and effective practices for PA with diabetes-related complications.
Collapse
|
3
|
Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, Chasan-Taber L, Albright AL, Braun B. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care 2010; 33:e147-67. [PMID: 21115758 PMCID: PMC2992225 DOI: 10.2337/dc10-9990] [Citation(s) in RCA: 928] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although physical activity (PA) is a key element in the prevention and management of type 2 diabetes, many with this chronic disease do not become or remain regularly active. High-quality studies establishing the importance of exercise and fitness in diabetes were lacking until recently, but it is now well established that participation in regular PA improves blood glucose control and can prevent or delay type 2 diabetes, along with positively affecting lipids, blood pressure, cardiovascular events, mortality, and quality of life. Structured interventions combining PA and modest weight loss have been shown to lower type 2 diabetes risk by up to 58% in high-risk populations. Most benefits of PA on diabetes management are realized through acute and chronic improvements in insulin action, accomplished with both aerobic and resistance training. The benefits of physical training are discussed, along with recommendations for varying activities, PA-associated blood glucose management, diabetes prevention, gestational diabetes mellitus, and safe and effective practices for PA with diabetes-related complications.
Collapse
Affiliation(s)
- Sheri R Colberg
- Human Movement Sciences Department, Old Dominion University, Norfolk, Virginia, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Anand P, Murali K, Tandon V, Murthy P, Chandra R. Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chem Biol Interact 2010; 186:72-81. [DOI: 10.1016/j.cbi.2010.03.044] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 03/22/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
5
|
Glatz JFC, Luiken JJFP, Bonen A. Membrane Fatty Acid Transporters as Regulators of Lipid Metabolism: Implications for Metabolic Disease. Physiol Rev 2010; 90:367-417. [DOI: 10.1152/physrev.00003.2009] [Citation(s) in RCA: 515] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long-chain fatty acids and lipids serve a wide variety of functions in mammalian homeostasis, particularly in the formation and dynamic properties of biological membranes and as fuels for energy production in tissues such as heart and skeletal muscle. On the other hand, long-chain fatty acid metabolites may exert toxic effects on cellular functions and cause cell injury. Therefore, fatty acid uptake into the cell and intracellular handling need to be carefully controlled. In the last few years, our knowledge of the regulation of cellular fatty acid uptake has dramatically increased. Notably, fatty acid uptake was found to occur by a mechanism that resembles that of cellular glucose uptake. Thus, following an acute stimulus, particularly insulin or muscle contraction, specific fatty acid transporters translocate from intracellular stores to the plasma membrane to facilitate fatty acid uptake, just as these same stimuli recruit glucose transporters to increase glucose uptake. This regulatory mechanism is important to clear lipids from the circulation postprandially and to rapidly facilitate substrate provision when the metabolic demands of heart and muscle are increased by contractile activity. Studies in both humans and animal models have implicated fatty acid transporters in the pathogenesis of diseases such as the progression of obesity to insulin resistance and type 2 diabetes. As a result, membrane fatty acid transporters are now being regarded as a promising therapeutic target to redirect lipid fluxes in the body in an organ-specific fashion.
Collapse
Affiliation(s)
- Jan F. C. Glatz
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Joost J. F. P. Luiken
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Arend Bonen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
6
|
Habets DDJ, Thurmond DC, Coumans WA, Bonen A, Glatz JFC, Luiken JJFP. Munc18c is not rate-limiting for glucose and long-chain fatty acid uptake in the heart. Mol Cell Biochem 2008; 322:81-6. [PMID: 19009238 DOI: 10.1007/s11010-008-9942-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 10/22/2008] [Indexed: 11/27/2022]
Abstract
The role of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)- and SNARE-associated proteins have not yet been assessed in regulation of cardiac glucose uptake, nor in the regulation of long-chain fatty acid (LCFA) uptake in any tissue. Munc18c is a SNARE-associated protein that regulates GLUT4 translocation in skeletal muscle and adipose tissue. Using cardiomyocytes from Munc18c(-/+) mice (with 56% reduction of Munc18c protein expression), we investigated whether this syntaxin4-associated protein is involved in regulation of cardiac substrate uptake. Basal, insulin- and oligomycin (a 5' AMP-activated protein kinase-activating agent)-stimulated glucose and LCFA uptake were not altered significantly in Munc18c(-/+) cardiomyocytes compared to wild-type cells. We conclude, therefore, that Munc18c is not rate-limiting for cardiac substrate uptake, neither under basal conditions nor when maximally stimulated metabolically.
Collapse
Affiliation(s)
- Daphna D J Habets
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
7
|
Oguri M, Adachi H, Ohno T, Oshima S, Kurabayashi M. Effect of a single bout of moderate exercise on glucose uptake in type 2 diabetes mellitus. J Cardiol 2008; 53:8-14. [PMID: 19167632 DOI: 10.1016/j.jjcc.2008.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/12/2008] [Accepted: 07/15/2008] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE Hypoglycemia during exercise is a serious problem in diabetic patients during cardiac rehabilitation, whereas normal subjects rarely experience hypoglycemia. Inappropriate glucose uptake by working muscles may be responsible. However, the precise characteristics of glucose uptake during exercise have not been fully studied. We have investigated the effect of acute exercise on glucose uptake in diabetic patients. METHODS Nine type 2 diabetic patients (age, 57 ± 6 years; HbA1c, 7.7 ± 1.3%) performed exercise at an intensity of anaerobic threshold for 15 min. Glucose utility was determined using euglycemic hyperinsulinemic clamp technique. Glucose infusion rate (GIR) was calculated throughout the exercise and recovery session. RESULTS Average GIR at rest was 3.4 ± 1.6 mg/(kg(BW)min). Fifteen minutes after starting exercise, it increased significantly (6.6 ± 2.4, p < 0.001). Thirty minutes after cessation of exercise, GIR decreased significantly (4.8 ± 1.9, p < 0.05) compared with peak value. Increase in GIR was greater as BMI or body fat ratio became greater (r=0.608 and 0.475). There was a weak correlation (r=0.344) between HbA1c and GIR improving ratio (GIR during exercise x 100/GIR at rest). CONCLUSIONS Glucose uptake was revealed to augment significantly within 15 min after the commencement of exercise. This improvement was more obvious in patients with greater body weight, fat accumulation, and poorer diabetic control.
Collapse
Affiliation(s)
- Masato Oguri
- Department of Medicine and Biological Science, Graduate School of Medicine, Gunma University, Gunma, Japan
| | | | | | | | | |
Collapse
|
8
|
Park SY, Choi GH, Choi HI, Ryu J, Jung CY, Lee W. Calorie restriction improves whole-body glucose disposal and insulin resistance in association with the increased adipocyte-specific GLUT4 expression in Otsuka Long–Evans Tokushima Fatty rats. Arch Biochem Biophys 2005; 436:276-84. [PMID: 15797240 DOI: 10.1016/j.abb.2005.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 01/12/2005] [Indexed: 11/29/2022]
Abstract
Calorie restriction (CR) has been shown to improve peripheral insulin resistance and type 2 diabetes in animal models. However, the exact mechanism of CR on GLUT4 expression and translocation in insulin-sensitive tissues has not been well elucidated. In the present study, we examine the effect of CR on the expression of glucose transporter 4 (GLUT4), GLUT4 translocation, and glucose transport activity in adipose tissue from Otsuka Long-Evans Tokushima Fatty (OLETF) rat and control (LETO) rats. CR (70% of satiated group) ameliorated hyperglycemia and improved impaired glucose tolerance (IGT) in OLETF rats. In skeletal muscle, the expression levels of GLUT4 and GLUT1 were not significantly different between LETO and OLETF rats, and were not affected by CR. By contrast, the expression level of GLUT4 was markedly decreased in the adipose tissue of OLETF rats, but was dramatically increased by CR. The GLUT4 recruitment stimulated by insulin was also improved in OLETF rat adipocytes by CR. The insulin-stimulated 2-deoxyglucose (2DG) uptake was significantly increased in adipocytes from the CR OLETF rats, as compared with the satiated OLETF rats. Taken together, these results suggest that CR improves whole body glucose disposal and insulin resistance in OLETF rats, and that these effects may associate with the increased adipocyte-specific GLUT4 expression.
Collapse
Affiliation(s)
- Seung Y Park
- Department of Biochemistry, College of Medicine, Dongguk University, Kyungju, Kyungpook 780-714, Korea
| | | | | | | | | | | |
Collapse
|
9
|
Han JC, Park SY, Hah BG, Choi GH, Kim YK, Kwon TH, Kim EK, Lachaal M, Jung CY, Lee W. Cadmium induces impaired glucose tolerance in rat by down-regulating GLUT4 expression in adipocytes. Arch Biochem Biophys 2003; 413:213-20. [PMID: 12729619 DOI: 10.1016/s0003-9861(03)00120-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cadmium (Cd) has been known to cause hyperglycemia with diabetes-related complications in experimental animals; however, the molecular basis underlying this Cd-induced hyperglycemia is not known. Here, we report the novel finding that the impaired glucose tolerance (IGT) in rats induced by CdCl(2) is accompanied by a drastic (by as much as 90%) and dose-dependent reduction in GLUT4 protein and GLUT4 mRNA levels in adipocytes. The effect was specific to GLUT4; neither GLUT1 nor insulin-responsive aminopeptidase in adipocytes was affected. GLUT2 in hepatocytes was also not affected. Interestingly, the effect on GLUT4 was also specific to adipocytes; the muscle tissues of the Cd-treated rats showed only a slight (<25%) reduction in GLUT4 protein level with no change in GLUT4 message level, and again with no change in GLUT1 protein and its message levels. Although the insulin-induced GLUT4 translocation in adipocytes was not affected by the Cd treatment, the 3-O-methy-D-glucose flux in insulin-stimulated adipocytes of Cd-treated rat was drastically reduced. Together these findings clearly demonstrate that Cd induces IGT in rats by selectively down-regulating GLUT4 expression in adipocytes.
Collapse
Affiliation(s)
- Jin C Han
- Department of Biochemistry, College of Medicine, Dongguk University, 707 Sukjang-dong, Kyungju, Kyungpook 780-714, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Girón MD, Caballero JJ, Vargas AM, Suárez MD, Guinovart JJ, Salto R. Modulation of glucose transporters in rat diaphragm by sodium tungstate. FEBS Lett 2003; 542:84-8. [PMID: 12729903 DOI: 10.1016/s0014-5793(03)00352-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oral administration of sodium tungstate is an effective treatment for diabetes in animal models. We examined the effects of 6 weeks of oral administration of tungstate on glucose transporters (GLUT) in streptozotocin-induced diabetic rat diaphragm. Diabetes decreased GLUT4 expression while tungstate treatment normalized not only GLUT4 protein but also GLUT4 mRNA in the diabetic rats. Furthermore, treatment increased GLUT4 protein in plasma and internal membranes, suggesting a stimulation of its translocation to the plasma membrane. Tungstate had no effect on healthy animals. There were no differences in the total amount of GLUT1 transporter in any group. We conclude that the normoglycemic effect of tungstate may be partly due to a normalization of the levels and subcellular localization of GLUT4, which should result in an increase in muscle glucose uptake.
Collapse
Affiliation(s)
- M D Girón
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Granada, Campus de Cartuja sn, E-18071 Granada, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Iglesias MA, Ye JM, Frangioudakis G, Saha AK, Tomas E, Ruderman NB, Cooney GJ, Kraegen EW. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes 2002; 51:2886-94. [PMID: 12351423 DOI: 10.2337/diabetes.51.10.2886] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exercise improves insulin sensitivity. As AMP-activated protein kinase (AMPK) plays an important role in muscle metabolism during exercise, we investigated the effects of the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) on insulin action in insulin-resistant high-fat-fed (HF) rats. Rats received a subcutaneous injection of 250 mg/kg AICAR (HF-AIC) or saline (HF-Con). The next day, euglycemic-hyperinsulinemic clamp studies were performed. Glucose infusion rate during the clamp was enhanced (50%) in HF-AIC compared with HF-Con rats. Insulin-stimulated glucose uptake was improved in white but not in red quadriceps, whereas glycogen synthesis was improved in both red and white quadriceps of HF-AIC rats. HF-AIC rats also showed increased insulin suppressibility of hepatic glucose output (HGO). AICAR-induced responses in both liver and muscle were accompanied by reduced malonyl-CoA content. Clamp HGO correlated closely with hepatic triglyceride content (r = 0.67, P < 0.01). Thus, a single dose of AICAR leads to an apparent enhancement in whole-body, muscle, and liver insulin action in HF rats that extends beyond the expected time of AMPK activation. Whether altered tissue lipid metabolism mediates AICAR effects on insulin action remains to be determined. Follow-up studies suggest that at least some of the post-AICAR insulin-enhancing effects also occur in normal rats. Independent of this, the results suggest that pharmacological activation of AMPK may have potential in treating insulin-resistant states and type 2 diabetes.
Collapse
Affiliation(s)
- Miguel A Iglesias
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Over the past 30 years, a considerable body of evidence has revealed that a prior bout of exercise can increase the ability of insulin to stimulate glucose transport and glycogen synthesis in skeletal muscle. Apart from its clinical implications, this work has led to a considerable effort to determine at a molecular level how exercise causes this effect and, in particular, whether it does so by enhancing specific events in the insulin-signaling cascade. The objective of this review is to discuss from a historical perspective how our current thinking in this area has evolved and the people responsible for it. Areas to be discussed include the effect or lack of effect of prior exercise on the insulin-signaling pathway, effects of exercise on the regulation by insulin of the GLUT-4 glucose transporter in muscle, and the emerging role of AMP-activated protein kinase as a mediator of exercise-induced signaling events. In addition, we will discuss briefly some of the avenues that research in this area is likely to follow.
Collapse
Affiliation(s)
- Eva Tomás
- Diabetes Unit, Section of Endocrinology, Boston Medical Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|