1
|
Wong H, Soh J, Gordon PMK, Yu T, Sensen CW, Parr E, Johnston RN. Genomic compartmentalization of gene families encoding core components of metazoan signaling systems. Genome 2013; 56:215-25. [PMID: 23706074 DOI: 10.1139/gen-2013-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To investigate the role of gene localization and genome organization in cell-cell signalling and regulation, we mapped the distribution pattern of gene families that comprise core components of intercellular communication networks. Our study is centered on the distinct evolutionarily conserved metazoan signalling pathways that employ proteins in the receptor tyrosine kinase, WNT, hedgehog, NOTCH, Janus kinase/STAT, transforming growth factor beta, and nuclear hormone receptor protein families. Aberrant activity of these signalling pathways is closely associated with the promotion and maintenance of human cancers. The cataloguing and mapping of genes encoding these signalling proteins and comparisons across species has led us to propose that the genome can be subdivided into six genome-wide primary linkage groups (PLGs). PLGs are composed of assemblages of gene families that are often mutually exclusive, raising the possibility of unique functional identities for each group. Examination of the localization patterns of genes with distinct functions in signal transduction demonstrates dichotomous segregation patterns. For example, gene families of cell-surface receptors localize to genomic compartments that are distinct from the locations of their cognate ligand gene families. Additionally, genes encoding negative-acting components of signalling pathways (inhibitors and antagonists) are topologically separated from their positive regulators and other signal transducer genes. We, therefore, propose the existence of conserved genomic territories that encode key proteins required for the proper activity of metazoan signaling and regulatory systems. Disruption in this pattern of topologic genomic organization may contribute to aberrant regulation in hereditary or acquired diseases such as cancer. We further propose that long-range looping genomic regulatory interactions may provide a mechanism favouring the remarkable retention of these conserved gene clusters during chordate evolution.
Collapse
Affiliation(s)
- Howard Wong
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|
2
|
Makino T, McLysaght A. Positionally biased gene loss after whole genome duplication: evidence from human, yeast, and plant. Genome Res 2012; 22:2427-35. [PMID: 22835904 PMCID: PMC3514672 DOI: 10.1101/gr.131953.111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 07/20/2012] [Indexed: 01/23/2023]
Abstract
Whole genome duplication (WGD) has made a significant contribution to many eukaryotic genomes including yeast, plants, and vertebrates. Following WGD, some ohnologs (WGD paralogs) remain in the genome arranged in blocks of conserved gene order and content (paralogons). However, the most common outcome is loss of one of the ohnolog pair. It is unclear what factors, if any, govern gene loss from paralogons. Recent studies have reported physical clustering (genetic linkage) of functionally linked (interacting) genes in the human genome and propose a biological significance for the clustering of interacting genes such as coexpression or preservation of epistatic interactions. Here we conduct a novel test of a hypothesis that functionally linked genes in the same paralogon are preferentially retained in cis after WGD. We compare the number of protein-protein interactions (PPIs) between linked singletons within a paralogon (defined as cis-PPIs) with that of PPIs between singletons across paralogon pairs (defined as trans-PPIs). We find that paralogons in which the number of cis-PPIs is greater than that of trans-PPIs are significantly enriched in human and yeast. The trend is similar in plants, but it is difficult to assess statistical significance due to multiple, overlapping WGD events. Interestingly, human singletons participating in cis-PPIs tend to be classified into "response to stimulus." We uncover strong evidence of biased gene loss after WGD, which further supports the hypothesis of biologically significant gene clusters in eukaryotic genomes. These observations give us new insight for understanding the evolution of genome structure and of protein interaction networks.
Collapse
Affiliation(s)
- Takashi Makino
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Aoife McLysaght
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| |
Collapse
|
3
|
Tümpel S, Wiedemann LM, Krumlauf R. Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 2009; 88:103-37. [PMID: 19651303 DOI: 10.1016/s0070-2153(09)88004-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the vertebrate central nervous system, the hindbrain is an important center for coordinating motor activity, posture, equilibrium, sleep patterns, and essential unconscious functions, such as breathing rhythms and blood circulation. During development, the vertebrate hindbrain depends upon the process of segmentation or compartmentalization to create and organize regional properties essential for orchestrating its highly conserved functional roles. The process of segmentation in the hindbrain differs from that which functions in the paraxial mesoderm to generate somites and the axial skeleton. In the prospective hindbrain, cells in the neural epithelia transiently alter their ability to interact with their neighbors, resulting in the formation of seven lineage-restricted cellular compartments. These different segments or rhombomeres each go on to adopt unique characters in response to environmental signals. The Hox family of transcription factors is coupled to this process. Overlapping or nested patterns of Hox gene expression correlate with segmental domains and provide a combinatorial code and molecular framework for specifying the unique identities of hindbrain segments. The segmental organization and patterns of Hox expression and function are highly conserved among vertebrates and, as a consequence, comparative studies between different species have greatly enhanced our ability to build a picture of the regulatory cascades that control early hindbrain development. The purpose of this chapter is to review what is known about the regulatory mechanisms which establish and maintain Hox gene expression and function in hindbrain development.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | | |
Collapse
|
4
|
Sundström G, Larsson TA, Larhammar D. Phylogenetic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters. BMC Evol Biol 2008; 8:254. [PMID: 18803835 PMCID: PMC2566581 DOI: 10.1186/1471-2148-8-254] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 09/19/2008] [Indexed: 12/15/2022] Open
Abstract
Background Ever since the theory about two rounds of genome duplication (2R) in the
vertebrate lineage was proposed, the Hox gene clusters have served as the
prime example of quadruplicate paralogy in mammalian genomes. In teleost
fishes, the observation of additional Hox clusters absent in other
vertebrate lineages suggested a third tetraploidization (3R). Because the
Hox clusters occupy a quite limited part of each chromosome, and are special
in having position-dependent regulation within the multi-gene cluster,
studies of syntenic gene families are needed to determine the extent of the
duplicated chromosome segments. We have analyzed in detail 14 gene families
that are syntenic with the Hox clusters to see if their phylogenies are
compatible with the Hox duplications and the 2R/3R scenario. Our starting
point was the gene family for the NPY family of peptides located near the
Hox clusters in the pufferfish Takifugu rubripes, the zebrafish
Danio rerio, and human. Results Seven of the gene families have members on at least three of the human Hox
chromosomes and two families are present on all four. Using both
neighbor-joining and quartet-puzzling maximum likelihood methods we found
that 13 families have a phylogeny that supports duplications coinciding with
the Hox cluster duplications. One additional family also has a topology
consistent with 2R but due to lack of urochordate or cephalocordate
sequences the time window when these duplications could have occurred is
wider. All but two gene families also show teleost-specific duplicates. Conclusion Based on this analysis we conclude that the Hox cluster duplications involved
a large number of adjacent gene families, supporting expansion of these
families in the 2R, as well as in the teleost 3R tetraploidization. The gene
duplicates presumably provided raw material in early vertebrate evolution
for neofunctionalization and subfunctionalization.
Collapse
Affiliation(s)
- Görel Sundström
- Department of Neuroscience, Uppsala University, Box 593, 75124 Uppsala, Sweden.
| | | | | |
Collapse
|
5
|
The amphioxus genome and the evolution of the chordate karyotype. Nature 2008; 453:1064-71. [PMID: 18563158 DOI: 10.1038/nature06967] [Citation(s) in RCA: 1199] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 04/04/2008] [Indexed: 12/18/2022]
Abstract
Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.
Collapse
|
6
|
Larsson TA, Olsson F, Sundstrom G, Lundin LG, Brenner S, Venkatesh B, Larhammar D. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions. BMC Evol Biol 2008; 8:184. [PMID: 18578868 PMCID: PMC2453138 DOI: 10.1186/1471-2148-8-184] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 06/25/2008] [Indexed: 12/31/2022] Open
Abstract
Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY) receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes) and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs) showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains) and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events). RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate tetraploidizations forming a paralogon comprising human chromosomes 4, 5, 8 and 10 and one teleost tetraploidization. The combination of positional and phylogenetic data further strengthens the identification of orthologs and paralogs in the NPY receptor family.
Collapse
Affiliation(s)
- Tomas A Larsson
- Department of Neuroscience, Uppsala University, Box 593, 75124 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
7
|
Tostivint H, Lihrmann I, Vaudry H. New insight into the molecular evolution of the somatostatin family. Mol Cell Endocrinol 2008; 286:5-17. [PMID: 18406049 DOI: 10.1016/j.mce.2008.02.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 02/26/2008] [Accepted: 02/28/2008] [Indexed: 12/11/2022]
Abstract
The present review describes the molecular evolution of the somatostatin family and its relationships with that of the urotensin II family. Most of the somatostatin sequences collected from different vertebrate species can be grouped as the products of at least four loci. The somatostatin 1 (SS1) gene is present in all vertebrate classes from agnathans to mammals. The SS1 gene has given rise to the somatostatin 2 (SS2) gene by a segment/chromosome duplication that is probably the result of a tetraploidization event according to the 2R hypothesis. The somatostatin-related peptide cortistatin, first identified in rodents and human, is the counterpart of SS2 in placental mammals. In fish, the existence of two additional somatostatin genes has been reported. The first gene, which encodes a peptide usually named somatostatin II (SSII), exists in almost all teleost species investigated so far and is thought to have arisen through local duplication of the SS1 gene. The second gene, which has been characterized in only a few teleost species, encodes a peptide also named SSII that exhibits a totally atypical structure. The origin of this gene is currently unknown. Nevertheless, because the two latter genes are clearly paralogous genes, we propose to rename them SS3 and SS4, respectively, in order to clarify the current confusing nomenclature. The urotensin II family consists of two genes, namely the urotensin II (UII) gene and the UII-related peptide (URP) gene. Both UII and URP exhibit limited structural identity to somatostatin so that UII was originally described as a "somatostatin-like peptide". Recent comparative genomics studies have revealed that the SS1 and URP genes, on the one hand, and the SS2 and UII genes, on the other hand, are closely linked on the same chromosomes, thus confirming that the SS1/SS2 and the UII/URP genes belong to the same superfamily. According to these data, it appears that an ancestral somatostatin/urotensin II gene gave rise by local duplication to a somatostatin ancestor and a urotensin II ancestor, whereupon this pair was duplicated (presumably by a segment/chromosome duplication) to give rise to the SS1-UII pair and the SS2-URP pair.
Collapse
Affiliation(s)
- Hervé Tostivint
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | |
Collapse
|
8
|
Salaneck E, Larsson T, Larson E, Larhammar D. Birth and death of neuropeptide Y receptor genes in relation to the teleost fish tetraploidization. Gene 2008; 409:61-71. [DOI: 10.1016/j.gene.2007.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 11/11/2007] [Accepted: 11/15/2007] [Indexed: 11/26/2022]
|
9
|
Nordström KJV, Fredriksson R, Schiöth HB. The amphioxus (Branchiostoma floridae) genome contains a highly diversified set of G protein-coupled receptors. BMC Evol Biol 2008; 8:9. [PMID: 18199322 PMCID: PMC2246102 DOI: 10.1186/1471-2148-8-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 01/16/2008] [Indexed: 11/24/2022] Open
Abstract
Background G protein-coupled receptors (GPCRs) are one of the largest families of genes in mammals. Branchiostoma floridae (amphioxus) is one of the species most closely related species to vertebrates. Results Mining and phylogenetic analysis of the amphioxus genome showed the presence of at least 664 distinct GPCRs distributed among all the main families of GPCRs; Glutamate (18), Rhodopsin (570), Adhesion (37), Frizzled (6) and Secretin (16). Surprisingly, the Adhesion GPCR repertoire in amphioxus includes receptors with many new domains not previously observed in this family. We found many Rhodopsin GPCRs from all main groups including many amine and peptide binding receptors and several previously uncharacterized expansions were also identified. This genome has however no genes coding for bitter taste receptors (TAS2), the sweet and umami (TAS1), pheromone (VR1 or VR2) or mammalian olfactory receptors. Conclusion The amphioxus genome is remarkably rich in various GPCR subtypes while the main GPCR groups known to sense exogenous substances (such as Taste 2, mammalian olfactory, nematode chemosensory, gustatory, vomeronasal and odorant receptors) in other bilateral species are absent.
Collapse
Affiliation(s)
- Karl J V Nordström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden.
| | | | | |
Collapse
|
10
|
Hallböök F, Wilson K, Thorndyke M, Olinski RP. Formation and evolution of the chordate neurotrophin and Trk receptor genes. BRAIN, BEHAVIOR AND EVOLUTION 2006; 68:133-44. [PMID: 16912467 DOI: 10.1159/000094083] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurotrophins are structurally related neurotrophic polypeptide factors that regulate neuronal differentiation and are essential for neuronal survival, neurite growth and plasticity. It has until very recently been thought that the neurotrophin system appeared with the vertebrate species, but identification of a cephalochordate neurotrophin receptor (Trk), and more recently neurotrophin sequences in several genomes of deuterostome invertebrates, show that the system already existed at the stem of the deuterostome group. Comparative genomics supports the hypothesis that two whole genome duplications produced many of the vertebrate gene families, among those the neurotrophin and Trk families. It remains to be proven to what extent the whole genome duplications have driven macroevolutionary change, but it appears certain that the formation of the multi-gene copy neurotrophin and Trk receptor families at the stem of vertebrates has provided a foundation from which the various functions and pleiotropic effects produced by each of the four extant neurotrophins have evolved.
Collapse
Affiliation(s)
- Finn Hallböök
- Department of Neuroscience, Unit for Developmental Neuroscience, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
11
|
Tostivint H, Lihrmann I, Vaudry H. Urotensine II et somatostatine : les retrouvailles de deux vieilles cousines. Med Sci (Paris) 2006; 22:476-8. [PMID: 16687111 DOI: 10.1051/medsci/2006225476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Tümpel S, Cambronero F, Wiedemann LM, Krumlauf R. Evolution of cis elements in the differential expression of two Hoxa2 coparalogous genes in pufferfish (Takifugu rubripes). Proc Natl Acad Sci U S A 2006; 103:5419-24. [PMID: 16569696 PMCID: PMC1459370 DOI: 10.1073/pnas.0600993103] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequence divergence in cis-regulatory elements is an important mechanism contributing to functional diversity of genes during evolution. Gene duplication and divergence provide an opportunity for selectively preserving initial functions and evolving new activities. Many vertebrates have 39 Hox genes organized into four clusters (Hoxa-Hoxd); however, some ray-finned fishes have extra Hox clusters. There is a single Hoxa2 gene in most vertebrates, whereas fugu (Takifugu rubripes) and medaka (Oryzias latipes) have two coparalogous genes [Hoxa2(a) and Hoxa2(b)]. In the hindbrain, both genes are expressed in rhombomere (r) 2, but only Hoxa2(b) is expressed in r3, r4, and r5. Multiple regulatory modules directing segmental expression of chicken and mouse Hoxa2 genes have been identified, and each module is composed of a series of discrete elements. We used these modules to investigate the basis of differential expression of duplicated Hoxa2 genes, as a model for understanding the divergence of cis-regulatory elements. Therefore, we cloned putative regulatory regions of the fugu and medaka Hoxa2(a) and -(b) genes and assayed their activity. We found that these modules direct reporter expression in a chicken assay, in a manner corresponding to their endogenous expression pattern in fugu. Although sequence comparisons reveal many differences between the two coparalogous genes, specific subtle changes in seven cis elements of the Hoxa2(a) gene restore segmental regulatory activity. Therefore, drift in subsets of the elements in the regulatory modules is responsible for the differential expression of the two coparalogous genes, thus providing insight into the evolution of cis elements.
Collapse
Affiliation(s)
- Stefan Tümpel
- *Stowers Institute for Medical Research, Kansas City, MO 64110; and Departments of
| | - Francisco Cambronero
- *Stowers Institute for Medical Research, Kansas City, MO 64110; and Departments of
| | - Leanne M. Wiedemann
- *Stowers Institute for Medical Research, Kansas City, MO 64110; and Departments of
- Pathology and Laboratory Medicine and
| | - Robb Krumlauf
- *Stowers Institute for Medical Research, Kansas City, MO 64110; and Departments of
- Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
- To whom correspondence should be addressed at:
Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110. E-mail:
| |
Collapse
|
13
|
Li T, Han W, Yang T, Ding P, Rui M, Liu D, Wang Y, Ma D. Molecular cloning and identification of mouse Cklfsf2a and Cklfsf2b, two homologues of human CKLFSF2. Int J Biochem Cell Biol 2006; 38:420-9. [PMID: 16343975 DOI: 10.1016/j.biocel.2005.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 10/01/2005] [Accepted: 10/06/2005] [Indexed: 11/28/2022]
Abstract
Human chemokine-like factor superfamily (CKLFSF) is a novel gene family comprising CKLF and CKLFSF1-8. Among them, CKLFSF2 is highly expressed in testis and may play important roles in male reproduction. Besides, it is very active during evolution and has two counterparts in mouse. For further study, we cloned the two mouse genes by EST assembly and RT-PCR methods and designated them as mouse Cklfsf2a and Cklfsf2b. Their predicted open-reading frames (ORFs) that encode 169 and 210 amino acids, respectively, were obtained; and their predicted full-length molecular sizes that are approximately 1.2 kb for mCklfsf2a and 0.9 kb for mCklfsf2b were confirmed by Northern blot analysis. Mouse Cklfsf2a and Cklfsf2b show similarities with human CKLFSF2 in the expression patterns that are abundant in testis, hematopoietic and immune tissues; as well as in the chromosome localizations that neighbor CKLFSF1 and 3. Their putative protein products have 47.6 and 45.5% identities with hCKLFSF2, respectively; both of them contain four potential transmembrane regions and MARVEL domains, which are also similar with hCKLFSF2. Functionally, they all can affect the transcriptional activity of androgen receptor in PC-3 and HeLa cells, but mCklfsf2a is a repressor while mCklfsf2b and hCKLFSF2 are enhancers. Taken together, we conclude that mouse Cklfsf2a and Cklfsf2b are two homologues of human CKLFSF2. Studies on them would provide much help in further investigation of the latter.
Collapse
Affiliation(s)
- Ting Li
- Peking University Center for Human Disease Genomics, 38 Xueyuan Road, Beijing 100083, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tostivint H, Joly L, Lihrmann I, Parmentier C, Lebon A, Morisson M, Calas A, Ekker M, Vaudry H. Comparative genomics provides evidence for close evolutionary relationships between the urotensin II and somatostatin gene families. Proc Natl Acad Sci U S A 2006; 103:2237-42. [PMID: 16467151 PMCID: PMC1413727 DOI: 10.1073/pnas.0510700103] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although urotensin II (UII) and somatostatin 1 (SS1) exhibit some structural similarities, their precursors do not show any appreciable sequence identity and, thus, it is widely accepted that the UII and SS1 genes do not derive from a common ancestral gene. The recent characterization of novel isoforms of these two peptides, namely urotensin II-related peptide (URP) and somatostatin 2 (SS2)/cortistatin (CST), provides new opportunity to revisit the phylogenetic relationships of UII and SS1 using a comparative genomics approach. In the present study, by radiation hybrid mapping and in silico sequence analysis, we have determined the chromosomal localization of the genes encoding UII- and somatostatin-related peptides in several vertebrate species, including human, chicken, and zebrafish. In most of the species investigated, the UII and URP genes are closely linked to the SS2/CST and SS1 genes, respectively. We also found that the UII-SS2/CST locus and the URP/SS1 locus are paralogous. Taken together, these data indicate that the UII and URP genes, on the one hand, and the SS1 and SS2/CST genes, on the other hand, arose through a segmental duplication of two ancestral genes that were already physically linked to each other. Our results also suggest that these two genes arose themselves through a tandem duplication of a single ancestral gene. It thus appears that the genes encoding UII- and somatostatin-related peptides belong to the same superfamily.
Collapse
Affiliation(s)
- Hervé Tostivint
- *Institut National de la Santé et de la Recherche Médicale Unité 413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Lucille Joly
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Isabelle Lihrmann
- *Institut National de la Santé et de la Recherche Médicale Unité 413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Caroline Parmentier
- Laboratoire de Neurobiologie des Signaux Intercellulaires, Centre National de la Recherche Scientifique Unité Mixte Recherche 7101, Université Pierre et Marie Curie, 75252 Paris, France; and
| | - Alexis Lebon
- *Institut National de la Santé et de la Recherche Médicale Unité 413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Mireille Morisson
- Laboratoire de Génétique Cellulaire, Institut National de la Recherche Agronomique, 31326 Castanet-Tolosan, France
| | - André Calas
- Laboratoire de Neurobiologie des Signaux Intercellulaires, Centre National de la Recherche Scientifique Unité Mixte Recherche 7101, Université Pierre et Marie Curie, 75252 Paris, France; and
| | - Marc Ekker
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Hubert Vaudry
- *Institut National de la Santé et de la Recherche Médicale Unité 413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research, University of Rouen, 76821 Mont-Saint-Aignan, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Hurst LD, Lercher MJ. Unusual linkage patterns of ligands and their cognate receptors indicate a novel reason for non-random gene order in the human genome. BMC Evol Biol 2005; 5:62. [PMID: 16277660 PMCID: PMC1309615 DOI: 10.1186/1471-2148-5-62] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 11/08/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prior to the sequencing of the human genome it was typically assumed that, tandem duplication aside, gene order is for the most part random. Numerous observers, however, highlighted instances in which a ligand was linked to one of its cognate receptors, with some authors suggesting that this may be a general and/or functionally important pattern, possibly associated with recombination modification between epistatically interacting loci. Here we ask whether ligands are more closely linked to their receptors than expected by chance. RESULTS We find no evidence that ligands are linked to their receptors more closely than expected by chance. However, in the human genome there are approximately twice as many co-occurrences of ligand and receptor on the same human chromosome as expected by chance. Although a weak effect, the latter might be consistent with a past history of block duplication. Successful duplication of some ligands, we hypothesise, is more likely if the cognate receptor is duplicated at the same time, so ensuring appropriate titres of the two products. CONCLUSION While there is an excess of ligands and their receptors on the same human chromosome, this cannot be accounted for by classical models of non-random gene order, as the linkage of ligands/receptors is no closer than expected by chance. Alternative hypotheses for non-random gene order are hence worth considering.
Collapse
MESH Headings
- Animals
- Chromosome Mapping
- Chromosomes/ultrastructure
- Chromosomes, Human
- Dose-Response Relationship, Drug
- Epistasis, Genetic
- Evolution, Molecular
- Gene Conversion
- Gene Duplication
- Genetic Linkage
- Genome, Human
- Humans
- Ligands
- Linkage Disequilibrium
- Mice
- Models, Genetic
- Models, Statistical
- Multigene Family
- Protein Binding
- Recombination, Genetic
- Selection, Genetic
- Sequence Analysis, DNA
- Species Specificity
- Synteny
Collapse
Affiliation(s)
- Laurence D Hurst
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Martin J Lercher
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
16
|
Schiöth HB, Haitina T, Ling MK, Ringholm A, Fredriksson R, Cerdá-Reverter JM, Klovins J. Evolutionary conservation of the structural, pharmacological, and genomic characteristics of the melanocortin receptor subtypes. Peptides 2005; 26:1886-900. [PMID: 15985310 DOI: 10.1016/j.peptides.2004.11.034] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 11/21/2004] [Indexed: 11/21/2022]
Abstract
We have cloned melanocortin receptors (MCRs) from several species of fish. The MC4R and MC5R subtypes arose early in vertebrate evolution and their primary structure is remarkably conserved. Expression and pharmacological characterization of the MCRs in fish has revealed that they bind and respond to melanocortin peptides with high potency. Detailed characterization of the binding properties of the different subtypes suggests that MCRs in early vertebrates had preference for adrenocorticotropic hormone (ACTH) peptides, while the high sensitivity for the shorter proopiomelanocortin (POMC) products, such as the alpha-, beta-, and gamma-melanocyte-stimulating hormone (MSH), has appeared later, perhaps as the MCR subtypes gained more specialized functions. The MCR repertoire shows in general high similarities in their primary structures, while they are however not similar in terms of functional roles. The MCRs serve therefore as an interesting model family to understand the molecular mechanisms of how functions of the genes can diverge during evolution. In this review, we provide an overview of our recent studies on the cloning, expression, pharmacology, 3D modeling, and genomic studies of the MCRs in non-mammalian species.
Collapse
Affiliation(s)
- Helgi B Schiöth
- Department of Neuroscience, Uppsala University, Biomedical Centre, Box 593, SE75124 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Fibroblast growth factors (FGF) are associated with multiple developmental and metabolic processes in triploblasts, and perhaps also in diploblasts. The evolution of the FGF superfamily has accompanied the major morphological and functional innovations of metazoan species. The study of FGFs throughout species shows that the FGF superfamily can be subdivided in eight families in present-day organisms and has evolved through phases of gene duplications and gene losses. At least two major expansions of the superfamily can be recognized: a first expansion increased the number of FGFs from one or few archeo-FGFs to eight proto-FGFs, prototypic of the eight families. A second expansion, which took place during euchordate evolution, is associated with genome duplications. It increased the number of members in the families. Subsequent losses reduced that number to the present-day figures.
Collapse
Affiliation(s)
- Cornel Popovici
- Laboratory of Molecular Oncology, Marseille Cancer Institute, UMR599, 27 Bd. Leï Roure, 13009 Marseille, France
| | | | | | | |
Collapse
|
18
|
Olinski RP, Lundin LG, Hallböök F. Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family. Mol Biol Evol 2005; 23:10-22. [PMID: 16135778 DOI: 10.1093/molbev/msj002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The aims of the study were to outline the sequence of events that gave rise to the vertebrate insulin-relaxin gene family and the chromosomal regions in which they reside. We analyzed the gene content surrounding the human insulin/relaxin genes with respect to what family they belonged to and if the duplication history of investigated families parallels the evolution of the insulin-relaxin family members. Markov Clustering and phylogenetic analysis were used to determine family identity. More than 15% of the genes belonged to families that have paralogs in the regions, defining two sets of quadruplicate paralogy regions. Thereby, the localization of insulin/relaxin genes in humans is in accordance with those regions on human chromosomes 1, 11, 12, 19q (insulin/insulin-like growth factors) and 1, 6p/15q, 9/5, 19p (insulin-like factors/relaxins) were formed during two genome duplications. We compared the human genome with that of Ciona intestinalis, a species that split from the vertebrate lineage before the two suggested genome duplications. Two insulin-like orthologs were discovered in addition to the already described Ci-insulin gene. Conserved synteny between the Ciona regions hosting the insulin-like genes and the two sets of human paralogons implies their common origin. Linkage of the two human paralogons, as seen in human chromosome 1, as well as the two regions hosting the Ciona insulin-like genes suggests that a segmental duplication gave rise to the region prior to the genome doublings. Thus, preserved gene content provides support that genome duplication(s) in addition to segmental and single-gene duplications shaped the genomes of extant vertebrates.
Collapse
Affiliation(s)
- Robert Piotr Olinski
- Unit of Developmental Neuroscience, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
19
|
Castro LFC, Santos MM, Reis-Henriques MA. The genomic environment around the Aromatase gene: evolutionary insights. BMC Evol Biol 2005; 5:43. [PMID: 16098224 PMCID: PMC1215479 DOI: 10.1186/1471-2148-5-43] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 08/12/2005] [Indexed: 11/20/2022] Open
Abstract
Background The cytochrome P450 aromatase (CYP19), catalyses the aromatisation of androgens to estrogens, a key mechanism in vertebrate reproductive physiology. A current evolutionary hypothesis suggests that CYP19 gene arose at the origin of vertebrates, given that it has not been found outside this clade. The human CYP19 gene is located in one of the proposed MHC-paralogon regions (HSA15q). At present it is unclear whether this genomic location is ancestral (which would suggest an invertebrate origin for CYP19) or derived (genomic location with no evolutionary meaning). The distinction between these possibilities should help to clarify the timing of the CYP19 emergence and which taxa should be investigated. Results Here we determine the "genomic environment" around CYP19 in three vertebrate species Homo sapiens, Tetraodon nigroviridis and Xenopus tropicalis. Paralogy studies and phylogenetic analysis of six gene families suggests that the CYP19 gene region was structured through "en bloc" genomic duplication (as part of the MHC-paralogon formation). Four gene families have specifically duplicated in the vertebrate lineage. Moreover, the mapping location of the different paralogues is consistent with a model of "en bloc" duplication. Furthermore, we also determine that this region has retained the same gene content since the divergence of Actinopterygii and Tetrapods. A single inversion in gene order has taken place, probably in the mammalian lineage. Finally, we describe the first invertebrate CYP19 sequence, from Branchiostoma floridae. Conclusion Contrary to previous suggestions, our data indicates an invertebrate origin for the aromatase gene, given the striking conservation pattern in both gene order and gene content, and the presence of aromatase in amphioxus. We propose that CYP19 duplicated in the vertebrate lineage to yield four paralogues, followed by the subsequent loss of all but one gene in vertebrate evolution. Finally, we suggest that agnathans and lophotrocozoan protostomes should be investigated for the presence of aromatase.
Collapse
Affiliation(s)
- L Filipe C Castro
- CIIMAR – Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050-123, Oporto, Portugal
| | - Miguel M Santos
- CIIMAR – Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050-123, Oporto, Portugal
| | - Maria A Reis-Henriques
- CIIMAR – Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050-123, Oporto, Portugal
- ICBAS – Institute of Biomedical Sciences Abel Salazar, Largo Professor Abel Salazar, 2, 4099-003, Oporto, Portugal
| |
Collapse
|
20
|
Lagerström MC, Fredriksson R, Bjarnadóttir TK, Fridmanis D, Holmquist T, Andersson J, Yan YL, Raudsepp T, Zoorob R, Kukkonen JP, Lundin LG, Klovins J, Chowdhary BP, Postlethwait JH, Schiöth HB. Origin of the prolactin-releasing hormone (PRLH) receptors: Evidence of coevolution between PRLH and a redundant neuropeptide Y receptor during vertebrate evolution. Genomics 2005; 85:688-703. [PMID: 15885496 DOI: 10.1016/j.ygeno.2005.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 02/10/2005] [Accepted: 02/15/2005] [Indexed: 11/29/2022]
Abstract
We present seven new vertebrate homologs of the prolactin-releasing hormone receptor (PRLHR) and show that these are found as two separate subtypes, PRLHR1 and PRLHR2. Analysis of a number of vertebrate sequences using phylogeny, pharmacology, and paralogon analysis indicates that the PRLHRs are likely to share a common ancestry with the neuropeptide Y (NPY) receptors. Moreover, a micromolar level of NPY was able to bind and inhibit completely the PRLH-evoked response in PRLHR1-expressing cells. We suggest that an ancestral PRLH peptide started coevolving with a redundant NPY binding receptor, which then became PRLHR, approximately 500 million years ago. The PRLHR1 subtype was shown to have a relatively high evolutionary rate compared to receptors with fixed peptide preference, which could indicate a drastic change in binding preference, thus supporting this hypothesis. This report suggests how gene duplication events can lead to novel peptide ligand/receptor interactions and hence spur the evolution of new physiological functions.
Collapse
Affiliation(s)
- Malin C Lagerström
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Conlon JM, Larhammar D. The evolution of neuroendocrine peptides. Gen Comp Endocrinol 2005; 142:53-9. [PMID: 15862548 DOI: 10.1016/j.ygcen.2004.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 11/23/2004] [Accepted: 11/29/2004] [Indexed: 10/26/2022]
Abstract
The genomes of extant vertebrates have been shaped by a series of whole genome and individual gene duplication events. The 2R hypothesis, which postulates that two whole genome duplications occurred in relatively rapid succession very early in chordate evolution, is gaining increasing acceptance. A further entire genome duplication is believed to have occurred in the ancestral fish lineage approximately 320-350 Myr ago, as well as more recent independent tetraploidization events, mostly but not exclusively, in particular teleost and amphibian lineages. Superimposed upon these whole genome duplications are tandem or segmental duplications of individual genes or groups of genes that have taken place at different rates in the various vertebrate lineages. The majority of duplicated genes become pseudogenes or are deleted but some may evolve to encode components with new functional roles. Genes encoding members of neuropeptide Y- and tachykinin-families are associated with the HOX-bearing chromosomes and these systems provide examples of duplication events that have led to rapid evolution of the duplicated gene which has occasionally produced peptides, such as pancreatic polypeptide, seminalplasmin and hemokinin-1, with new biological functions.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates.
| | | |
Collapse
|
22
|
Aouacheria A, Cluzel C, Lethias C, Gouy M, Garrone R, Exposito JY. Invertebrate Data Predict an Early Emergence of Vertebrate Fibrillar Collagen Clades and an Anti-incest Model. J Biol Chem 2004; 279:47711-9. [PMID: 15358765 DOI: 10.1074/jbc.m408950200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibrillar collagens are involved in the formation of striated fibrils and are present from the first multicellular animals, sponges, to humans. Recently, a new evolutionary model for fibrillar collagens has been suggested (Boot-Handford, R. P., Tuckwell, D. S., Plumb, D. A., Farrington Rock, C., and Poulsom, R. (2003) J. Biol. Chem. 278, 31067-31077). In this model, a rare genomic event leads to the formation of the founder vertebrate fibrillar collagen gene prior to the early vertebrate genome duplications and the radiation of the vertebrate fibrillar collagen clades (A, B, and C). Here, we present the modular structure of the fibrillar collagen chains present in different invertebrates from the protostome Anopheles gambiae to the chordate Ciona intestinalis. From their modular structure and the use of a triple helix instead of C-propeptide sequences in phylogenetic analyses, we were able to show that the divergence of A and B clades arose early during evolution because alpha chains related to these clades are present in protostomes. Moreover, the event leading to the divergence of B and C clades from a founder gene arose before the appearance of vertebrates; altogether these data contradict the Boot-Handford model. Moreover, they indicate that all the key steps required for the formation of fibrils of variable structure and functionality arose step by step during invertebrate evolution.
Collapse
Affiliation(s)
- Abdel Aouacheria
- Institut de Biologie et Chimie des Protéines, CNRS, Unité Mixte de Recherche 5086, Institut Fédératif de Recherche 128 BioSciences Lyon-Gerland, Université Claude Bernard-Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
23
|
Nordström K, Larsson TA, Larhammar D. Extensive duplications of phototransduction genes in early vertebrate evolution correlate with block (chromosome) duplications. Genomics 2004; 83:852-72. [PMID: 15081115 DOI: 10.1016/j.ygeno.2003.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Accepted: 11/07/2003] [Indexed: 10/26/2022]
Abstract
Many gene families in mammals have members that are expressed more or less uniquely in the retina or differentially in specific retinal cell types. We describe here analyses of nine such gene families with regard to phylogenetic relationships and chromosomal location. The families are opsins, G proteins (alpha, beta, and gamma subunits), phosphodiesterases type 6, cyclic nucleotide-gated channels, G-protein-coupled receptor kinases, arrestins, and recoverins. The results suggest that multiple new gene copies arose in all of these families very early in vertebrate evolution during a period with extensive gene duplications. Many of the new genes arose through duplications of large chromosome regions (blocks of genes) or even entire chromosomes, as shown by linkage with other gene families. Some of the phototransduction families belong to the same duplicated regions and were thus duplicated simultaneously. We conclude that gene duplications in early vertebrate evolution probably helped facilitate the specialization of the retina and the subspecialization of different retinal cell types.
Collapse
Affiliation(s)
- Karin Nordström
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Box 593, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
24
|
Leveugle M, Prat K, Popovici C, Birnbaum D, Coulier F. Phylogenetic analysis of Ciona intestinalis gene superfamilies supports the hypothesis of successive gene expansions. J Mol Evol 2004; 58:168-81. [PMID: 15042337 DOI: 10.1007/s00239-003-2538-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Accepted: 08/04/2003] [Indexed: 10/26/2022]
Abstract
Understanding the formation of metazoan multigene families is a good approach to reconstitute the evolution of the chordate genome. In this attempt, the analysis of the genome of selected species provides valuable information. Ciona intestinalis belongs to the urochordates, whose lineage separated from the chordate lineage that later gave birth to vertebrates. We have searched available sequences from the small marine ascidian C. intestinalis for orthologs of members of five vertebrate superfamilies, including tyrosine kinase receptors, ETS, FOX and SOX transcription factors, and WNT secreted regulatory factors, and conducted phylogenetic analyses. We have found that most vertebrate subfamilies have a single C. intestinalis ortholog. Our results support the hypothesis of a gene expansion prior the base of chordate ancestry followed by another gene expansion during vertebrate evolution. They also indicate that Ciona intestinalis genome will be a very valuable tool for evolutionary analyses.
Collapse
Affiliation(s)
- Magalie Leveugle
- Département d'Oncologie Moléculaire, Unité 119 INSERM, IFR57, Marseille, France
| | | | | | | | | |
Collapse
|
25
|
Popovici C, Conchonaud F, Birnbaum D, Roubin R. Functional phylogeny relates LET-756 to fibroblast growth factor 9. J Biol Chem 2004; 279:40146-52. [PMID: 15199049 DOI: 10.1074/jbc.m405795200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factors (FGFs) are secreted regulatory proteins involved in various developmental processes. In vertebrates, the FGF superfamily comprises 22 members. In non-vertebrates, six FGF genes have been identified in Ciona intestinalis, three in Drosophila melanogaster, and two (let-756 and egl-17) in Caenorhabditis elegans. The core of LET-756 shares a 30-50% sequence identity with the various members of the superfamily. The relationships between vertebrate and non-vertebrate FGFs are not clear. We made chimeric FGFs by replacing the core region of LET-756 by the cores of various mammalian, fly, and worm FGFs. LET-756 deleted in its core region was no longer able to rescue the lethal phenotype of a let-756 null mutant, and only chimeras containing the cores of FGFs 9, 16, and 20 showed rescue capacity. This core contains an internal motif of six amino acid residues (EFISIA) whose deletion or mutation abolished both the rescue activity and FGF secretion in the supernatant of transfected COS-1 cells. Chimera containing the core of C. intestinalis FGF9/16/20, a potential ortholog of FGF9 lacking the complete EFISIA motif, was not able to rescue the lethal phenotype or be secreted. However, the introduction of the EFISIA motif restored both activities. The data show that the EFISIA motif in the core of LET-756 is essential for its biological activity and that FGFs 9, 16, and 20, which contain that motif, are functionally close to LET-756 and may be evolutionary related. This non-classical mode of secretion using an internal motif is conserved throughout evolution.
Collapse
Affiliation(s)
- Cornel Popovici
- Laboratory of Molecular Oncology, Institut Paoli-Calmettes and UMR599 INSERM, Marseille Cancer Research Institute, Marseille 13009, France
| | | | | | | |
Collapse
|
26
|
Conte N, Delaval B, Ginestier C, Ferrand A, Isnardon D, Larroque C, Prigent C, Séraphin B, Jacquemier J, Birnbaum D. TACC1-chTOG-Aurora A protein complex in breast cancer. Oncogene 2003; 22:8102-16. [PMID: 14603251 DOI: 10.1038/sj.onc.1206972] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The three human TACC (transforming acidic coiled-coil) genes encode a family of proteins with poorly defined functions that are suspected to play a role in oncogenesis. A Xenopus TACC homolog called Maskin is involved in translational control, while Drosophila D-TACC interacts with the microtubule-associated protein MSPS (Mini SPindleS) to ensure proper dynamics of spindle pole microtubules during cell division. We have delineated here the interactions of TACC1 with four proteins, namely the microtubule-associated chTOG (colonic and hepatic tumor-overexpressed gene) protein (ortholog of Drosophila MSPS), the adaptor protein TRAP (tudor repeat associator with PCTAIRE2), the mitotic serine/threonine kinase Aurora A and the mRNA regulator LSM7 (Like-Sm protein 7). To measure the relevance of the TACC1-associated complex in human cancer we have examined the expression of the three TACC, chTOG and Aurora A in breast cancer using immunohistochemistry on tissue microarrays. We show that expressions of TACC1, TACC2, TACC3 and Aurora A are significantly correlated and downregulated in a subset of breast tumors. Using siRNAs, we further show that depletion of chTOG and, to a lesser extent of TACC1, perturbates cell division. We propose that TACC proteins, which we also named 'Taxins', control mRNA translation and cell division in conjunction with microtubule organization and in association with chTOG and Aurora A, and that these complexes and cell processes may be affected during mammary gland oncogenesis.
Collapse
Affiliation(s)
- Nathalie Conte
- Department of Molecular Oncology, U119 Inserm, Institut Paoli-Calmettes, IFR57, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pisanti N, Marangoni R, Ferragina P, Frangioni A, Savona A, Pisanelli C, Luccio F. PaTre: a method for paralogy trees construction. J Comput Biol 2003; 10:791-802. [PMID: 14633400 DOI: 10.1089/106652703322539105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genomes can be described as a collection of clusters, the gene families, whose members are called paralogs. Paralogs are genes that most probably share duplication history and show a significant similarity in their sequences, even if they perform slightly different biological function. Among the different mechanisms that have led to an increase of the genomic information during biological evolution, gene duplication is probably the most important. To better understand duplication events, the first step is to investigate the history of the gene families in order to detect which duplication events have taken place, and in which relative (partial) order. Here we present a method, called PaTre, that, given a gene family, attempts to construct the paralogy tree of the family. We will work under the hypothesis that every family member derives from a duplication process of another member. By the term paralogy tree, we mean a directed tree in which the root represents the most ancient paralog of the family and each oriented arc (a, b) represents the existence of a duplication event from the template gene a to its copy b. Notice that gene a survives the event and can serve as a template of more than one duplication event; in fact, there can be more than one arc leaving a. PaTre uses new algorithmic techniques motivated by the specific application at hand. The reliability of the inferential process has been tested by means of a simulator that implements different hypotheses on the duplication-with-modification paradigm and on three examples of different biological gene families, belonging either to lower and higher organisms.
Collapse
Affiliation(s)
- N Pisanti
- Department of Computer Science, University of Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 2003; 63:1256-72. [PMID: 12761335 DOI: 10.1124/mol.63.6.1256] [Citation(s) in RCA: 2072] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The superfamily of G-protein-coupled receptors (GPCRs) is very diverse in structure and function and its members are among the most pursued targets for drug development. We identified more than 800 human GPCR sequences and simultaneously analyzed 342 unique functional nonolfactory human GPCR sequences with phylogenetic analyses. Our results show, with high bootstrap support, five main families, named glutamate, rhodopsin, adhesion, frizzled/taste2, and secretin, forming the GRAFS classification system. The rhodopsin family is the largest and forms four main groups with 13 sub-branches. Positions of the GPCRs in chromosomal paralogons regions indicate the importance of tetraploidizations or local gene duplication events for their creation. We also searched for "fingerprint" motifs using Hidden Markov Models delineating the putative inter-relationship of the GRAFS families. We show several common structural features indicating that the human GPCRs in the GRAFS families share a common ancestor. This study represents the first overall map of the GPCRs in a single mammalian genome. Our novel approach of analyzing such large and diverse sequence sets may be useful for studies on GPCRs in other genomes and divergent protein families.
Collapse
MESH Headings
- Chromosome Mapping
- GTP-Binding Proteins/classification
- GTP-Binding Proteins/genetics
- Genome, Human
- Humans
- Membrane Glycoproteins
- Membrane Proteins/classification
- Membrane Proteins/genetics
- Phylogeny
- Platelet Glycoprotein GPIb-IX Complex
- Receptors, Cell Surface/classification
- Receptors, Cell Surface/genetics
- Receptors, G-Protein-Coupled
- Receptors, Gastrointestinal Hormone/classification
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Glutamate/classification
- Receptors, Glutamate/genetics
- Rhodopsin/classification
- Rhodopsin/genetics
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Robert Fredriksson
- Department of Neuroscience, Biomedical Center, Box 593, 75 124 Uppsala, Sweden
| | | | | | | |
Collapse
|
29
|
Schiöth HB, Raudsepp T, Ringholm A, Fredriksson R, Takeuchi S, Larhammar D, Chowdhary BP. Remarkable synteny conservation of melanocortin receptors in chicken, human, and other vertebrates. Genomics 2003; 81:504-9. [PMID: 12706108 DOI: 10.1016/s0888-7543(03)00028-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The melanocortin receptors (MCR) belong to the superfamily of G-protein-coupled receptors that participate in both peripheral and central functions, including regulation of energy balance. Genomic clones of the five chicken (GGA) MCRs were isolated and used to find the chromosomal location of each of the loci. The genes encoding MC2R and MC5R mapped to the middle part of the long arm of chromosome 2 (GGA2q22-q26) and MC4R proximally on the same chromosome arm, close to the centromere (2q12). This arrangement seems to be conserved on chromosome 18 in the human (HSA18). The MC1R and MC3R genes mapped to different microchromosomes that also appear to share homology with the respective human localization. The conserved synteny of the MC2R, MC5R, and MC4R cluster in chicken (GGA2), human (HSA18), and other mammals suggests that this cluster is ancient and was formed by local gene duplications that most likely occurred early in vertebrate evolution. Analysis of conserved synteny with mammalian genomes and paralogon segments prompted us to predict an ancestral gene organization that may explain how this family was formed through both local duplication and tetraploidization processes.
Collapse
Affiliation(s)
- Helgi B Schiöth
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
30
|
Leveugle M, Prat K, Perrier N, Birnbaum D, Coulier F. ParaDB: a tool for paralogy mapping in vertebrate genomes. Nucleic Acids Res 2003; 31:63-7. [PMID: 12519948 PMCID: PMC165553 DOI: 10.1093/nar/gkg106] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2002] [Revised: 10/30/2002] [Accepted: 10/30/2002] [Indexed: 11/12/2022] Open
Abstract
We present ParaDB (http://abi.marseille.inserm.fr/paradb/), a new database for large-scale paralogy studies in vertebrate genomes. We intended to collect all information (sequence, mapping and phylogenetic data) needed to map and detect new paralogous regions, previously defined as Paralogons. The AceDB database software was used to generate graphical objects and to organize data. General data were automatically collated from public sources (Ensembl, GadFly and RefSeq). ParaDB provides access to data derived from whole genome sequences (Homo sapiens, Mus musculus and Drosophila melanogaster): cDNA and protein sequences, positional information, bibliographical links. In addition, we provide BLAST results for each protein sequence, InParanoid orthologs and 'In-Paralogs' data, previously established paralogy data, and, to compare vertebrates and Drosophila, orthology data.
Collapse
Affiliation(s)
- Magalie Leveugle
- Laboratoire d'Oncologie Moléculaire, Unité 119 INSERM, Marseille, France.
| | | | | | | | | |
Collapse
|
31
|
Klenova EM, Morse HC, Ohlsson R, Lobanenkov VV. The novel BORIS + CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer. Semin Cancer Biol 2002; 12:399-414. [PMID: 12191639 DOI: 10.1016/s1044-579x(02)00060-3] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CTCF is a ubiquitous 11 zinc finger (ZF) protein with highly versatile functions: in addition to transcriptional silencing or activating in a context-dependent fashion, it organizes epigenetically controlled chromatin insulators that regulate imprinted genes in soma. Recently, we have identified a CTCF paralogue, termed BORIS for Brother of the Regulator of Imprinted Sites, that is expressed only in the testis. BORIS has the same exons encoding the 11 ZF domain as mammalian CTCF genes, and hence interacts with similar cis elements, but encodes amino and carboxy termini distinct from those in CTCF. Normally, CTCF and BORIS are expressed in a mutually exclusive pattern that correlates with re-setting of methylation marks during male germ cell differentiation. The antagonistic features of these two gene siblings are underscored by showing that while CTCF overexpression blocks cell proliferation, expression of BORIS in normally BORIS-negative cells promotes cell growth which can lead to transformation. The suggestion that BORIS directs epigenetic reprogramming at CTCF target sites impinges on the observations that human BORIS is not only abnormally activated in a wide range of human cancers, but also maps to the cancer-associated amplification region at 20q13. The sibling rivalry occasioned by aberrant expression of BORIS in cancer may interfere with normal functions of CTCF including growth suppression, and contribute to epigenetic dysregulation which is a common feature in human cancer.
Collapse
Affiliation(s)
- Elena M Klenova
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CQ4 3SQ, UK
| | | | | | | |
Collapse
|
32
|
McLysaght A, Hokamp K, Wolfe KH. Extensive genomic duplication during early chordate evolution. Nat Genet 2002; 31:200-4. [PMID: 12032567 DOI: 10.1038/ng884] [Citation(s) in RCA: 369] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Opinions on the hypothesis that ancient genome duplications contributed to the vertebrate genome range from strong skepticism to strong credence. Previous studies concentrated on small numbers of gene families or chromosomal regions that might not have been representative of the whole genome, or used subjective methods to identify paralogous genes and regions. Here we report a systematic and objective analysis of the draft human genome sequence to identify paralogous chromosomal regions (paralogons) formed during chordate evolution and to estimate the ages of duplicate genes. We found that the human genome contains many more paralogons than would be expected by chance. Molecular clock analysis of all protein families in humans that have orthologs in the fly and nematode indicated that a burst of gene duplication activity took place in the period 350 650 Myr ago and that many of the duplicate genes formed at this time are located within paralogons. Our results support the contention that many of the gene families in vertebrates were formed or expanded by large-scale DNA duplications in an early chordate. Considering the incompleteness of the sequence data and the antiquity of the event, the results are compatible with at least one round of polyploidy.
Collapse
Affiliation(s)
- Aoife McLysaght
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
33
|
Loukinov DI, Pugacheva E, Vatolin S, Pack SD, Moon H, Chernukhin I, Mannan P, Larsson E, Kanduri C, Vostrov AA, Cui H, Niemitz EL, Rasko JEJ, Docquier FM, Kistler M, Breen JJ, Zhuang Z, Quitschke WW, Renkawitz R, Klenova EM, Feinberg AP, Ohlsson R, Morse HC, Lobanenkov VV. BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci U S A 2002; 99:6806-11. [PMID: 12011441 PMCID: PMC124484 DOI: 10.1073/pnas.092123699] [Citation(s) in RCA: 262] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CTCF, a conserved, ubiquitous, and highly versatile 11-zinc-finger factor involved in various aspects of gene regulation, forms methylation-sensitive insulators that regulate X chromosome inactivation and expression of imprinted genes. We document here the existence of a paralogous gene with the same exons encoding the 11-zinc-finger domain as mammalian CTCF genes and thus the same DNA-binding potential, but with distinct amino and carboxy termini. We named this gene BORIS for Brother of the Regulator of Imprinted Sites. BORIS is present only in the testis, and expressed in a mutually exclusive manner with CTCF during male germ cell development. We show here that erasure of methylation marks during male germ-line development is associated with dramatic up-regulation of BORIS and down-regulation of CTCF expression. Because BORIS bears the same DNA-binding domain that CTCF employs for recognition of methylation marks in soma, BORIS is a candidate protein for the elusive epigenetic reprogramming factor acting in the male germ line.
Collapse
Affiliation(s)
- Dmitri I Loukinov
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0760, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lipovich L, Hughes AL, King MC, Abkowitz JL, Quigley JG. Genomic structure and evolutionary context of the human feline leukemia virus subgroup C receptor (hFLVCR) gene: evidence for block duplications and de novo gene formation within duplicons of the hFLVCR locus. Gene 2002; 286:203-13. [PMID: 11943475 DOI: 10.1016/s0378-1119(02)00457-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper we sought to analyze the genomic structure and context of human feline leukemia virus subgroup C receptor (hFLVCR), a human glucarate transporter-like gene at chromosome 1q31, and compare it to that of a paralog (FLVCR14q) at chromosome 14q24. Splicing, polyadenylation, and expression patterns, as estimated by in silico analysis, differed between the two FLVCR genes despite their similar genomic structures, suggesting active and independent evolution of transcriptional and messenger RNA processing patterns after gene duplication. Promoter activity was bi-directional for hFLVCR, but not for its 14q paralog. The upstream 1q transcribed sequences were determined to comprise a novel gene of unknown function, LQK1. Annotation of contigs centered at hFLVCR and FLVCRL14q also revealed highly conserved gene clusters on chromosomes 1 and 14, inferred to result from a duplication. The clusters contained members of the FLVCR, Angel (KIAA0759), JDP, p21SNFT, and TGF- families, as well as two uncharacterized families. The genome-wide locations of both previously recognized and four de novo in silico predicted genes belonging to these seven families were determined. Phylogenetic analyses of these families were consistent with the hypothesis that the 1q/14q duplication occurred early within, or immediately prior to the vertebrate divergence, after the protostome-deuterostome divergence but before the amniote-amphibian divergence.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Alternative Splicing
- Animals
- Cats
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 14/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Evolution, Molecular
- Gene Duplication
- Genes/genetics
- Humans
- Molecular Sequence Data
- Phylogeny
- Poly A/genetics
- Promoter Regions, Genetic/genetics
- Receptors, Virus/genetics
- Sequence Analysis, DNA
- Time Factors
- Transcription Initiation Site
Collapse
Affiliation(s)
- Leonard Lipovich
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | | | | | | | | |
Collapse
|
35
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2447281 DOI: 10.1002/cfg.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|