1
|
Wang FI, Dixon SJ, Chidiac P. Extracellular ATP and structurally related molecules potentiate adenosine A 2a receptor-stimulated cAMP production. Cell Signal 2025; 131:111711. [PMID: 40044016 DOI: 10.1016/j.cellsig.2025.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/18/2025] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
Extracellular ATP has been reported to potentiate signalling by several Class B G protein-coupled receptors (GPCRs). The adenosine A2a receptor (A2aR) is a Class A GPCR that regulates many physiological processes, and a potential therapeutic target for many diseases. In vivo, A2aR is exposed transiently to extracellular ATP within the cellular microenvironment under both physiological and pathological conditions. The modulating effects of extracellular ATP seen with Class B GPCRs have not previously been investigated in other classes of GPCRs. In the present study, we investigated the effects of extracellular ATP on A2aR signalling. We also studied the actions of similar molecules to explore the structure-activity relationship. Cyclic 3',5'-adenosine monophosphate (cAMP) levels were monitored following agonist-induced receptor activation in cells co-transfected with plasmids encoding A2aR and a luminescent cAMP biosensor. Extracellular ATP increased the potency of both adenosine and selective A2aR agonists by approximately an order of magnitude. In the absence of agonist, ATP did not activate A2aR, arguing against an effect due to ATP metabolism to adenosine. The potentiating effect of ATP was mimicked by other nucleotides and similarly by phosphorylated sugars. Non-phosphorylated sugars produced comparable effects, but higher concentrations were required to do so. This difference in potency implies that the phosphate group is important for modulating A2aR activity. Here, we present the first evidence that A2aR can be positively modulated by extracellular ATP, thus the effect of ATP is not limited to Class B GPCRs.
Collapse
Affiliation(s)
- Fang I Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - S Jeffrey Dixon
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Bone and Joint Institute, The University of Western Ontario, London, Canada.
| |
Collapse
|
2
|
Bessa-Andrês C, Pinto-Cardoso R, Tarasova K, Pereira-Gonçalves AL, Gaio-Ferreira-Castro JM, Carvalho LS, Costa MA, Ferreirinha F, Canadas-Sousa A, Marinhas J, Freitas R, Lemos R, Vilaça A, Oliveira A, Correia-de-Sá P, Noronha-Matos JB. Mechanical stimulation-induced purinome priming fosters osteogenic differentiation and osteointegration of mesenchymal stem cells from the bone marrow of post-menopausal women. Stem Cell Res Ther 2024; 15:168. [PMID: 38886849 PMCID: PMC11184869 DOI: 10.1186/s13287-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Mechanical stimulation (MS) significantly increases the release of adenine and uracil nucleotides from bone marrow-derived mesenchymal stem cells (BM-MSCs) undergoing osteogenic differentiation. Released nucleotides acting via ionotropic P2X7 and metabotropic P2Y6 purinoceptors sensitive to ATP and UDP, respectively, control the osteogenic commitment of BM-MSCs and, thus, bone growth and remodelling. Yet, this mechanism is impaired in post-menopausal (Pm)-derived BM-MSCs, mostly because NTPDase3 overexpression decreases the extracellular accumulation of nucleotides below the levels required to activate plasma membrane-bound P2 purinoceptors. This prompted us to investigate whether in vitro MS of BM-MSCs from Pm women could rehabilitate their osteogenic commitment and whether xenotransplantation of MS purinome-primed Pm cells promote repair of critical bone defects in an in vivo animal model. METHODS BM-MSCs were harvested from the neck of femora of Pm women (70 ± 3 years old) undergoing total hip replacement. The cells grew, for 35 days, in an osteogenic-inducing medium either submitted (SS) or not (CTR) to MS (90 r.p.m. for 30 min) twice a week. Increases in alkaline phosphatase activity and in the amount of osteogenic transcription factors, osterix and osteopontin, denoted osteogenic cells differentiation, while bone nodules formation was ascertain by the alizarin red-staining assay. The luciferin-luciferase bioluminescence assay was used to quantify extracellular ATP. The kinetics of the extracellular ATP (100 µM) and UDP (100 µM) catabolism was assessed by HPLC. The density of P2Y6 and P2X7 purinoceptors in the cells was assessed by immunofluorescence confocal microscopy. MS-stimulated BM-MSCs from Pm women were xenotransplanted into critical bone defects drilled in the great trochanter of femora of one-year female Wistar rats; bone repair was assessed by histological analysis 10 days after xenotransplantation. RESULTS MS-stimulated Pm BM-MSCs in culture (i) release 1.6-fold higher ATP amounts, (ii) overexpress P2X7 and P2Y6 purinoceptors, (iii) exhibit higher alkaline phosphatase activity and overexpress the osteogenic transcription factors, osterix and osteopontin, and (iv) form larger bone nodules, than CTR cells. Selective blockage of P2X7 and P2Y6 purinoceptors with A438079 (3 µM) and MRS 2578 (0.1 µM), respectively, prevented the osteogenic commitment of cultured Pm BM-MSCs. Xenotransplanted MS purinome-primed Pm BM-MSCs accelerated the repair of critical bone defects in the in vivo rat model. CONCLUSIONS Data suggest that in vitro MS restores the purinergic cell-to-cell communication fostering the osteogenic differentiation and osteointegration of BM-MSCs from Pm women, a strategy that may be used in bone regeneration and repair tactics.
Collapse
Affiliation(s)
- Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - Karyna Tarasova
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - Ana Luísa Pereira-Gonçalves
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - Joana Maria Gaio-Ferreira-Castro
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - Liliana S Carvalho
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Departamento de Química, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - Ana Canadas-Sousa
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - José Marinhas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Vila Nova de Gaia - Espinho, Vila Nova de Gaia, 4434-502, Portugal
| | - Rolando Freitas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Vila Nova de Gaia - Espinho, Vila Nova de Gaia, 4434-502, Portugal
| | - Rui Lemos
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Vila Nova de Gaia - Espinho, Vila Nova de Gaia, 4434-502, Portugal
| | - Adélio Vilaça
- Serviço de Ortopedia, Centro Hospitalar Universitário de Santo António, Porto, 4099-001, Portugal
| | - António Oliveira
- Serviço de Ortopedia, Centro Hospitalar Universitário de Santo António, Porto, 4099-001, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal.
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal.
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal.
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal.
| |
Collapse
|
3
|
Noronha-Matos JB, Pinto-Cardoso R, Bessa-Andrês C, Magalhães-Cardoso MT, Ferreirinha F, Costa MA, Marinhas J, Freitas R, Lemos R, Vilaça A, Oliveira A, Pelletier J, Sévigny J, Correia-de-Sá P. Silencing NTPDase3 activity rehabilitates the osteogenic commitment of post-menopausal stem cell bone progenitors. Stem Cell Res Ther 2023; 14:97. [PMID: 37076930 PMCID: PMC10116749 DOI: 10.1186/s13287-023-03315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/29/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Endogenously released adenine and uracil nucleotides favour the osteogenic commitment of bone marrow-derived mesenchymal stromal cells (BM-MSCs) through the activation of ATP-sensitive P2X7 and UDP-sensitive P2Y6 receptors. Yet, these nucleotides have their osteogenic potential compromised in post-menopausal (Pm) women due to overexpression of nucleotide metabolizing enzymes, namely NTPDase3. This prompted us to investigate whether NTPDase3 gene silencing or inhibition of its enzymatic activity could rehabilitate the osteogenic potential of Pm BM-MSCs. METHODS MSCs were harvested from the bone marrow of Pm women (69 ± 2 years old) and younger female controls (22 ± 4 years old). The cells were allowed to grow for 35 days in an osteogenic-inducing medium in either the absence or the presence of NTPDase3 inhibitors (PSB 06126 and hN3-B3s antibody); pre-treatment with a lentiviral short hairpin RNA (Lenti-shRNA) was used to silence the NTPDase3 gene expression. Immunofluorescence confocal microscopy was used to monitor protein cell densities. The osteogenic commitment of BM-MSCs was assessed by increases in the alkaline phosphatase (ALP) activity. The amount of the osteogenic transcription factor Osterix and the alizarin red-stained bone nodule formation. ATP was measured with the luciferin-luciferase bioluminescence assay. The kinetics of the extracellular ATP (100 µM) and UDP (100 µM) catabolism was assessed by HPLC RESULTS: The extracellular catabolism of ATP and UDP was faster in BM-MSCs from Pm women compared to younger females. The immunoreactivity against NTPDase3 increased 5.6-fold in BM-MSCs from Pm women vs. younger females. Selective inhibition or transient NTPDase3 gene silencing increased the extracellular accumulation of adenine and uracil nucleotides in cultured Pm BM-MSCs. Downregulation of NTPDase3 expression or activity rehabilitated the osteogenic commitment of Pm BM-MSCs measured as increases in ALP activity, Osterix protein cellular content and bone nodule formation; blockage of P2X7 and P2Y6 purinoceptors prevented this effect. CONCLUSIONS Data suggest that NTPDase3 overexpression in BM-MSCs may be a clinical surrogate of the osteogenic differentiation impairment in Pm women. Thus, besides P2X7 and P2Y6 receptors activation, targeting NTPDase3 may represent a novel therapeutic strategy to increase bone mass and reduce the osteoporotic risk of fractures in Pm women.
Collapse
Affiliation(s)
- José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal.
| | - Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Maria Teresa Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
- Departamento de Química, Instituto de Ciências Biomédicas Abel Salazar - Universidade Do Porto (ICBAS-UP), 4050-313, Porto, Portugal
| | - José Marinhas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Gaia - Espinho, 4434-502, Vila Nova de Gaia, Portugal
| | - Rolando Freitas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Gaia - Espinho, 4434-502, Vila Nova de Gaia, Portugal
| | - Rui Lemos
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Gaia - Espinho, 4434-502, Vila Nova de Gaia, Portugal
| | - Adélio Vilaça
- Serviço de Ortopedia, Centro Hospitalar Universitário de Santo António, 4099-001, Porto, Portugal
| | - António Oliveira
- Serviço de Ortopedia, Centro Hospitalar Universitário de Santo António, 4099-001, Porto, Portugal
| | - Julie Pelletier
- Centre de Recherche en Rhumatologie et Immunologie, University Laval, 2325, rue de l'Université Québec, Québec, G1V 0A6, Canada
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, University Laval, 2325, rue de l'Université Québec, Québec, G1V 0A6, Canada
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal.
| |
Collapse
|
4
|
Zhao D, Wu J, Acosta FM, Xu H, Jiang JX. Connexin 43 hemichannels and prostaglandin E 2 release in anabolic function of the skeletal tissue to mechanical stimulation. Front Cell Dev Biol 2023; 11:1151838. [PMID: 37123401 PMCID: PMC10133519 DOI: 10.3389/fcell.2023.1151838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Bone adapts to changes in the physical environment by modulating remodeling through bone resorption and formation to maintain optimal bone mass. As the most abundant connexin subtype in bone tissue, connexin 43 (Cx43)-forming hemichannels are highly responsive to mechanical stimulation by permitting the exchange of small molecules (<1.2 kDa) between bone cells and the extracellular environment. Upon mechanical stimulation, Cx43 hemichannels facilitate the release of prostaglandins E2 (PGE2), a vital bone anabolic factor from osteocytes. Although most bone cells are involved in mechanosensing, osteocytes are the principal mechanosensitive cells, and PGE2 biosynthesis is greatly enhanced by mechanical stimulation. Mechanical stimulation-induced PGE2 released from osteocytic Cx43 hemichannels acts as autocrine effects that promote β-catenin nuclear accumulation, Cx43 expression, gap junction function, and protects osteocytes against glucocorticoid-induced osteoporosis in cultured osteocytes. In vivo, Cx43 hemichannels with PGE2 release promote bone formation and anabolism in response to mechanical loading. This review summarizes current in vitro and in vivo understanding of Cx43 hemichannels and extracellular PGE2 release, and their roles in bone function and mechanical responses. Cx43 hemichannels could be a significant potential new therapeutic target for treating bone loss and osteoporosis.
Collapse
Affiliation(s)
- Dezhi Zhao
- School of Medicine, Northwest University, Xi’an, China
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jiawei Wu
- School of Medicine, Northwest University, Xi’an, China
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
5
|
Dsouza C, Moussa MS, Mikolajewicz N, Komarova SV. Extracellular ATP and its derivatives provide spatiotemporal guidance for bone adaptation to wide spectrum of physical forces. Bone Rep 2022; 17:101608. [PMID: 35992507 PMCID: PMC9385560 DOI: 10.1016/j.bonr.2022.101608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
ATP is a ubiquitous intracellular molecule critical for cellular bioenergetics. ATP is released in response to mechanical stimulation through vesicular release, small tears in cellular plasma membranes, or when cells are destroyed by traumatic forces. Extracellular ATP is degraded by ecto-ATPases to form ADP and eventually adenosine. ATP, ADP, and adenosine signal through purinergic receptors, including seven P2X ATP-gated cation channels, seven G-protein coupled P2Y receptors responsive to ATP and ADP, and four P1 receptors stimulated by adenosine. The goal of this review is to build a conceptual model of the role of different components of this complex system in coordinating cellular responses that are appropriate to the degree of mechanical stimulation, cell proximity to the location of mechanical injury, and time from the event. We propose that route and amount of ATP release depend on the scale of mechanical forces, ranging from vesicular release of small ATP boluses upon membrane deformation, to leakage of ATP through resealable plasma membrane tears, to spillage of cellular content due to destructive forces. Correspondingly, different P2 receptors responsive to ATP will be activated according to their affinity at the site of mechanical stimulation. ATP is a small molecule that readily diffuses through the environment, bringing the signal to the surrounding cells. ATP is also degraded to ADP which can stimulate a distinct set of P2 receptors. We propose that depending on the magnitude of mechanical forces and distance from the site of their application, ATP/ADP profiles will be different, allowing the relay of information about tissue level injury and proximity. Lastly, ADP is degraded to adenosine acting via its P1 receptors. The presence of large amounts of adenosine without ATP, indicates that an active source of ATP release is no longer present, initiating the transition to the recovery phase. This model consolidates the knowledge regarding the individual components of the purinergic system into a conceptual framework of choreographed responses to physical forces. Cellular bioenergetic molecule ATP is released when cell is mechanically stimulated. ATP release is proportional to the amount of cellular damage. ATP diffusion and transformation to ADP indicates the proximity to the damage. Purinergic receptors form a network choreographing cell response to physical forces. Complete transformation of ATP to adenosine initiates the recovery phase.
Collapse
Affiliation(s)
- Chrisanne Dsouza
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
| | - Mahmoud S. Moussa
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Nicholas Mikolajewicz
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Svetlana V. Komarova
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
- Corresponding author.
| |
Collapse
|
6
|
Madan S, Uttekar B, Chowdhary S, Rikhy R. Mitochondria Lead the Way: Mitochondrial Dynamics and Function in Cellular Movements in Development and Disease. Front Cell Dev Biol 2022; 9:781933. [PMID: 35186947 PMCID: PMC8848284 DOI: 10.3389/fcell.2021.781933] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023] Open
Abstract
The dynamics, distribution and activity of subcellular organelles are integral to regulating cell shape changes during various physiological processes such as epithelial cell formation, cell migration and morphogenesis. Mitochondria are famously known as the powerhouse of the cell and play an important role in buffering calcium, releasing reactive oxygen species and key metabolites for various activities in a eukaryotic cell. Mitochondrial dynamics and morphology changes regulate these functions and their regulation is, in turn, crucial for various morphogenetic processes. In this review, we evaluate recent literature which highlights the role of mitochondrial morphology and activity during cell shape changes in epithelial cell formation, cell division, cell migration and tissue morphogenesis during organism development and in disease. In general, we find that mitochondrial shape is regulated for their distribution or translocation to the sites of active cell shape dynamics or morphogenesis. Often, key metabolites released locally and molecules buffered by mitochondria play crucial roles in regulating signaling pathways that motivate changes in cell shape, mitochondrial shape and mitochondrial activity. We conclude that mechanistic analysis of interactions between mitochondrial morphology, activity, signaling pathways and cell shape changes across the various cell and animal-based model systems holds the key to deciphering the common principles for this interaction.
Collapse
|
7
|
Calabrese EJ, Agathokleous E, Dhawan G, Kapoor R, Calabrese V. Human dental pulp stem cells and hormesis. Ageing Res Rev 2022; 73:101540. [PMID: 34890824 DOI: 10.1016/j.arr.2021.101540] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023]
Abstract
This paper represents the first assessment of hormetic dose responses by human dental pulp stem cells (hDPSCs) with particular emphasis on cell renewal (proliferation) and differentiation. Hormetic dose responses were commonly reported in this model, encompassing a broad range of chemicals, including principally pharmaceuticals (e.g., metformin and artemisinin), dietary supplements/extracts from medicinal plants (e.g., berberine, N-acetyl-L-cysteine, and ginsenoside Rg1) and endogenous agents (e.g., ATP, TNF-α). The paper assesses mechanistic foundations of the hDPSCs hormetic dose responses for both cell proliferation and cell differentiation, study design considerations, and therapeutic implications.
Collapse
|
8
|
Zefferino R, Piccoli C, Di Gioia S, Capitanio N, Conese M. How Cells Communicate with Each Other in the Tumor Microenvironment: Suggestions to Design Novel Therapeutic Strategies in Cancer Disease. Int J Mol Sci 2021; 22:ijms22052550. [PMID: 33806300 PMCID: PMC7961918 DOI: 10.3390/ijms22052550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
Connexin- and pannexin (Panx)-formed hemichannels (HCs) and gap junctions (GJs) operate an interaction with the extracellular matrix and GJ intercellular communication (GJIC), and on account of this they are involved in cancer onset and progression towards invasiveness and metastatization. When we deal with cancer, it is not correct to omit the immune system, as well as neglecting its role in resisting or succumbing to formation and progression of incipient neoplasia until the formation of micrometastasis, nevertheless what really occurs in the tumor microenvironment (TME), which are the main players and which are the tumor or body allies, is still unclear. The goal of this article is to discuss how the pivotal players act, which can enhance or contrast cancer progression during two important process: "Activating Invasion and Metastasis" and the "Avoiding Immune Destruction", with a particular emphasis on the interplay among GJIC, Panx-HCs, and the purinergic system in the TME without disregarding the inflammasome and cytokines thereof derived. In particular, the complex and contrasting roles of Panx1/P2X7R signalosome in tumor facilitation and/or inhibition is discussed in regard to the early/late phases of the carcinogenesis. Finally, considering this complex interplay in the TME between cancer cells, stromal cells, immune cells, and focusing on their means of communication, we should be capable of revealing harmful messages that help the cancer growth and transform them in body allies, thus designing novel therapeutic strategies to fight cancer in a personalized manner.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
- Correspondence: ; Tel.: +39-0881-884673
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (N.C.)
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (N.C.)
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| |
Collapse
|
9
|
Mikolajewicz N, Sehayek S, Wiseman PW, Komarova SV. Transmission of Mechanical Information by Purinergic Signaling. Biophys J 2019; 116:2009-2022. [PMID: 31053261 DOI: 10.1016/j.bpj.2019.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/26/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
The skeleton constantly interacts and adapts to the physical world. We have previously reported that physiologically relevant mechanical forces lead to small repairable membrane injuries in bone-forming osteoblasts, resulting in release of ATP and stimulation of purinergic (P2) calcium responses in neighboring cells. The goal of this study was to develop a theoretical model describing injury-related ATP and ADP release, their extracellular diffusion and degradation, and purinergic responses in neighboring cells. After validation using experimental data for intracellular free calcium elevations, ATP, and vesicular release after mechanical stimulation of a single osteoblast, the model was scaled to a tissue-level injury to investigate how purinergic signaling communicates information about injuries with varying geometries. We found that total ATP released, peak extracellular ATP concentration, and the ADP-mediated signaling component contributed complementary information regarding the mechanical stimulation event. The total amount of ATP released governed spatial factors, such as the maximal distance from the injury at which purinergic responses were stimulated. The peak ATP concentration reflected the severity of an individual cell injury, allowing to discriminate between minor and severe injuries that released similar amounts of ATP because of differences in injury repair, and determined temporal aspects of the response, such as signal propagation velocity. ADP-mediated signaling became relevant only in larger tissue-level injuries, conveying information about the distance to the injury site and its geometry. Thus, we identified specific features of extracellular ATP and ADP spatiotemporal signals that depend on tissue mechanoresilience and encode the severity, scope, and proximity of the mechanical stimulus.
Collapse
Affiliation(s)
- Nicholas Mikolajewicz
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | | | - Paul W Wiseman
- Department of Physics, Montreal, Quebec, Canada; Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Shriners Hospital for Children-Canada, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Mikolajewicz N, Zimmermann EA, Willie BM, Komarova SV. Mechanically stimulated ATP release from murine bone cells is regulated by a balance of injury and repair. eLife 2018; 7:37812. [PMID: 30324907 PMCID: PMC6205812 DOI: 10.7554/elife.37812] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023] Open
Abstract
Bone cells sense and actively adapt to physical perturbations to prevent critical damage. ATP release is among the earliest cellular responses to mechanical stimulation. Mechanical stimulation of a single murine osteoblast led to the release of 70 ± 24 amole ATP, which stimulated calcium responses in neighboring cells. Osteoblasts contained ATP-rich vesicles that were released upon mechanical stimulation. Surprisingly, interventions that promoted vesicular release reduced ATP release, while inhibitors of vesicular release potentiated ATP release. Searching for an alternative ATP release route, we found that mechanical stresses induced reversible cell membrane injury in vitro and in vivo. Ca2+/PLC/PKC-dependent vesicular exocytosis facilitated membrane repair, thereby minimizing cell injury and reducing ATP release. Priming cellular repair machinery prior to mechanical stimulation reduced subsequent membrane injury and ATP release, linking cellular mechanosensitivity to prior mechanical exposure. Thus, our findings position ATP release as an integrated readout of membrane injury and repair. Athletes' skeletons get stronger with training, while bones weaken in people who cannot move or in astronauts experiencing weightlessness. This is because bone cells thrive when exposed to forces. When a bone cell is exposed to a physical force, the first thing that happens is the release of the energy-rich molecule called ATP into the space outside the cell. This molecule then binds to the neighboring cell to unleash a cascade of responses. ATP can exit the cell either through special canals in the cell membrane or released in tiny pod-like structures called vesicles. It is known that strong forces can injure the cell membrane and cause ATP to spill out. However, it is less clear how ATP is released when cells are subjected to regular forces. Mikolajewicz et al. investigated whether ATP exits through injured membranes of cells experiencing regular forces. Bone cells grown in the laboratory were gently poked with a glass needle or placed in a turbulent fluid to simulate forces experienced in the body. Dyes and fluorescent imaging techniques were used to observe the movement of vesicles and calculate the concentration of ATP in these cells. The experiments showed that regular forces in the body do indeed injure the cell membranes and cause ATP to spill out. But importantly, the cells repaired the injuries quickly by releasing vesicles that patch the wound. As soon as the membrane is sealed, ATP stops coming out. From the first injury, cells adapted and quickly strengthened their membrane and repair system to be more resilient against future forces. This process was also seen in the shin bones of mice. These results are important because knowing how bone cells sense, respond and convert physical forces can help us develop treatments for astronauts, the injured and aged.
Collapse
Affiliation(s)
- Nicholas Mikolajewicz
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,Shriners Hospital for Children - Canada, Montreal, Quebec, Canada
| | - Elizabeth A Zimmermann
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Pediatric Surgery, Montreal, Quebec, Canada
| | - Bettina M Willie
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Pediatric Surgery, Montreal, Quebec, Canada
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,Shriners Hospital for Children - Canada, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Laiuppa JA, Santillán GE. Involvement of GSK3/β-catenin in the action of extracellular ATP on differentiation of primary cultures from rat calvaria into osteoblasts. J Cell Biochem 2018; 119:8378-8388. [PMID: 29932242 DOI: 10.1002/jcb.27037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/05/2018] [Indexed: 11/08/2022]
Abstract
Modulation of purinergic receptors play an important role in the regulation of osteoblasts differentiation and bone formation. In this study, we investigated the involvement of the GSK3/βcatenin signaling in the action of ATPγ-S on osteogenic differentiation of primary cell cultures from rat calvaria. Our results indicate that the cell treatment with 10 or 100 µM ATPγ-S for 96 h increase the cytoplasmic levels of β-catenin and its translocation to nucleus respect to control. A similar effect was observed after cell treatment with the GSK3 inhibitor LiCl (10 mM). Cell treatments with 4-10 mM LiCl significantly stimulated ALP activity respect to control at 4 and 7 days, suggesting that inhibition of GSK-3 mediates osteoblastic differentiation of rat calvarial cells. Effects comparison between ATP and LiCl shown that ALP activity was significantly increased by 10 µM ATPγ-S and decreased by 10 mM LiCl at 10 day of treatment, respect to control, suggesting that the effect of ATPγ-S was less potent but more persistent than of LiCl in stimulating this osteogenic marker in calvarial cells. Cell culture mineralization was significantly increased by treatment with 10 µM ATPγ-S and decreased by 10 mM LiCl, respect to control. In together, these results suggest that GSK3 inhibition is involved in ATPγ-S action on rat calvarial cell differentiation into osteoblasts at early steadies. In addition such inhibition by LiCl appear promote osteoblasts differentiation at beginning but has a deleterious effect on its function at later steadies as the extracellular matrix mineralization.
Collapse
Affiliation(s)
- Juan A Laiuppa
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, INBIOSUR-CONICET, Bahía Blanca, Argentina
| | - Graciela E Santillán
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, INBIOSUR-CONICET, Bahía Blanca, Argentina
| |
Collapse
|
12
|
Donoso MV, Mascayano MJ, Poblete IM, Huidobro-Toro JP. Increased ATP and ADO Overflow From Sympathetic Nerve Endings and Mesentery Endothelial Cells Plus Reduced Nitric Oxide Are Involved in Diabetic Neurovascular Dysfunction. Front Pharmacol 2018; 9:546. [PMID: 29896104 PMCID: PMC5987002 DOI: 10.3389/fphar.2018.00546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/08/2018] [Indexed: 11/13/2022] Open
Abstract
Since the mechanism of human diabetic peripheral neuropathy and vascular disease in type 1 diabetes mellitus remains unknown, we assessed whether sympathetic transmitter overflow is altered by this disease and associated to vascular dysfunction. Diabetes was induced by streptozotocin (STZ)-treatment and compared to vehicle-treated rats. Aliquots of the ex vivo perfused rat arterial mesenteric preparation, denuded of the endothelial layer, were collected to quantify analytically sympathetic nerve co-transmitters overflow secreted by the isolated mesenteries of both groups of rats. Noradrenaline (NA), neuropeptide tyrosine (NPY), and ATP/metabolites were detected before, during, and after electrical field stimulation (EFS, 20 Hz) of the nerve terminals surrounding the mesenteric artery. NA overflow was comparable in both groups; however, basal or EFS-secreted ir-NPY was 26% reduced (p < 0.05) in diabetics. Basal and EFS-evoked ATP and adenosine (ADO) overflow to the arterial mesentery perfusate increased twofold and was longer lasting in diabetics; purine tissue content was 37.8% increased (p < 0.05) in the mesenteries from STZ-treated group of rats. Perfusion of the arterial mesentery vascular territory with 100 μM ATP, 100 nM 2-MeSADP, or 1 μM UTP elicited vasodilator responses of the same magnitude in controls or diabetics, but the increase in luminally accessible NO was 60-70% lower in diabetics (p < 0.05). Moreover, the concentration-response curve elicited by two NO donors was displaced downwards (p < 0.01) in diabetic rats. Parallel studies using primary cultures of endothelial cells from the arterial mesentery vasculature revealed that mechanical stimulation induced a rise in extracellular nucleotides, which in the cells from diabetic rats was larger and longer-lasting when comparing the extracellular release of ATP and ADO values to those of vehicle-treated controls. A 5 min challenge with purinergic agonists elicited a cell media NO rise, which was reduced in the endothelial cells from diabetic rats. Present findings provide neurochemical support for the diabetes-induced neuropathy and show that mesenteric endothelial cells alterations in response to mechanical stimulation are compatible with the endothelial dysfunction related to vascular disease progress.
Collapse
Affiliation(s)
| | | | | | - J. Pablo Huidobro-Toro
- Laboratorio de Farmacología de Nucleótidos, Departamento de Biología, Facultad de Química y Biología, Centro Desarrollo de Nanociencia y NanoTecnología, CEDENNA, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
13
|
Kim BH, Pereverzev A, Zhu S, Tong AOM, Dixon SJ, Chidiac P. Extracellular nucleotides enhance agonist potency at the parathyroid hormone 1 receptor. Cell Signal 2018; 46:103-112. [PMID: 29501726 DOI: 10.1016/j.cellsig.2018.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/27/2022]
Abstract
Parathyroid hormone (PTH) activates the PTH/PTH-related peptide receptor (PTH1R) on osteoblasts and other target cells. Mechanical stimulation of cells, including osteoblasts, causes release of nucleotides such as ATP into the extracellular fluid. In addition to its role as an energy source, ATP serves as an agonist at P2 receptors and an allosteric regulator of many proteins. We investigated the effects of concentrations of extracellular ATP, comparable to those that activate low affinity P2X7 receptors, on PTH1R signaling. Cyclic AMP levels were monitored in real-time using a bioluminescence reporter and β-arrestin recruitment to PTH1R was followed using a complementation-based luminescence assay. ATP markedly enhanced cyclic AMP and β-arrestin signaling as well as downstream activation of CREB. CMP - a nucleotide that lacks a high energy bond and does not activate P2 receptors - mimicked this effect of ATP. Moreover, potentiation was not inhibited by P2 receptor antagonists, including a specific blocker of P2X7. Thus, nucleotide-induced potentiation of signaling pathways was independent of P2 receptor signaling. ATP and CMP reduced the concentration of PTH (1-34) required to produce a half-maximal cyclic AMP or β-arrestin response, with no evident change in maximal receptor activity. Increased potency was similarly apparent with PTH1R agonists PTH (1-14) and PTH-related peptide (1-34). These observations suggest that extracellular nucleotides increase agonist affinity, efficacy or both, and are consistent with modulation of signaling at the level of the receptor or a closely associated protein. Taken together, our findings establish that ATP enhances PTH1R signaling through a heretofore unrecognized allosteric mechanism.
Collapse
Affiliation(s)
- Brandon H Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Alexey Pereverzev
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Shuying Zhu
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Abby Oi Man Tong
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - S Jeffrey Dixon
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Bone and Joint Institute, The University of Western Ontario, London, Canada; Dentistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Bone and Joint Institute, The University of Western Ontario, London, Canada; Department of Biology, Faculty of Science, The University of Western Ontario, London, Canada.
| |
Collapse
|
14
|
Verónica Donoso M, Hernández F, Villalón T, Acuña-Castillo C, Pablo Huidobro-Toro J. Pharmacological dissection of the cellular mechanisms associated to the spontaneous and the mechanically stimulated ATP release by mesentery endothelial cells: roles of thrombin and TRPV. Purinergic Signal 2018; 14:121-139. [PMID: 29349673 DOI: 10.1007/s11302-017-9599-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells participate in extracellular ATP release elicited by mechanosensors. To characterize the dynamic interactions between mechanical and chemical factors that modulate ATP secretion by the endothelium, we assessed and compared the mechanisms participating in the spontaneous (basal) and mechanically stimulated secretion using primary cultures of rat mesentery endothelial cells. ATP/metabolites were determined in the cell media prior to (basal) and after cell media displacement or a picospritzer buffer puff used as mechanical stimuli. Mechanical stimulation increased extracellular ATP that peaked within 1 min, and decayed to basal values in 10 min. Interruption of the vesicular transport route consistently blocked the spontaneous ATP secretion. Cells maintained in media lacking external Ca2+ elicited a spontaneous rise of extracellular ATP and adenosine, but failed to elicit a further extracellular ATP secretion following mechanical stimulation. 2-APB, a TRPV agonist, increased the spontaneous ATP secretion, but reduced the mechanical stimulation-induced nucleotide release. Pannexin1 or connexin blockers and gadolinium, a Piezo1 blocker, reduced the mechanically induced ATP release without altering spontaneous nucleotide levels. Moreover, thrombin or related agonists increased extracellular ATP secretion elicited by mechanical stimulation, without modifying spontaneous release. In sum, present results allow inferring that the spontaneous, extracellular nucleotide secretion is essentially mediated by ATP containing vesicles, while the mechanically induced secretion occurs essentially by connexin or pannexin1 hemichannel ATP transport, a finding fully supported by results from Panx1-/- rodents. Only the latter component is modulated by thrombin and related receptor agonists, highlighting a novel endothelium-smooth muscle signaling role of this anticoagulant.
Collapse
Affiliation(s)
- M Verónica Donoso
- Centro Desarrollo de NanoCiencia y Nanotecnología, CEDENNA y Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago, Alameda Lib. B. O'Higgins 3363, Estación Central, Santiago, Chile
| | - Felipe Hernández
- Centro Desarrollo de NanoCiencia y Nanotecnología, CEDENNA y Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago, Alameda Lib. B. O'Higgins 3363, Estación Central, Santiago, Chile
| | - Tania Villalón
- Centro Desarrollo de NanoCiencia y Nanotecnología, CEDENNA y Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago, Alameda Lib. B. O'Higgins 3363, Estación Central, Santiago, Chile
| | - Claudio Acuña-Castillo
- Centro Desarrollo de NanoCiencia y Nanotecnología, CEDENNA y Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago, Alameda Lib. B. O'Higgins 3363, Estación Central, Santiago, Chile
| | - J Pablo Huidobro-Toro
- Centro Desarrollo de NanoCiencia y Nanotecnología, CEDENNA y Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago, Alameda Lib. B. O'Higgins 3363, Estación Central, Santiago, Chile.
| |
Collapse
|
15
|
Sindhavajiva PR, Sastravaha P, Arksornnukit M, Pavasant P. Intermittent compressive force induces human mandibular-derived osteoblast differentiation via WNT/β-catenin signaling. J Cell Biochem 2018; 119:3474-3485. [PMID: 29143994 DOI: 10.1002/jcb.26519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023]
Abstract
Mechanical force induces an efflux of ATP that regulates osteoblast differentiation. However, the effect of mechanical force-induced ATP efflux on WNT/β-catenin signaling remains unclarified. The aim of this study was to investigate the effect of intermittent compressive force (ICF) and ICF-induced extracellular ATP on osteoblast differentiation via WNT/β-catenin signaling in human mandibular-derived osteoblast precursors (hMOBPs). The hMOBPs were subjected to ICF (1.5 g/cm2 , 0.3 Hz) for 20 h. To investigate the role of ATP, Apyrase (0.5 units/mL), an enzyme that hydrolyzes ATP, was added 30 min before ICF was applied. The extracellular ATP levels were measured immediately after ICF was removed. The mRNA expression of osteogenic related genes, including WNT was evaluated via quantitative real time polymerase chain reaction. In vitro mineralization was determined by Alizarin Red S staining. The localization of β-catenin was detected using immunofluorescence staining and lentiviral-TOP-dGFP reporter assay. The results demonstrated that ICF increased ATP efflux and in vitro mineralization by hMOBPs. In addition, OSX, ALP, and WNT3A mRNA expression and β-catenin nuclear translocation increased when ICF was applied. The upregulation of these genes was reduced by Apyrase, suggesting the role of ICF-induced ATP on osteoblast differentiation. Notably, ICF altered the mRNA expression of purinergic 2X receptors (P2XRs). A P2X1R antagonist (NF449) downregulated ICF-induced WNT3A, OSX, and ALP mRNA expression. Moreover, when 25 μM α, β-meATP, a P2X1R agonist, was added, WNT3A, and OSX expression increased. In conclusion, our results demonstrate that ICF-induced ATP enhanced hMOBP differentiation. This enhancement was associated with WNT/β-catenin signaling and P2X1R activation.
Collapse
Affiliation(s)
- Pimrumpai R Sindhavajiva
- Graduate Program in Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Panunn Sastravaha
- Department of Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Mansuang Arksornnukit
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Grygorczyk R, Orlov SN. Effects of Hypoxia on Erythrocyte Membrane Properties-Implications for Intravascular Hemolysis and Purinergic Control of Blood Flow. Front Physiol 2017; 8:1110. [PMID: 29312010 PMCID: PMC5744585 DOI: 10.3389/fphys.2017.01110] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/14/2017] [Indexed: 01/08/2023] Open
Abstract
Intravascular hemolysis occurs in hereditary, acquired, and iatrogenic hemolytic conditions but it could be also a normal physiological process contributing to intercellular signaling. New evidence suggests that intravascular hemolysis and the associated release of adenosine triphosphate (ATP) may be an important mechanism for in vivo local purinergic signaling and blood flow regulation during exercise and hypoxia. However, the mechanisms that modulate hypoxia-induced RBC membrane fragility remain unclear. Here, we provide an overview of the role of RBC ATP release in the regulation of vascular tone and prevailing assumptions on the putative release mechanisms. We show importance of intravascular hemolysis as a source of ATP for local purinergic regulation of blood flow and discuss processes that regulate membrane propensity to rupture under stress and hypoxia.
Collapse
Affiliation(s)
| | - Sergei N. Orlov
- Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
17
|
Sindhavajiva PR, Sastravaha P, Arksornnukit M, Pavasant P. Purinergic 2X7 receptor activation regulates WNT signaling in human mandibular-derived osteoblasts. Arch Oral Biol 2017; 81:167-174. [PMID: 28549259 DOI: 10.1016/j.archoralbio.2017.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Purinergic 2X7 receptor (P2X7R) activation modulates in vitro mineralization by primary rat and human osteoblasts. However, the detailed mechanism of how P2X7R activation affects primary human osteoblasts remains unclear. The aim of this study was to investigate the effect of P2X7R activation on human mandibular-derived osteoblast (hMOB) differentiation. DESIGN Primary human osteoblasts were obtained from non-pathologic mandibular bone from healthy patients. The hMOBs were cultured in osteogenic medium with or without 0.5-5μM 2'(3')-O-(4-benzoyl) benzoyl-ATP (BzATP), a selective P2X7R agonist. The mRNA expression of osteogenic differentiation markers and WNT-signaling molecules was investigated by quantitative real time polymerase chain reaction. In vitro mineral deposition was determined by Alizarin Red S staining. Transfection of small interfering RNA was performed to confirm the effect of P2X7R activation. WNT/β-catenin signaling was detected by immunofluorescence staining for β-catenin. RESULTS BzATP inhibited osteogenic medium-induced RUNX2 and OSX mRNA expression in hMOBs. Moreover, BzATP significantly retarded in vitro mineralization. These findings indicated that BzATP/P2X7R activation inhibited hMOB differentiation. Interestingly, reduced WNT3A mRNA expression and blockage of osteogenic medium-induced β-catenin nuclear translocation were also found. These data suggested that WNT signaling might be a target of P2X7R-regulated osteogenic differentiation. Furthermore, when recombinant human WNT3A was added to the BzATP-treated group, it rescued the reduced RUNX2 and OSX expression, and in vitro mineralization. CONCLUSION Our results demonstrate that P2X7R activation by BzATP inhibits hMOB differentiation. This inhibitory effect was associated with inhibition of the WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Pimrumpai Rochanakit Sindhavajiva
- Graduate Program in Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panunn Sastravaha
- Department of Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mansuang Arksornnukit
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
18
|
McCutcheon S, Majeska R, Schaffler M, Vazquez M. A multiscale fluidic device for the study of dendrite-mediated cell to cell communication. Biomed Microdevices 2017; 19:71. [PMID: 28791515 DOI: 10.1007/s10544-017-0212-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Many cell types communicate by means of dendritic extensions via a multi-tiered set of geometric and chemical cues. Until recently, mimicking the compartmentalized in vivo cellular environment of dendrite-expressing cells such as osteocytes and motor neurons in a spatially and temporally controllable manner was limited by the challenges of in vitro device fabrication at submicron scales. Utilizing the improved resolution of current fabrication technology, we have designed a multiscale device, the Macro-micro-nano system, or Mμn, composed of two distinct cell-seeding and interrogation compartments separated by a nanochannel array. The array enables dendrite ingrowth, while providing a mechanism for fluidic sequestration and/or temporally-mediated diffusible signaling between cell populations. Modeling of the Mμn system predicted the ability to isolate diffusible signals, namely ATP. Empirical diffusion studies verified computational modeling. In addition, cell viability, dendrite interaction with the nanoarray, and cellular purinergic response to heat shock were experimentally evaluated within the device for both osteocytes and motor neurons. Our results describe a novel in vitro system in which dendrite-expressing cell types can be studied within nano-environments that mimic in vivo conditions. In particular, the Mμn system enables real-time observation of cell to cell communication between cell populations in distinct, but fluidically coupled regions.
Collapse
Affiliation(s)
- Sean McCutcheon
- The City College of New York, 160 Convent Ave., New York, NY, 10031, USA
| | - Robert Majeska
- The City College of New York, 160 Convent Ave., New York, NY, 10031, USA
| | - Mitchell Schaffler
- The City College of New York, 160 Convent Ave., New York, NY, 10031, USA
| | - Maribel Vazquez
- The City College of New York, 160 Convent Ave., New York, NY, 10031, USA.
| |
Collapse
|
19
|
Orriss IR, Guneri D, Hajjawi MOR, Shaw K, Patel JJ, Arnett TR. Activation of the P2Y 2 receptor regulates bone cell function by enhancing ATP release. J Endocrinol 2017; 233:341-356. [PMID: 28420708 DOI: 10.1530/joe-17-0042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 02/02/2023]
Abstract
Bone cells constitutively release ATP into the extracellular environment where it acts locally via P2 receptors to regulate bone cell function. Whilst P2Y2 receptor stimulation regulates bone mineralisation, the functional effects of this receptor in osteoclasts remain unknown. This investigation used the P2Y2 receptor knockout (P2Y2R-/- ) mouse model to investigate the role of this receptor in bone. MicroCT analysis of P2Y2R-/- mice demonstrated age-related increases in trabecular bone volume (≤48%), number (≤30%) and thickness (≤17%). In vitro P2Y2R-/- osteoblasts displayed a 3-fold increase in bone formation and alkaline phosphatase activity, whilst P2Y2R-/- osteoclasts exhibited a 65% reduction in resorptive activity. Serum cross-linked C-telopeptide levels (CTX, resorption marker) were also decreased (≤35%). The resorption defect in P2Y2R-/- osteoclasts was rescued by the addition of exogenous ATP, suggesting that an ATP deficit could be a key factor in the reduced function of these cells. In agreement, we found that basal ATP release was reduced up to 53% in P2Y2R-/- osteoclasts. The P2Y2 receptor agonists, UTP and 2-thioUTP, increased osteoclast activity and ATP release in wild-type but not in P2Y2R-/- cells. This indicates that the P2Y2 receptor may regulate osteoclast function indirectly by promoting ATP release. UTP and 2-thioUTP also stimulate ATP release from osteoblasts suggesting that the P2Y2 receptor exerts a similar function in these cells. Taken together, our findings are consistent with the notion that the primary action of P2Y2 receptor signalling in bone is to regulate extracellular ATP levels.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical SciencesRoyal Veterinary College, London, UK
| | - Dilek Guneri
- Department of Comparative Biomedical SciencesRoyal Veterinary College, London, UK
| | - Mark O R Hajjawi
- Department of Cell & Developmental BiologyUniversity College London, London, UK
| | - Kristy Shaw
- Department of Comparative Biomedical SciencesRoyal Veterinary College, London, UK
| | - Jessal J Patel
- Department of Comparative Biomedical SciencesRoyal Veterinary College, London, UK
| | - Timothy R Arnett
- Department of Cell & Developmental BiologyUniversity College London, London, UK
| |
Collapse
|
20
|
Valdebenito S, Barreto A, Eugenin EA. The role of connexin and pannexin containing channels in the innate and acquired immune response. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:154-165. [PMID: 28559189 DOI: 10.1016/j.bbamem.2017.05.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
Abstract
Connexin (Cx) and pannexin (Panx) containing channels - gap junctions (GJs) and hemichannels (HCs) - are present in virtually all cells and tissues. Currently, the role of these channels under physiological conditions is well defined. However, their role in the immune response and pathological conditions has only recently been explored. Data from several laboratories demonstrates that infectious agents, including HIV, have evolved to take advantage of GJs and HCs to improve viral/bacterial replication, enhance inflammation, and help spread toxicity into neighboring areas. In the current review, we discuss the role of Cx and Panx containing channels in immune activation and the pathogenesis of several infectious diseases. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Public Health Research Institute (PHRI), Newark, NJ, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Andrea Barreto
- Public Health Research Institute (PHRI), Newark, NJ, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), Newark, NJ, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
21
|
Cell culture: complications due to mechanical release of ATP and activation of purinoceptors. Cell Tissue Res 2017; 370:1-11. [PMID: 28434079 PMCID: PMC5610203 DOI: 10.1007/s00441-017-2618-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
There is abundant evidence that ATP (adenosine 5′-triphosphate) is released from a variety of cultured cells in response to mechanical stimulation. The release mechanism involved appears to be a combination of vesicular exocytosis and connexin and pannexin hemichannels. Purinergic receptors on cultured cells mediate both short-term purinergic signalling of secretion and long-term (trophic) signalling such as proliferation, migration, differentiation and apoptosis. We aim in this review to bring to the attention of non-purinergic researchers using tissue culture that the release of ATP in response to mechanical stress evoked by the unavoidable movement of the cells acting on functional purinergic receptors on the culture cells is likely to complicate the interpretation of their data.
Collapse
|
22
|
Abstract
PURPOSE OF THE REVIEW This review highlights recent developments into how intercellular communication through connexin43 facilitates bone modeling and remodeling. RECENT FINDINGS Connexin43 is required for both skeletal development and maintenance, particularly in cortical bone, where it carries out multiple functions, including preventing osteoclastogenesis, restraining osteoprogenitor proliferation, promoting osteoblast differentiation, coordinating organized collagen matrix deposition, and maintaining osteocyte survival. Emerging data shows that connexin43 regulates both the exchange of small molecules among osteoblast lineage cells and the docking of signaling proteins to the gap junction, affecting the efficiency of signal transduction. Understanding how and what connexin43 communicates to coordinate tissue remodeling has therapeutic implications in bone. Altering the information shared by intercellular communication and/or targeting the recruitment of signaling machinery to the gap junction could be used to impact the skeletal homeostatic set point, either driving osteogenesis or inhibiting resorption.
Collapse
Affiliation(s)
- Megan C Moorer
- Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn Street, Allied Health Building, Room 540E, Baltimore, MD, 21201, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn Street, Allied Health Building, Room 540E, Baltimore, MD, 21201, USA.
| |
Collapse
|
23
|
Dela Cruz A, Grynpas MD, Mitchell J. Overexpression of Gα11 in Osteoblast Lineage Cells Suppresses the Osteoanabolic Response to Intermittent PTH and Exercise. Calcif Tissue Int 2016; 99:423-34. [PMID: 27300035 DOI: 10.1007/s00223-016-0158-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/31/2016] [Indexed: 01/31/2023]
Abstract
Intermittent parathyroid hormone (iPTH) treatment and mechanical loading are osteoanabolic stimuli that are partially mediated through actions on G protein-coupled receptors (GPCRs). GPCR signaling can be altered by heterotrimeric G protein Gα subunits levels, which can therefore lead to altered responses to such stimuli. Previous studies have suggested that enhanced signaling through the Gαq/11 pathway inhibits the osteoanabolic actions of PTH. The influence of Gαq/11 signaling on mechanotransduction, however, has not been reported in vivo. Using transgenic mice that specifically overexpress Gα11 in osteoblast lineage cells (G11-Tg mice), we investigated the skeletal effects of elevated Gα11 levels on iPTH and mechanical loading by treadmill exercise. Both regimens increased trabecular and cortical bone in Wild-Type (WT) mice as a result of increased bone formation. In G11-Tg mice, there was no change in trabecular or cortical bone and no increase in bone formation in response to iPTH or exercise. While exercise reduced osteoclast parameters in WT mice, these changes were diminished in G11-Tg mice as expression of M-csf and Trap remained increased. Collectively, our results suggest that osteoblastic upregulation of Gα11 is inhibitory to osteoanabolic actions of both PTH and exercise, and that its suppression may be a promising target for treating bone loss.
Collapse
Affiliation(s)
- Ariana Dela Cruz
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Marc D Grynpas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Room 4342, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
24
|
Wang W, Yi X, Ren Y, Xie Q. Effects of Adenosine Triphosphate on Proliferation and Odontoblastic Differentiation of Human Dental Pulp Cells. J Endod 2016; 42:1483-9. [PMID: 27576209 DOI: 10.1016/j.joen.2016.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 06/11/2016] [Accepted: 07/17/2016] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Adenosine 5'-triphosphate (ATP) is a potent signaling molecule that regulates diverse biological activities in cells. Its effects on human dental pulp cells (HDPCs) remain unknown. This study aimed to examine the effects of ATP on proliferation and differentiation of HDPCs. METHODS Reverse transcription polymerase chain reaction was performed to explore the mRNA expression of P2 receptor subtypes. Cell Counting Kit-8 test and flow cytometry analysis were used to examine the effects of ATP on proliferation and cell cycle of HDPCs. The effects of ATP on differentiation of HDPCs were examined by using alizarin red S staining, energy-dispersive x-ray analysis, Western blot analysis, and real-time polymerase chain reaction. RESULTS The purinoceptors P2X3, P2X4, P2X5, P2X7, and all P2Y receptor subtypes were confirmed to present in HDPCs. ATP enhanced HDPC proliferation at 10 μmol/L concentration. However, it inhibited cell proliferation by arresting the cell cycle in G0G1 phase (P < .05 versus control) and induced odontoblastic differentiation, ERK/MAPK activation, and dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) mRNA transcriptions at 800 μmol/L concentration. Suramin, an ATP receptor antagonist, inhibited ERK/MAPK activation and HDPC odontoblastic differentiation (P < .05 versus control). CONCLUSIONS Extracellular ATP activates P2 receptors and downstream signaling events that induce HDPC odontogenic differentiation. Thus, ATP may promote dental pulp tissue healing and repair through P2 signaling. Results provide new insights into the molecular regulation of pulpal wound healing.
Collapse
Affiliation(s)
- Wei Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China; Center for Oral Functional Diagnosis, Treatment, and Research, Peking University School and Hospital of Stomatology, Beijing, China; Department of Stomatology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Xiaosong Yi
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China; Center for Oral Functional Diagnosis, Treatment, and Research, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yanfang Ren
- University of Rochester Eastman Institute for Oral Health, Rochester, New York
| | - Qiufei Xie
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China; Center for Oral Functional Diagnosis, Treatment, and Research, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
25
|
Actinin-1 binds to the C-terminus of A2B adenosine receptor (A2BAR) and enhances A2BAR cell-surface expression. Biochem J 2016; 473:2179-86. [PMID: 27208173 DOI: 10.1042/bcj20160272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/16/2016] [Indexed: 12/29/2022]
Abstract
A2BAR (A2B adenosine receptor) has been implicated in several physiological conditions, such as allergic or inflammatory disorders, vasodilation, cell growth and epithelial electrolyte secretion. For mediating the protein-protein interactions of A2BAR, the receptor's C-terminus is recognized to be crucial. In the present study, we unexpectedly found that two point mutations in the A2BAR C-terminus (F297A and R298A) drastically impaired the expression of A2BAR protein by accelerating its degradation. Thus we tested the hypothesis that these two point mutations disrupt A2BAR's interaction with a protein essential for A2BAR stability. Our results show that both mutations disrupted the interaction of A2BAR with actinin-1, an actin-associated protein. Furthermore, actinin-1 binding stabilized the global and cell-surface expression of A2BAR. By contrast, actinin-4, another non-muscle actinin isoform, did not bind to A2BAR. Thus our findings reveal a previously unidentified regulatory mechanism of A2BAR abundance.
Collapse
|
26
|
Orriss IR, Arnett TR, Russell RGG. Pyrophosphate: a key inhibitor of mineralisation. Curr Opin Pharmacol 2016; 28:57-68. [PMID: 27061894 DOI: 10.1016/j.coph.2016.03.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022]
Abstract
Inorganic pyrophosphate has long been known as a by-product of many intracellular biosynthetic reactions, and was first identified as a key endogenous inhibitor of biomineralisation in the 1960s. The major source of pyrophosphate appears to be extracellular ATP, which is released from cells in a controlled manner. Once released, ATP can be rapidly hydrolysed by ecto-nucleotide pyrophosphatase/phosphodiesterases to produce pyrophosphate. The main action of pyrophosphate is to directly inhibit hydroxyapatite formation thereby acting as a physiological 'water-softener'. Evidence suggests pyrophosphate may also act as a signalling molecule to influence gene expression and regulate its own production and breakdown. This review will summarise our current understanding of pyrophosphate metabolism and how it regulates bone mineralisation and prevents harmful soft tissue calcification.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.
| | - Timothy R Arnett
- Department of Cell and Developmental Biology, University College London, London, UK
| | - R Graham G Russell
- The Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, UK; The Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
27
|
Noronha-Matos JB, Correia-de-Sá P. Mesenchymal Stem Cells Ageing: Targeting the "Purinome" to Promote Osteogenic Differentiation and Bone Repair. J Cell Physiol 2016; 231:1852-61. [PMID: 26754327 DOI: 10.1002/jcp.25303] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into bone forming cells. Such ability is compromised in elderly individuals resulting in bone disorders such as osteoporosis, also limiting their clinical usage for cell transplantation and bone tissue engineering strategies. In bone marrow niches, adenine and uracil nucleotides are important local regulators of osteogenic differentiation of MSCs. Nucleotides can be released to the extracellular milieu under both physiological and pathological conditions via (1) membrane cell damage, (2) vesicle exocytosis, (3) ATP-binding cassette transporters, and/or (4) facilitated diffusion through maxi-anion channels, hemichannels or ligand-gated receptor pores. Nucleotides and their derivatives act via adenosine P1 (A1 , A2A , A2B , and A3 ) and nucleotide-sensitive P2 purinoceptors comprising ionotropic P2X and G-protein-coupled P2Y receptors. Purinoceptors activation is terminated by membrane-bound ecto-nucleotidases and other ecto-phosphatases, which rapidly hydrolyse extracellular nucleotides to their respective nucleoside 5'-di- and mono-phosphates, nucleosides and free phosphates, or pyrophosphates. Current knowledge suggests that different players of the "purinome" cascade, namely nucleotide release sites, ecto-nucleotidases and purinoceptors, orchestrate to fine-tuning regulate the activity of MSCs in the bone microenvironment. Increasing studies, using osteoprogenitor cell lines, animal models and, more recently, non-modified MSCs from postmenopausal women, raised the possibility to target chief components of the purinergic signaling pathway to regenerate the ability of aged MSCs to differentiate into functional osteoblasts. This review summarizes the main findings of those studies, prompting for novel therapeutic strategies to control ageing disorders where bone destruction exceeds bone formation, like osteoporosis, rheumatoid arthritis, and fracture mal-union. J. Cell. Physiol. 231: 1852-1861, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J B Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Portugal
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Portugal
| |
Collapse
|
28
|
Kariya T, Tanabe N, Shionome C, Manaka S, Kawato T, Zhao N, Maeno M, Suzuki N, Shimizu N. Tension force-induced ATP promotes osteogenesis through P2X7 receptor in osteoblasts. J Cell Biochem 2016; 116:12-21. [PMID: 24905552 PMCID: PMC4263259 DOI: 10.1002/jcb.24863] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 05/30/2014] [Indexed: 01/31/2023]
Abstract
Orthodontic tooth movement induces alveolar bone resorption and formation by mechanical stimuli. Force exerted on the traction side promotes bone formation. Adenosine triphosphate (ATP) is one of the key mediators that respond to bone cells by mechanical stimuli. However, the effect of tension force (TF)-induced ATP on osteogenesis is inadequately understood. Accordingly, we investigated the effect of TF on ATP production and osteogenesis in MC3T3-E1 cells. Cells were incubated in the presence or absence of P2X7 receptor antagonist A438079, and then stimulated with or without cyclic TF (6% or 18%) for a maximum of 24 h using Flexercell Strain Unit 3000. TF significantly increased extracellular ATP release compared to control. Six percent TF had maximum effect on ATP release compared to 18% TF and control. Six percent TF induced the expression of Runx2 and Osterix. Six percent TF also increased the expression of extracellular matrix proteins (ECMPs), ALP activity, and the calcium content in ECM. A438079 blocked the stimulatory effect of 6% TF on the expression of Runx2, Osterix and ECMPs, ALP activity, and calcium content in ECM. This study indicated that TF-induced extracellular ATP is released in osteoblasts, suggesting that TF-induced ATP promotes osteogenesis by autocrine action through P2X7 receptor in osteoblasts. J. Cell. Biochem. 116: 12–21, 2015. © 2014 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Taro Kariya
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Accumulating evidence now suggests that purinergic signalling exerts significant regulatory effects in the musculoskeletal system. In particular, it has emerged that extracellular nucleotides are key regulators of bone cell differentiation, survival and function. This review discusses our current understanding of the direct effects of purinergic signalling in bone, cartilage and muscle.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, United Kingdom.
| |
Collapse
|
30
|
Govitvattana N, Osathanon T, Toemthong T, Pavasant P. IL-6 regulates stress-induced REX-1 expression via ATP-P2Y1 signalling in stem cells isolated from human exfoliated deciduous teeth. Arch Oral Biol 2014; 60:160-6. [PMID: 25455130 DOI: 10.1016/j.archoralbio.2014.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 09/26/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the relationship between ATP and IL-6 in mechanical stress-induced REX-1 expression in SHEDs. METHODS Cells were stimulated with mechanical stress (0-2.5 gcm(-2)), IL-6 (0.1-5 ng/ml), or ATP (10-100 μM) for 2h in serum-free media. IL-6 and REX-1 expression was examined by qualitative and quantitative polymerase chain reaction. ATP release was measured using a bioluminescence assay. The molecular mechanisms of the signalling pathways were investigated using chemical inhibitors. RESULTS Mechanical stress induced IL-6 and REX-1 mRNA expression and ATP release. JAK inhibitor I inhibited the increase in REX-1 expression and ATP release but not IL-6 induction. Furthermore, suramin inhibited the upregulation of REX-1 mRNA expression but not ATP release. Exogenous IL-6 promoted both ATP release and REX-1 expression. The IL-6-induced REX-1 expression was attenuated by a P2Y1-specific receptor antagonist. Moreover, REX-1 expression was upregulated in a dose-dependent manner by the addition of ATP or a P2Y1 agonist. This inductive effect was abolished by the P2Y1-specific receptor antagonist. CONCLUSIONS ATP-P2Y1 signalling is involved in IL-6-regulated stress-induced REX-1 expression in SHEDs. These results imply the participation of mechanical stress, IL-6, and ATP in regulating the expression of REX-1, a pluripotent stem cell marker.
Collapse
Affiliation(s)
- Nattanan Govitvattana
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Thanaphum Osathanon
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | | | - Prasit Pavasant
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
31
|
Noronha-Matos JB, Coimbra J, Sá-e-Sousa A, Rocha R, Marinhas J, Freitas R, Guerra-Gomes S, Ferreirinha F, Costa MA, Correia-de-Sá P. P2X7-induced zeiosis promotes osteogenic differentiation and mineralization of postmenopausal bone marrow-derived mesenchymal stem cells. FASEB J 2014; 28:5208-22. [PMID: 25169056 DOI: 10.1096/fj.14-257923] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Polymorphisms of the P2X7 receptor have been associated with increased risk of fractures in postmenopausal women. Although both osteoblasts and osteoclasts express P2X7 receptors, their function in osteogenesis remains controversial. Here, we investigated the role of the P2X7 receptor on osteogenic differentiation and mineralization of bone marrow mesenchymal stem cell (BMSC) cultures from postmenopausal women (age 71±3 yr, n=18). We focused on the mechanisms related to intracellular [Ca(2+)]i oscillations and plasma membrane-dynamics. ATP, and the P2X7 agonist BzATP (100 μM), increased [Ca(2+)]i in parallel to the formation of membrane pores permeable to TO-PRO-3 dye uptake. ATP and BzATP elicited reversible membrane blebs (zeiosis) in 38 ± 1 and 70 ± 1% of the cells, respectively. P2X7-induced zeiosis was Ca(2+) independent, but involved phospholipase C, protein kinase C, and Rho-kinase activation. BzATP (100 μM) progressively increased the expression of Runx-2 and Osterix transcription factors by 452 and 226% (at d 21), respectively, alkaline phosphatase activity by 88% (at d 28), and mineralization by 329% (at d 43) of BMSC cultures in a Rho-kinase-dependent manner. In summary, reversible plasma membrane zeiosis involving cytoskeleton rearrangements due to activation of the P2X7-Rho-kinase axis promotes osteogenic differentiation and mineralization of BMSCs, thus providing new therapeutic targets for postmenopausal bone loss.
Collapse
Affiliation(s)
- José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - João Coimbra
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - Ana Sá-e-Sousa
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - Rui Rocha
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - José Marinhas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Rolando Freitas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Sónia Guerra-Gomes
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia and Departamento de Química, Unit for Multidisciplinary Research in Biomedicine (UMIB), and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| |
Collapse
|
32
|
Gardinier J, Yang W, Madden GR, Kronbergs A, Gangadharan V, Adams E, Czymmek K, Duncan RL. P2Y2 receptors regulate osteoblast mechanosensitivity during fluid flow. Am J Physiol Cell Physiol 2014; 306:C1058-67. [PMID: 24696143 DOI: 10.1152/ajpcell.00254.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mechanical stimulation of osteoblasts activates many cellular mechanisms including the release of ATP. Binding of ATP to purinergic receptors is key to load-induced osteogenesis. Osteoblasts also respond to fluid shear stress (FSS) with increased actin stress fiber formation (ASFF) that we postulate is in response to activation of the P2Y2 receptor (P2Y2R). Furthermore, we predict that ASFF increases cell stiffness and reduces the sensitivity to further mechanical stimulation. We found that small interfering RNA (siRNA) suppression of P2Y2R attenuated ASFF in response to FSS and ATP treatment. In addition, RhoA GTPase was activated within 15 min after the onset of FSS or ATP treatment and mediated ASFF following P2Y2R activation via the Rho kinase (ROCK)1/LIM kinase 2/cofilin pathway. We also observed that ASFF in response to FSS or ATP treatment increased the cell stiffness and was prevented by knocking down P2Y2R. Finally, we confirmed that the enhanced cell stiffness and ASFF in response to RhoA GTPase activation during FSS drastically reduced the mechanosensitivity of the osteoblasts based on the intracellular Ca(2+) concentration ([Ca(2+)]i) response to consecutive bouts of FSS. These data suggest that osteoblasts can regulate their mechanosensitivity to continued load through P2Y2R activation of the RhoA GTPase signaling cascade, leading to ASFF and increased cell stiffness.
Collapse
Affiliation(s)
- Joseph Gardinier
- Biomechanics and Movement Science, University of Delaware, Newark, Delaware
| | - Weidong Yang
- Department of Biological Sciences, University of Delaware, Newark, Delaware; and
| | - Gregory R Madden
- Department of Biological Sciences, University of Delaware, Newark, Delaware; and
| | - Andris Kronbergs
- Department of Biological Sciences, University of Delaware, Newark, Delaware; and
| | - Vimal Gangadharan
- Department of Biological Sciences, University of Delaware, Newark, Delaware; and
| | - Elizabeth Adams
- Bioimaging Center, Delaware Biotechnology Institute, Newark, Delaware
| | - Kirk Czymmek
- Department of Biological Sciences, University of Delaware, Newark, Delaware; and Bioimaging Center, Delaware Biotechnology Institute, Newark, Delaware
| | - Randall L Duncan
- Biomechanics and Movement Science, University of Delaware, Newark, Delaware; Department of Biological Sciences, University of Delaware, Newark, Delaware; and Bioimaging Center, Delaware Biotechnology Institute, Newark, Delaware
| |
Collapse
|
33
|
Batra N, Riquelme MA, Burra S, Kar R, Gu S, Jiang JX. Direct regulation of osteocytic connexin 43 hemichannels through AKT kinase activated by mechanical stimulation. J Biol Chem 2014; 289:10582-10591. [PMID: 24563481 DOI: 10.1074/jbc.m114.550608] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Connexin (Cx) 43 hemichannels in osteocytes are thought to play a critical role in releasing bone modulators in response to mechanical loading, a process important for bone formation and remodeling. However, the underlying mechanism that regulates the opening of mechanosensitive hemichannels is largely unknown. We have recently shown that Cx43 and integrin α5 interact directly with each other, and activation of PI3K appears to be required for Cx43 hemichannel opening by mechanical stimulation. Here, we show that mechanical loading through fluid flow shear stress (FFSS) increased the level of active AKT, a downstream effector of PI3K, which is correlated with the opening of hemichannels. Both Cx43 and integrin α5 are directly phosphorylated by AKT. Inhibition of AKT activation significantly reduced FFSS-induced opening of hemichannels and disrupted the interaction between Cx43 and integrin α5. Moreover, AKT phosphorylation on Cx43 and integrin α5 enhanced their interaction. In contrast to the C terminus of wild-type Cx43, overexpression of the C-terminal mutant containing S373A, a consensus site previously shown to be phosphorylated by AKT, failed to bind with α5 and hence could not inhibit hemichannel opening. Together, our results suggest that AKT activated by FFSS directly phosphorylates Cx43 and integrin α5, and Ser-373 of Cx43 plays a predominant role in mediating the interaction between these two proteins and Cx43 hemichannel opening, a crucial step to mediate the anabolic function of mechanical loading in the bone.
Collapse
Affiliation(s)
- Nidhi Batra
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Manuel A Riquelme
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Sirisha Burra
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Rekha Kar
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Sumin Gu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900.
| |
Collapse
|
34
|
Li Y, Liu H, Sato Y. The association between the serum C-peptide level and bone mineral density. PLoS One 2013; 8:e83107. [PMID: 24358252 PMCID: PMC3865098 DOI: 10.1371/journal.pone.0083107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/09/2013] [Indexed: 12/21/2022] Open
Abstract
Objective Although serum C-peptide was previously considered biologically inactive, a growing number of recent studies have shown that it is an active peptide with important physiologic functions. The present study aimed to investigate the association of serum C-peptide level with bone mineral density (BMD) in residents of the United States. Methods The study included 6,625 participants aged 12–85 years. Total and regional BMD were measured using dual-energy X-ray absorptiometry. Stratified multiple linear regression analysis was performed to determine the association of the serum C-peptide level with BMD. Three regression models were produced for each stratum. All models were adjusted for ethnicity, height, weight, education level, physical activity, smoking status, alcohol use, triglycerides and creatinine level, and models 2 and 3 were further adjusted for the fasting plasma glucose (FPG) and alkaline phosphatase (ALP) levels, respectively. Results Sex-specific results showed a significant association between the serum C-peptide level and total BMD in both sexes. Stratified analyses based on age and body mass index showed that serum C-peptide levels were significantly negatively associated with most regional BMD, and most of these associations remained significant after stratification based on the serum insulin level. Conclusion The serum C-peptide level was significantly negatively associated with the total and most regional BMD. These findings suggest that serum C-peptide may have biological activity associated with bone metabolism and therefore serum C-peptide control is advisable in order to reduce the risk of low bone mineral density.
Collapse
Affiliation(s)
- Ying Li
- Department of Social Medicine, School of Public Health, Zhejiang University, Zhejiang, China
- * E-mail:
| | - Hua Liu
- School of Basic Medical Sciences, Zhejiang University, Zhejiang, China
| | - Yasuto Sato
- Department of Hygiene and Public Health II, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
35
|
Nielsen MS, Axelsen LN, Sorgen PL, Verma V, Delmar M, Holstein-Rathlou NH. Gap junctions. Compr Physiol 2013; 2:1981-2035. [PMID: 23723031 DOI: 10.1002/cphy.c110051] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease.
Collapse
Affiliation(s)
- Morten Schak Nielsen
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
36
|
Burnstock G, Arnett TR, Orriss IR. Purinergic signalling in the musculoskeletal system. Purinergic Signal 2013; 9:541-72. [PMID: 23943493 PMCID: PMC3889393 DOI: 10.1007/s11302-013-9381-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022] Open
Abstract
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
37
|
Nemoto E, Gotoh K, Tsuchiya M, Sakisaka Y, Shimauchi H. Extracellular ATP inhibits IL-1-induced MMP-1 expression through the action of CD39/nucleotidase triphosphate dephosphorylase-1 on human gingival fibroblasts. Int Immunopharmacol 2013; 17:513-8. [PMID: 23941770 DOI: 10.1016/j.intimp.2013.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 01/08/2023]
Abstract
Extracellular adenosine triphosphate (ATP) is sequentially dephosphorylated by two ectoenzymes: CD39/nucleotidase triphosphate dephosphorylase (ENTPD) and CD73/5'-ectonucleotidase (5'-NT). Adenosine, its notable metabolite, may elicit potent anti-inflammatory responses. We examined whether the CD39-adenosinergic axis may exist in gingival fibroblasts and have an effect on the expression of matrix metalloproteinase (MMP)-1, the excess production of which leads to pathological matrix degradation. We showed that transcripts of CD39, CD73, and adenosine receptors A1, A2a, and A2b, but not A3, were expressed by human gingival fibroblasts by RT-PCR. We also identified the expression of CD39 in fibroblastic cells in rat gingiva by immunohistochemistry. ATP inhibited the expression of MMP-1 triggered by interleukin-1 at gene and protein levels. However, ATP-γS, a stable ATP analog, did not. The ATP-mediated MMP-1 inhibition was restored in the presence of POM-1, a specific ENTPD inhibitor, suggesting that CD39/ENTPD was involved in the MMP-1 inhibition. ATP metabolites including adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), and adenosine inhibited MMP-1 expression, but ADP-βS, a stable ADP, did not, suggesting that adenosine converted from ATP by the action of CD39/ENTPD and CD73/5'-NT may contribute to MMP-1 inhibition. Adenosine-mediated MMP-1 inhibition was restored in the presence of H89, a protein kinase A (PKA) inhibitor. Conversely, forskolin, an enhancer of intracellular cAMP, mimicked the effect of adenosine, suggesting that the cAMP/PKA signaling pathway is involved in adenosine-mediated MMP-1 inhibition. The present findings suggest the existence of an endogenous anti-tissue destructive mechanism in gingival tissue via the CD39-adenosinergic axis.
Collapse
Affiliation(s)
- Eiji Nemoto
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi Aoba, Sendai 980-8575, Japan.
| | | | | | | | | |
Collapse
|
38
|
Tan TW, Pfau B, Jones D, Meyer T. Stimulation of primary osteoblasts with ATP induces transient vinculin clustering at sites of high intracellular traction force. J Mol Histol 2013; 45:81-9. [PMID: 23933795 PMCID: PMC4544565 DOI: 10.1007/s10735-013-9530-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/25/2013] [Indexed: 01/24/2023]
Abstract
Adenosine 5′-triphosphate (ATP), released in response to mechanical and inflammatory stimuli, induces the dynamic and asynchronous protrusion and subsequent retraction of local membrane structures in osteoblasts. The molecular mechanisms involved in the ligand-stimulated herniation of the plasma membrane are largely unknown, which prompted us to investigate whether the focal-adhesion protein vinculin is engaged in the cytoskeletal alterations that underlie the ATP-induced membrane blebbing. Using time-lapse fluorescence microscopy of primary bovine osteoblast-like cells expressing green fluorescent protein-tagged vinculin, we found that stimulation of cells with 100 μM ATP resulted in the transient and rapid clustering of recombinant vinculin in the cell periphery, starting approximately 100 s after addition of the nucleotide. The ephemeral nature of the vinculin clusters was made evident by the brevity of their mean assembly and disassembly times (66.7 ± 13.3 s and 99.0 ± 6.6 s, respectively). Traction force vector maps demonstrated that the vinculin-rich clusters were localized predominantly at sites of high traction force. Intracellular calcium measurements showed that the ligand-induced increase in [Ca2+]i clearly preceded the clustering of vinculin, since [Ca2+]i levels returned to normal within 30 s of exposure to ATP, indicating that intracellular calcium transients trigger a cascade of signalling events that ultimately result in the incorporation of vinculin into membrane-associated focal aggregates.
Collapse
Affiliation(s)
- Toh Weng Tan
- Institute for Experimental Orthopaedics and Biomechanics, University of Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
39
|
Abstract
Release of adenosine triphosphate (ATP) into the extracellular space occurs in response to a multiplicity of physiological and pathological stimuli in virtually all cells and tissues. A role for extracellular ATP has been identified in processes as different as neurotransmission, endocrine and exocrine secretion, smooth muscle contraction, bone metabolism, cell proliferation, immunity and inflammation. However, ATP measurement in the extracellular space has proved a daunting task until recently. To tackle this challenge, some years ago, we designed and engineered a novel luciferase probe targeted to and expressed on the outer aspect of the plasma membrane. This novel probe was constructed by appending to firefly luciferase the N-terminal leader sequence and the C-terminal glycophosphatidylinositol anchor of the folate receptor. This chimeric protein, named plasma membrane luciferase, is targeted and localized to the outer side of the plasma membrane. With this probe, we have generated stably transfected HEK293 cell clones that act as an in vitro and in vivo sensor of the extracellular ATP concentration in several disease conditions, such as experimentally induced tumours and inflammation.
Collapse
Affiliation(s)
- Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology , University of Ferrara , Via Borsari 46, Ferrara 44121 , Italy
| | | | | |
Collapse
|
40
|
Orriss IR, Key ML, Hajjawi MOR, Arnett TR. Extracellular ATP released by osteoblasts is a key local inhibitor of bone mineralisation. PLoS One 2013; 8:e69057. [PMID: 23874866 PMCID: PMC3706437 DOI: 10.1371/journal.pone.0069057] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/04/2013] [Indexed: 12/31/2022] Open
Abstract
Previous studies have shown that exogenous ATP (>1µM) prevents bone formation in vitro by blocking mineralisation of the collagenous matrix. This effect is thought to be mediated via both P2 receptor-dependent pathways and a receptor-independent mechanism (hydrolysis of ATP to produce the mineralisation inhibitor pyrophosphate, PPi). Osteoblasts are also known to release ATP constitutively. To determine whether this endogenous ATP might exert significant biological effects, bone-forming primary rat osteoblasts were cultured with 0.5-2.5U/ml apyrase (which sequentially hydrolyses ATP to ADP to AMP + 2Pi). Addition of 0.5U/ml apyrase to osteoblast culture medium degraded extracellular ATP to <1% of control levels within 2 minutes; continuous exposure to apyrase maintained this inhibition for up to 14 days. Apyrase treatment for the first 72 hours of culture caused small decreases (≤25%) in osteoblast number, suggesting a role for endogenous ATP in stimulating cell proliferation. Continuous apyrase treatment for 14 days (≥0.5U/ml) increased mineralisation of bone nodules by up to 3-fold. Increases in bone mineralisation were also seen when osteoblasts were cultured with the ATP release inhibitors, NEM and brefeldin A, as well as with P2X1 and P2X7 receptor antagonists. Apyrase decreased alkaline phosphatase (TNAP) activity by up to 60%, whilst increasing the activity of the PPi-generating ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs) up to 2.7-fold. Both collagen production and adipocyte formation were unaffected. These data suggest that nucleotides released by osteoblasts in bone could act locally, via multiple mechanisms, to limit mineralisation.
Collapse
Affiliation(s)
- Isabel R. Orriss
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Michelle L. Key
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Mark O. R. Hajjawi
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Timothy R. Arnett
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Wang N, Rumney RMH, Yang L, Robaye B, Boeynaems JM, Skerry TM, Gartland A. The P2Y13 receptor regulates extracellular ATP metabolism and the osteogenic response to mechanical loading. J Bone Miner Res 2013; 28:1446-56. [PMID: 23362109 DOI: 10.1002/jbmr.1877] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 12/11/2012] [Accepted: 01/07/2013] [Indexed: 11/07/2022]
Abstract
ATP release and subsequent activation of purinergic receptors has been suggested to be one of the key transduction pathways activated by mechanical stimulation of bone. The P2Y(13) receptor, recently found to be expressed by osteoblasts, has been suggested to provide a negative feedback pathway for ATP release in different cell types. Therefore, we hypothesized that the P2Y(13) receptor may contribute to the mediation of osteogenic responses to mechanical stimulation by regulating ATP metabolism by osteoblasts. To test this hypothesis, wild-type (WT) and P2Y(13) receptor knockout (P2Y(13)R-/-) mice were subject to non-invasive axial mechanical loading of the left tibiae to induce an osteogenic response. Micro-computed tomography analysis showed mechanical loading induced an osteogenic response in both strains of mice in terms of increased total bone volume and cortical bone volume, with the P2Y(13)R-/- mice having a significantly greater response. The extent of the increased osteogenic response was defined by dynamic histomorphometry data showing dramatically increased bone formation and mineral apposition rates in P2Y(13)R-/- mice compared with controls. In vitro, primary P2Y(13)R-/- osteoblasts had an accumulation of mechanically induced extracellular ATP and reduced levels of hydrolysis. In addition, P2Y(13)R-/- osteoblasts also had a reduction in their maximal alkaline phosphatase (ALP) activity, one of the main ecto-enzymes expressed by osteoblasts, which hydrolyzes extracellular ATP. In conclusion, deletion of the P2Y(13) receptor leads to an enhanced osteogenic response to mechanical loading in vivo, possibly because of the reduced extracellular ATP degradation by ALP. The augmented osteogenic response to mechanical stimulation, combined with suppressed bone remodeling activities and protection from OVX-induced bone loss after P2Y(13) receptor depletion as previously described, suggests a potential role for P2Y(13) receptor antagonist-based therapy, possibly in combination with mechanical loading, for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Ning Wang
- The Mellanby Centre for Bone Research, Department of Human Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
42
|
ATP and UTP stimulate bone morphogenetic protein-2,-4 and -5 gene expression and mineralization by rat primary osteoblasts involving PI3K/AKT pathway. Exp Cell Res 2013; 319:2028-2036. [PMID: 23707969 DOI: 10.1016/j.yexcr.2013.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 01/13/2023]
Abstract
The modulation of purinergic receptors plays an important role in the regulation of bone formation by the osteoblast. On the other hand, bone morphogenetic proteins (BMPs), members of the transforming growth factor-β superfamily, regulate the differentiation of osteoprogenitor bone cells and stimulate bone formation. In this study, we investigate the effects of several nucleotides on osteoblast differentiation and function, and their relation with the gene expression of osteogenic proteins BMP-2, BMP-4 and BMP-5 as well as of differentiation markers alkaline phosphatase (ALP) and bone sialoprotein (BSP). Our results indicate that 100μM ATP, ATPγS and UTP, but not ADP, ADPβS or UDP, promote ALP activity in rat primary osteoblasts, showing a peak about day 7 of the treatment. ATP, ATPγS and UTP also increase the mRNA levels of ALP, BMP-2, BMP-4, BMP-5 and BSP. Both the ALP activity and ALP and BMP-4 mRNA increments induced by ATP and UTP are inhibited by Ly294002, a PI3K inhibitor, suggesting the involvement of PI3K/AKT signaling pathway in purinergic modulation of osteoblast differentiation. Furthermore, bone mineralization enhance 1 and 1.5 fold after culturing osteoblasts in the presence of 100μM ATP or UTP, respectively, but not of ADP or UDP for 22 days. This information suggests that P2Y2 receptors (responsive to ATP, ATPγS and UTP) enhance osteoblast differentiation involving PI3K/AKT signaling pathway activation and gene expression induction of ALP, BMP-2, BMP-4, BMP-5 and BSP. Our findings state a novel molecular mechanism that involves specific gene expression activation of osteoblast function by the purinoreceptors, which would be of help in setting up new pharmacological strategies for the intervention in bone loss pathologies.
Collapse
|
43
|
Local detection of mechanically induced ATP release from bone cells with ATP microbiosensors. Biosens Bioelectron 2013; 44:27-33. [PMID: 23384767 DOI: 10.1016/j.bios.2013.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/04/2013] [Indexed: 11/24/2022]
Abstract
The mechanically induced release of adenosine-5'-triphosphate (ATP) from osteoblastic cells (MC3T3-E1) was measured in real time. A stretching device integrated into scanning electrochemical microscopy was developed to apply controlled mechanical strain to MC3T3-E1 cells. For ATP secretion, a stepwise yet uniform mechanical stress was imposed onto MC3T3-E1 cells. The ATP biosensors were positioned at a distance of approximately 30-40 μm above the cell surface. Calibration functions were recorded prior to the cell measurements and revealed a linear response up to 40 μM with a sensitivity of 1-5pA/μM ATP. Stretching MC3T3-E1 cells up to 21% resulted in a concentration of 30.57±4.82 μM of extracellular ATP (N=12) detected above the cell surface. As a control experiment, nifedipine, a L-type voltage sensitive calcium channel (L-VSCC) inhibitor was applied, which blocks Ca(2+)entry from the outer medium into the cell. Inhibition resulted in a significantly smaller amount of released ATP, i.e., 7.08±1.93 μM ATP (N=10). Further control experiments with glucose microbiosensors did not yield significant changes of the baseline current (N=8).
Collapse
|
44
|
Sandilos JK, Bayliss DA. Physiological mechanisms for the modulation of pannexin 1 channel activity. J Physiol 2012; 590:6257-66. [PMID: 23070703 DOI: 10.1113/jphysiol.2012.240911] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is widely recognized that ATP, along with other nucleotides, subserves important intercellular signalling processes. Among various nucleotide release mechanisms, the relatively recently identified pannexin 1 (Panx1) channel is gaining prominence by virtue of its ability to support nucleotide permeation and release in a variety of different tissues. Here, we review recent advances in our understanding of the factors that control Panx1 channel activity. By using electrophysiological and biochemical approaches, diverse mechanisms that dynamically regulate Panx1 channel function have been identified in various settings; these include, among others, activation by caspase-mediated channel cleavage in apoptotic immune cells, by G protein-coupled receptors in vascular smooth muscle, by low oxygen tension in erythrocytes and neurons, by high extracellular K(+) in various cell types and by stretch/strain in airway epithelia. Delineating the distinct mechanisms of Panx1 modulation that prevail in different physiological contexts provides the possibility that these channels, and ATP release, could ultimately be targeted in a context-dependent manner.
Collapse
Affiliation(s)
- Joanna K Sandilos
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
| | | |
Collapse
|
45
|
Li FF, Chen FL, Wang H, Yu SB, Cui JH, Ding Y, Feng X. Proteomics based detection of differentially expressed proteins in human osteoblasts subjected to mechanical stress. Biochem Cell Biol 2012; 91:109-15. [PMID: 23527640 DOI: 10.1139/bcb-2012-0021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mechanical stress is essential for bone development. Mechanical stimuli are transduced to biochemical signals that regulate proliferation, differentiation, and cytoskeletal reorganization in osteoblasts. In this study, we used proteomics to evaluate differences in the protein expression profiles of untreated Saos-2 osteoblast cells and Saos-2 cells subjected to mechanical stress loading. Using 2-D electrophoresis, MALDI-TOF mass spectroscopy, and bioinformatics, we identified a total of 26 proteins differentially expressed in stress loaded cells compared with control cells. Stress loaded Saos-2 cells exhibited significant upregulation of 17 proteins and significant downregulation of 9 proteins compared with control cells. Proteins that were most significantly upregulated in mechanically loaded cells included those regulating osteogenesis, energy metabolism, and the stress response, such as eukaryotic initiation factor 2 (12-fold), mitochondrial ATP synthase (8-fold), and peptidylprolyl isomerase A (cyclophilin A)-like 3 (6.5-fold). Among the proteins that were significantly downregulated were those involved in specific signaling pathways and cell proliferation, such as protein phosphatase regulatory (inhibitor) subunit 12B (13.8-fold), l-lactate dehydrogenase B (9.4-fold), Chain B proteasome activator Reg (Alpha) PA28 (7.7-fold), and ubiquitin carboxyl-terminal esterase L1 (6.9-fold). Our results provide a platform to understand the molecular mechanisms underlying mechanotransduction.
Collapse
Affiliation(s)
- Fei-Fei Li
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032 Shannxi Province, China
| | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Orriss IR, Key ML, Brandao-Burch A, Patel JJ, Burnstock G, Arnett TR. The regulation of osteoblast function and bone mineralisation by extracellular nucleotides: The role of p2x receptors. Bone 2012; 51:389-400. [PMID: 22749889 DOI: 10.1016/j.bone.2012.06.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/06/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
Abstract
Extracellular nucleotides, signalling through P2 receptors, regulate the function of both osteoblasts and osteoclasts. Osteoblasts are known to express multiple P2 receptor subtypes (P2X2,5,7 and P2Y(1),(2,4,6)), levels of which change during differentiation. ATP and UTP potently inhibit bone mineralisation in vitro, an effect mediated, at least in part, via the P2Y(2) receptor. We report here that primary rat osteoblasts express additional, functional P2 receptors (P2X1, P2X3, P2X4, P2X6, P2Y(12), P2Y(13) and P2Y(14)). Receptor expression changed with cellular differentiation: e.g., P2X4 receptor mRNA levels were 5-fold higher in mature, bone-forming osteoblasts, relative to immature, proliferating cells. The rank order of expression of P2 receptor mRNAs in mature osteoblasts was P2X4>>P2Y(1)>P2X2>P2Y(6)>P2X1>P2Y(2)>P2Y(4)>P2X6>P2X5>P2X7>P2X3>P2Y(14)>P2Y(13)>P2Y(12). Increased intracellular Ca(2+) levels following stimulation with P2X-selective agonists indicated the presence of functional receptors. To investigate whether P2X receptors might also regulate bone formation, osteoblasts were cultured for 14days with P2X receptor agonists. The P2X1 and P2X3 receptor agonists, α,β-meATP and β,γ-meATP inhibited bone mineralisation by 70% and 90%, respectively at 1μM, with complete abolition at ≥25μM; collagen production was unaffected. Bz-ATP, a P2X7 receptor agonist, reduced bone mineralisation by 70% and 99% at 10μM and 100μM, respectively. Osteoblast alkaline phosphatase activity was similarly inhibited by these agonists, whilst ecto-nucleotide pyrophosphatase/phosphodiesterase activity was increased. The effects of α,β-meATP and Bz-ATP were attenuated by antagonists selective for the P2X1 and P2X7 receptors, respectively. Our results show that normal osteoblasts express functional P2X receptors and that the P2X1 and P2X7 receptors negatively regulate bone mineralisation.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Cell and Developmental Biology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Sims SM, Panupinthu N, Lapierre DM, Pereverzev A, Dixon SJ. Lysophosphatidic acid: a potential mediator of osteoblast-osteoclast signaling in bone. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:109-16. [PMID: 22892679 DOI: 10.1016/j.bbalip.2012.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/01/2012] [Indexed: 02/05/2023]
Abstract
Osteoclasts (bone resorbing cells) and osteoblasts (bone forming cells) play essential roles in skeletal development, mineral homeostasis and bone remodeling. The actions of these two cell types are tightly coordinated, and imbalances in bone formation and resorption can result in disease states, such as osteoporosis. Lysophosphatidic acid (LPA) is a potent bioactive phospholipid that influences a number of cellular processes, including proliferation, survival and migration. LPA is also involved in wound healing and pathological conditions, such as tumor metastasis and autoimmune disorders. During trauma, activated platelets are likely a source of LPA in bone. Physiologically, osteoblasts themselves can also produce LPA, which in turn promotes osteogenesis. The capacity for local production of LPA, coupled with the proximity of osteoblasts and osteoclasts, leads to the intriguing possibility that LPA acts as a paracrine mediator of osteoblast-osteoclast signaling. Here we summarize emerging evidence that LPA enhances the differentiation of osteoclast precursors, and regulates the morphology, resorptive activity and survival of mature osteoclasts. These actions arise through stimulation of multiple LPA receptors and intracellular signaling pathways. Moreover, LPA is a potent mitogen implicated in promoting the metastasis of breast and ovarian tumors to bone. Thus, LPA released from osteoblasts is potentially an important autocrine and paracrine mediator - physiologically regulating skeletal development and remodeling, while contributing pathologically to metastatic bone disease. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Stephen M Sims
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
49
|
Öhman J, Erlinge D. The touching story of purinergic signaling in epithelial and endothelial cells. Purinergic Signal 2012; 8:599-608. [PMID: 22528685 DOI: 10.1007/s11302-012-9316-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/20/2012] [Indexed: 11/26/2022] Open
Affiliation(s)
- Jenny Öhman
- Faculty of Medicine, Lund University, Box 117, 221 00, Lund, Sweden.
| | | |
Collapse
|
50
|
Takedachi M, Oohara H, Smith BJ, Iyama M, Kobashi M, Maeda K, Long CL, Humphrey MB, Stoecker BJ, Toyosawa S, Thompson LF, Murakami S. CD73-generated adenosine promotes osteoblast differentiation. J Cell Physiol 2012; 227:2622-31. [PMID: 21882189 DOI: 10.1002/jcp.23001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD731 is a GPI-anchored cell surface protein with ecto-5'-nucleotidase enzyme activity that plays a crucial role in adenosine production. While the roles of adenosine receptors (AR) on osteoblasts and osteoclasts have been unveiled to some extent, the roles of CD73 and CD73-generated adenosine in bone tissue are largely unknown. To address this issue, we first analyzed the bone phenotype of CD73-deficient (cd73(-/-)) mice. The mutant male mice showed osteopenia, with significant decreases of osteoblastic markers. Levels of osteoclastic markers were, however, comparable to those of wild-type mice. A series of in vitro studies revealed that CD73 deficiency resulted in impairment in osteoblast differentiation but not in the number of osteoblast progenitors. In addition, over expression of CD73 on MC3T3-E1 cells resulted in enhanced osteoblastic differentiation. Moreover, MC3T3-E1 cells expressed adenosine A(2A) receptors (A(2A)AR) and A(2B) receptors (A(2B)AR) and expression of these receptors increased with osteoblastic differentiation. Enhanced expression of osteocalcin (OC) and bone sialoprotein (BSP) observed in MC3T3-E1 cells over expressing CD73 were suppressed by treatment with an A(2B)AR antagonist but not with an A(2A) AR antagonist. Collectively, our results indicate that CD73 generated adenosine positively regulates osteoblast differentiation via A(2B)AR signaling.
Collapse
Affiliation(s)
- Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|