1
|
Yang L, Xie L, Li M, Miao Y, Yang J, Chen S, Ma X, Xie P. Potential relationship between cuproptosis and sepsis-acquired weakness: an intermediate role for mitochondria. Front Physiol 2025; 16:1520669. [PMID: 40182687 PMCID: PMC11965645 DOI: 10.3389/fphys.2025.1520669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Skeletal muscle atrophy due to critical illness is a common phenomenon in the intensive care unit (ICU) and is referred to as ICU-acquired weakness (ICU-AW). The occurrence of ICU-AW in patients with sepsis is known as sepsis-acquired weakness (SAW). Furthermore, it is well known that maintaining normal muscle function closely relates to mitochondrial homeostasis. Once mitochondrial function is impaired, both muscle quality and function are affected. Copper plays a key role in mitochondrial homeostasis as a transition metal that regulates the function and stability of various enzymes. Copper is also involved in oxidation-reduction reactions, and intracellular copper overload causes oxidative stress and induces cell death. Previous studies have shown that excess intracellular copper induces cell death by targeting lipid-acylated proteins that regulate the mitochondrial tricarboxylic acid (TCA) cycle, which differs from the known canonical mechanisms of regulated cell death. Furthermore, inhibitors of cell death, such as apoptosis, necroptosis, pyroptosis and ferroptosis, are not effective in preventing copper-induced cell death. This new form of cell death has been termed "Cuproptosis"; however, the mechanism by which copper-induced cell death is involved in SAW remains unclear. In this paper, we review the possible relationship between cuproptosis and SAW. Cuproptosis may be involved in regulating the pathological mechanisms of SAW through mitochondria-related signaling pathways, mitochondria-related ferroptosis mechanisms, and mitochondria-related genes, and to provide new ideas for further investigations into the mechanism of SAW.
Collapse
Affiliation(s)
- Luying Yang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Leiyu Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Min Li
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Jun Yang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Shaolin Chen
- Department of Nursing of Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Xinglong Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Peng Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Sun Z, Zhao Q, Zhang J, Hu Y, Qu J, Gao H, Peng Z. Bioinformatics reveals diagnostic potential of cuproptosis-related genes in the pathogenesis of sepsis. Heliyon 2024; 10:e22664. [PMID: 38163157 PMCID: PMC10754710 DOI: 10.1016/j.heliyon.2023.e22664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
Background Multiple modes of cell death occur during the development of sepsis. Among these patterns, cuproptosis has recently been identified as a regulated form of cell death. However, its impact on the onset and progression of sepsis remains unclear. Method We screened a dataset of gene expression profiles from patients with sepsis using the GEO database. Survival analysis was performed to analyze the relationship between cuproptosis-related genes (CRGs) and prognosis. Hub genes were identified through univariate Cox regression analysis. The diagnostic value of hub genes in sepsis was tested in both training sets (GSE65682) and validation sets (GSE134347). To examine the association between hub genes and immune cells, single-sample gene set enrichment analysis (ssGSEA) and Pearson correlation analysis were employed. Additionally, the CRGs were validated in a septic mouse model using real-time quantitative PCR (qRT-PCR) and immunohistochemistry (IHC). Results In sepsis, most CRGs were upregulated, with only DLD and MTF1 downregulated. High expression of three genes (GLE, LIAS, and PDHB) was associated with better prognosis, but only two hub genes (LIAS, PDHB) reached statistical significance. The receiver operating characteristic (ROC) analysis for diagnosing sepsis showed LIAS had a range of 0.793-0.906, while PDHB achieved values of 0.882 and 0.975 in the training and validation sets, respectively. ssGSEA analysis revealed a lower number of immune cells in the sepsis group, and there was a correlation between immune cell population and CRGs (LIAS, PDHB). Analysis in the septic mouse model demonstrated no significant difference in mRNA expression levels and IHC staining between LIAS and PDHB in heart and liver tissues, but up-regulation was observed in lung tissues. Furthermore, the mRNA expression levels and IHC staining of LIAS and PDHB were down-regulated in renal tissues. Conclusions Cuproptosis is emerging as a significant factor in the development of sepsis. LIAS and PDHB, identified as potential diagnostic biomarkers for cuproptosis-associated sepsis, are believed to play crucial roles in the initiation and progression of cuproptosis-induced sepsis.
Collapse
Affiliation(s)
- Zhongyi Sun
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Qiuyue Zhao
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Jiahao Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Yanan Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Jiachen Qu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Han Gao
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| |
Collapse
|
3
|
Roedersheimer M. Solving the Measurement Problem and then Steppin' Out over the Line Riding the Rarest Italian: Crossing the Streams to Retrieve Stable Bioactivity in Majorana Bound States of Dialy zed Human Platelet Lysates. Open Neurol J 2015; 9:32-44. [PMID: 26191092 PMCID: PMC4503829 DOI: 10.2174/1874205x01509010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/22/2022] Open
Abstract
Exhaustive dialysis (ED) of lysed human platelets against dilute HCl yields stable angiogenic activity. Dialysis against a constrained external volume, with subsequent relaxation of the separation upon opening the dialysis bag, produces material able to maintain phenotypes and viability of human cells in culture better than ED material. Significant graded changes in MTT viability measurement tracked with external volume. The presence of elements smaller than the MW cutoff, capable of setting up cycling currents initiated by oriented flow of HCl across the membrane, suggests that maturation of bioactivity occurred through establishment of a novel type of geometric phase. These information-rich bound states fit recent descriptions of topological order and Majorana fermions, suggesting relevance in testing Penrose and Hameroff's theory of Orchestrated Objective Reduction, under conditions more general, and on finer scales, than those dependent on tubulin protein. The Berry curvature appears to be a good tool for building a general field theory of physiologic stress dependent on the quantum Hall effect. A new form of geometric phase, and an associated "geometric" quantum Hall effect underlying memory retrieval, dependent on the rate of path traversal and reduction from more than two initial field influences is described.
Collapse
|
4
|
Rael LT, Rao NKR, Thomas GW, Bar-Or R, Curtis CG, Bar-Or D. Combined cupric- and cuprous-binding peptides are effective in preventing IL-8 release from endothelial cells and redox reactions. Biochem Biophys Res Commun 2007; 357:543-8. [PMID: 17433258 DOI: 10.1016/j.bbrc.2007.03.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 03/30/2007] [Indexed: 12/20/2022]
Abstract
Copper mobilization and subsequent redox reactions have been implicated in the pathogenesis of numerous inflammation-based diseases. Reduction of the cupric ion (Cu(2+)) to the cuprous ion (Cu(+)) is necessary for the production of copper-induced reactive oxygen species (ROS). Peptides, designed to bind both Cu(2+) and Cu(+) and have the ability to prevent copper redox reactions, were studied. The peptides DAHGMTCANC and DAHKGMTCANC were effective at preventing the formation of thiobarbituric acid-reactive species (TBARS) in a copper/ascorbate solution at a 1:1 peptide/Cu ratio. This was observed in the reducing potential of the copper/ascorbate solutions containing these peptides at a 1:1 ratio based on oxidation-reduction potential (ORP) measurements. The peptide DAHGMTCARC was effective at a 2:1 ratio, but not at a 1:1 ratio in which an increase in the oxidation potential was observed. This suggests that a positively charged amino acid such as arginine (R) in the Cu(+)-binding motif interferes with metal chelation. All peptides tested were effective at preventing IL-8 release from phorbol 12-myristate 13-acetate (PMA)/copper-stimulated human umbilical vein endothelial cells (HUVEC). The use of Cu(+)/Cu(2+)-binding peptides might be beneficial in the treatment of ROS-related diseases associated with copper.
Collapse
Affiliation(s)
- Leonard T Rael
- Swedish Medical Center, Trauma Research Laboratory, 501 East Hampden Avenue, Room 4-454, Englewood, CO 80113, USA
| | | | | | | | | | | |
Collapse
|
5
|
Gum ET, Swanson RA, Alano C, Liu J, Hong S, Weinstein PR, Panter SS. Human Serum Albumin and its N-Terminal Tetrapeptide (DAHK) Block Oxidant-Induced Neuronal Death. Stroke 2004; 35:590-5. [PMID: 14726550 DOI: 10.1161/01.str.0000110790.05859.da] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Studies using animal models of stroke have shown that human serum albumin (HSA) significantly ameliorates cerebral ischemic injury after both transient and permanent ischemia, even when administered after the onset of ischemia or reperfusion. The mechanism of this effect remains uncertain, and prior studies suggest both indirect hemodynamic and direct cytoprotective effects. HSA is a potent antioxidant, in part because of its strong copper-binding capacity. Here we examined the effect of HSA on oxidant-induced neuronal death in a cortical cell culture system.
Methods—
Murine cortical cultures were exposed to oxidative stress generated by hydrogen peroxide and by a mixture of copper plus ascorbic acid. We examined the ability of HSA and a tetrapeptide occupying its N-terminus (DAHK) to prevent neuronal death after these challenges.
Results—
H
2
O
2
and CuCl
2
/ascorbic acid were used at concentrations that, in the absence of HSA, killed >90% of the neurons. HSA provided complete protection at a concentration of 37.5 μmol/L and 50% protection at 3.75 μmol/L. The copper-binding tetrapeptide DAHK had nearly identical potency and efficacy. HSA and DAHK were also equally effective in preventing neuronal death induced by CuCl
2
/ascorbic acid.
Conclusions—
HSA has potent antioxidant properties, probably due to binding of copper and other transition metals. HSA extravasation into ischemic brain may provide neuroprotection by limiting metal-catalyzed oxidant stress. The tetrapeptide DAHK may be an effective, small-molecular-weight alternative to HSA as a therapeutic agent for stroke.
Collapse
Affiliation(s)
- Elizabeth T Gum
- Department of Neurology, San Francisco Veterans Affairs Medical Center and University of California at San Francisco, 94121, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Bar-Or D, Thomas GW, Yukl RL, Rael LT, Shimonkevitz RP, Curtis CG, Winkler JV. Copper stimulates the synthesis and release of interleukin-8 in human endothelial cells: a possible early role in systemic inflammatory responses. Shock 2003; 20:154-8. [PMID: 12865660 DOI: 10.1097/01.shk.0000068318.49350.3a] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endogenous copper can play an important role in postischemic reperfusion injury, a condition associated with endothelial cell activation and increased interleukin 8 (IL-8) production. Excessive endothelial IL-8 secreted during trauma, major surgery, and sepsis may contribute to the development of systemic inflammatory response syndrome (SIRS), adult respiratory distress syndrome (ARDS), and multiple organ failure (MOF). No previous reports have indicated that copper has a direct role in stimulating human endothelial IL-8 secretion. Increased IL-8 in the culture medium of human umbilical vein (HUVEC), lung microvascular, and iliac artery endothelial cells was observed 24 h after the addition of 10 to 50 microM CuCl2 (cupric ions). HUVEC IL-8 induction by copper was higher than by 50 pg/mL tumor necrosis factor-alpha, whereas 50 pg/mL IL-1beta and 1 ng/mL platelet-activating factor did not stimulate IL-8 production or release. HUVEC IL-8 mRNA increased 3 h after CuCl2 stimulation and remained elevated after 24 h, implying sustained transcriptional activation. Copper did not stimulate HUVECs to secrete other cytokines. Cu(II) appeared to be the primary copper ion responsible for the observed increase in IL-8 because a specific high-affinity Cu(II)-binding peptide, d-Asp-d-Ala-d-His-d-Lys (d-DAHK), completely abolished this effect in a dose-dependent manner. These results suggest that Cu(II) may induce endothelial IL-8 by a mechanism independent of known Cu(I) generation of reactive oxygen species. Furthermore, in vivo studies are warranted to determine if copper is involved in the pathogenesis of systemic inflammation and if Cu(II) chelation can reduce this IL-8-induced endothelial inflammatory response.
Collapse
Affiliation(s)
- David Bar-Or
- Trauma Research Department, Swedish Medical Center, Englewood, Colorado 80110, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Roberts A, Bar-Or D, Winkler JV, Rael LT. Copper-induced oxidation of epinephrine: protective effect of D-DAHK, a synthetic analogue of the high affinity copper binding site of human albumin. Biochem Biophys Res Commun 2003; 304:755-7. [PMID: 12727220 DOI: 10.1016/s0006-291x(03)00667-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Epinephrine is known to be rapidly oxidized during sepsis. Ischemia and acidosis, which often accompany sepsis, are associated with the release of weakly bound cupric ions from plasma proteins. We investigated whether copper promotes oxidation of epinephrine at both physiological and acidic pH and whether D-Asp-D-Ala-D-His-D-Lys (D-DAHK), a human albumin (HSA) N-terminus synthetic peptide with a high affinity for cupric ions, attenuates this oxidation. Epinephrine alone [100 microM] or with CuCl(2) [10 microM], and with CuCl(2) [10 microM] and D-DAHK [20 microM] at pH 7.4, 7.0, 6.5, and 6.0 were incubated for 1h at 37 degrees C. Epinephrine oxidation was measured by the spectrophotometric quantification of its oxidation product, adrenochrome. We found that adrenochrome increased, suggesting copper-induced oxidation of epinephrine. At pH 7.4, 7.0, 6.5, and 6.0, adrenochrome increased by 47%, 53%, 24%, and 6% above baseline, respectively. D-DAHK attenuated the copper-induced oxidation of epinephrine to baseline levels. These in vitro results indicate that copper-induced epinephrine oxidation is greatest at the physiological pH 7.4 as well as in severe acidosis, pH 7.0, and that D-DAHK completely inhibits this oxidation.
Collapse
Affiliation(s)
- Angela Roberts
- Department of Trauma Research, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80110, USA
| | | | | | | |
Collapse
|
8
|
|