1
|
Jagannath DK, Valiyaparambil A, Viswanath VK, Hurakadli MA, Kamariah N, Jafer AC, Patole C, Pradhan S, Kumar N, Lakshminarasimhan A. Refolding and characterization of a diabody against Pfs25, a vaccine candidate of Plasmodium falciparum. Anal Biochem 2022; 655:114830. [DOI: 10.1016/j.ab.2022.114830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/28/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
|
2
|
Ma F, Wu X, Li A, Xu L, An Y, Shi L. A Balance Between Capture and Release: How Nanochaperones Regulate Refolding of Thermally Denatured Proteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Feihe Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Xiaohui Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300071 P. R. China
| | - Linlin Xu
- Key Laboratory of Functional Polymer Materials of Ministry of Education Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yingli An
- Key Laboratory of Functional Polymer Materials of Ministry of Education Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
3
|
Ma F, Wu X, Li A, Xu L, An Y, Shi L. A Balance Between Capture and Release: How Nanochaperones Regulate Refolding of Thermally Denatured Proteins. Angew Chem Int Ed Engl 2021; 60:10865-10870. [PMID: 33595165 DOI: 10.1002/anie.202101462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 01/06/2023]
Abstract
Nanochaperones have been designed and used for regulating the (re)folding of proteins, treating protein misfolding-related diseases, and, more recently, in drug delivery. Despite various successes, a complete understanding of the working mechanisms remains elusive, which represents a challenge for the realization of their full potential. Here, we thoroughly investigated the functioning of differently charged nanochaperones that regulate the refolding of thermally denatured lysozyme. We found that the balance between the capture and release of lysozyme clients that are controlled by nanochaperones plays a key role in regulating refolding. More importantly, the findings could be applied to other enzymes with various physicochemical properties. On the basis of these results, we could recover the activity of enzymes with high efficiency either after 20 days of storage at 40 °C or heating at high temperatures for 30-60 min. Our results provide important new design strategies for nanochaperone systems to improve their properties and expand their applications.
Collapse
Affiliation(s)
- Feihe Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaohui Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Linlin Xu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yingli An
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
4
|
Production of protein-loaded starch microspheres using water-in-water emulsion method. Carbohydr Polym 2020; 231:115692. [DOI: 10.1016/j.carbpol.2019.115692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/19/2022]
|
5
|
Abstract
Encapsulation of proteins in nanoparticles (NPs) can greatly improve the properties of proteins such as their stability against denaturation and degradation by proteases, and branches out the applications of natural proteins from their intrinsic localizations and functions in living organisms for biomedical and industrial applications. We recently developed several methods to armor proteins in NPs with sizes from nanometers up to >100nm, batch by batch or one by one, covalently or noncovalently, for a wide range of applications from biocatalysis to bioimaging and drug delivery. In this chapter, we provide detailed protocols on these methods. Key steps of specific protocols are explained with particular examples to help other laboratories to adopt and modify these methods for their own purposes. The advantages and disadvantages of each method are summarized, and guidelines for choosing the right method for a given application, as well as the current challenges and future directions of this field, are discussed.
Collapse
Affiliation(s)
- Yi Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China.
| |
Collapse
|
6
|
Montenegro-Nicolini M, Miranda V, Morales JO. Inkjet Printing of Proteins: an Experimental Approach. AAPS JOURNAL 2016; 19:234-243. [DOI: 10.1208/s12248-016-9997-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022]
|
7
|
Refolding of denatured/reduced lysozyme by aromatic thiols in the absence of small molecule disulfide. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1706-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Nasrollahi P, Khajeh K, Akbari N. Optimizing of the formation of active BMW-amylase after in vitro refolding. Protein Expr Purif 2012; 85:18-24. [DOI: 10.1016/j.pep.2012.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/15/2012] [Accepted: 06/20/2012] [Indexed: 12/01/2022]
|
9
|
Yang X, Cai Z, Ye Z, Chen S, Yang Y, Wang H, Liu Y, Cao A. In situ synthesis of porous silica nanoparticles for covalent immobilization of enzymes. NANOSCALE 2012; 4:414-416. [PMID: 22095140 DOI: 10.1039/c1nr11153a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A simple method is used to covalently encapsulate enzymes in silica nanoparticles. The encapsulation is highlighted by the high enzyme loading and porous channels that provide efficient diffusion for small substrate and product molecules while preventing protease degradation.
Collapse
Affiliation(s)
- Xiaowei Yang
- Institute of Nanochemistry and Nanobiology Shanghai University, Shanghai, 200444, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chemical assistance in refolding of bacterial inclusion bodies. Biochem Res Int 2011; 2011:631607. [PMID: 21822494 PMCID: PMC3148444 DOI: 10.1155/2011/631607] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/27/2011] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli is one of the most widely used hosts for the production of recombinant proteins but insoluble expression of heterologous proteins is a major bottleneck in production of recombinant proteins in E. coli. In vitro refolding of inclusion body into proteins with native conformations is a solution for this problem but there is a need for optimization of condition for each protein specifically. Several approaches have been described for in vitro refolding; most of them involve the use of additives for assisting correct folding. Cosolutes play a major role in refolding process and can be classified according to their function as aggregation suppressors and folding enhancers. This paper presents a review of additives that are used in refolding process of insoluble recombinant proteins in small scale and industrial processes.
Collapse
|
11
|
Bloom JD, Nayak JS, Baltimore D. A computational-experimental approach identifies mutations that enhance surface expression of an oseltamivir-resistant influenza neuraminidase. PLoS One 2011; 6:e22201. [PMID: 21799795 PMCID: PMC3140507 DOI: 10.1371/journal.pone.0022201] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/16/2011] [Indexed: 12/31/2022] Open
Abstract
The His274→Tyr (H274Y) oseltamivir (Tamiflu) resistance mutation causes a substantial decrease in the total levels of surface-expressed neuraminidase protein and activity in early isolates of human seasonal H1N1 influenza, and in the swine-origin pandemic H1N1. In seasonal H1N1, H274Y only became widespread after the occurrence of secondary mutations that counteracted this decrease. H274Y is currently rare in pandemic H1N1, and it remains unclear whether secondary mutations exist that might similarly counteract the decreased neuraminidase surface expression associated with this resistance mutation in pandemic H1N1. Here we investigate the possibility of predicting such secondary mutations. We first test the ability of several computational approaches to retrospectively identify the secondary mutations that enhanced levels of surface-expressed neuraminidase protein and activity in seasonal H1N1 shortly before the emergence of oseltamivir resistance. We then use the most successful computational approach to predict a set of candidate secondary mutations to the pandemic H1N1 neuraminidase. We experimentally screen these mutations, and find that several of them do indeed partially counteract the decrease in neuraminidase surface expression caused by H274Y. Two of the secondary mutations together restore surface-expressed neuraminidase activity to wildtype levels, and also eliminate the very slight decrease in viral growth in tissue-culture caused by H274Y. Our work therefore demonstrates a combined computational-experimental approach for identifying mutations that enhance neuraminidase surface expression, and describes several specific mutations with the potential to be of relevance to the spread of oseltamivir resistance in pandemic H1N1.
Collapse
MESH Headings
- Computational Biology
- Drug Resistance, Viral/genetics
- Gene Expression Regulation, Viral/drug effects
- Gene Expression Regulation, Viral/genetics
- HEK293 Cells
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/growth & development
- Influenza, Human/epidemiology
- Influenza, Human/virology
- Models, Molecular
- Mutation
- Neuraminidase/chemistry
- Neuraminidase/genetics
- Oseltamivir/pharmacology
- Pandemics
- Protein Conformation
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Jesse D. Bloom
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Jagannath S. Nayak
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - David Baltimore
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
12
|
Nie H, Wang H, Cao A, Shi Z, Yang ST, Yuan Y, Liu Y. Diameter-selective dispersion of double-walled carbon nanotubes by lysozyme. NANOSCALE 2011; 3:970-3. [PMID: 21264438 DOI: 10.1039/c0nr00831a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We have utilized lysozyme to non-covalently functionalize and disperse double-walled carbon nanotubes (DWNTs) in aqueous solution. Lysozyme preferentially binds and disperses DWNTs with larger diameters. This is a facile and effective method to fractionalize and enrich DWNTs with certain diameters.
Collapse
Affiliation(s)
- Haiyu Nie
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Antos JM, McFarland JM, Iavarone AT, Francis MB. Chemoselective tryptophan labeling with rhodium carbenoids at mild pH. J Am Chem Soc 2009; 131:6301-8. [PMID: 19366262 DOI: 10.1021/ja900094h] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Significant improvements have been made to a previously reported tryptophan modification method using rhodium carbenoids in aqueous solution, allowing the reaction to proceed at pH 6-7. This technique is based on the discovery that N-(tert-butyl)hydroxylamine promotes indole modification with rhodium carbenoids over a broad pH range (2-7). This methodology was demonstrated on peptide and protein substrates, generally yielding 40-60% conversion with excellent tryptophan chemoselectivity. The solvent accessibility of the indole side chains was found to be a key factor in successful carbenoid addition, as demonstrated by conducting the reaction at temperatures high enough to cause thermal denaturation of the protein substrate. Progress toward the expression of proteins bearing solvent accessible tryptophan residues as reactive handles for modification with rhodium carbenoids is also reported.
Collapse
Affiliation(s)
- John M Antos
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | | | |
Collapse
|
14
|
Bloom JD, Glassman MJ. Inferring stabilizing mutations from protein phylogenies: application to influenza hemagglutinin. PLoS Comput Biol 2009; 5:e1000349. [PMID: 19381264 PMCID: PMC2664478 DOI: 10.1371/journal.pcbi.1000349] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 03/05/2009] [Indexed: 01/08/2023] Open
Abstract
One selection pressure shaping sequence evolution is the requirement that a
protein fold with sufficient stability to perform its biological functions. We
present a conceptual framework that explains how this requirement causes the
probability that a particular amino acid mutation is fixed during evolution to
depend on its effect on protein stability. We mathematically formalize this
framework to develop a Bayesian approach for inferring the stability effects of
individual mutations from homologous protein sequences of known phylogeny. This
approach is able to predict published experimentally measured mutational
stability effects (ΔΔG values) with an accuracy
that exceeds both a state-of-the-art physicochemical modeling program and the
sequence-based consensus approach. As a further test, we use our phylogenetic
inference approach to predict stabilizing mutations to influenza hemagglutinin.
We introduce these mutations into a temperature-sensitive influenza virus with a
defect in its hemagglutinin gene and experimentally demonstrate that some of the
mutations allow the virus to grow at higher temperatures. Our work therefore
describes a powerful new approach for predicting stabilizing mutations that can
be successfully applied even to large, complex proteins such as hemagglutinin.
This approach also makes a mathematical link between phylogenetics and
experimentally measurable protein properties, potentially paving the way for
more accurate analyses of molecular evolution. Mutating a protein frequently causes a change in its stability. As scientists, we
often care about these changes because we would like to engineer a
protein's stability or understand how its stability is impacted by a
naturally occurring mutation. Evolution also cares about mutational stability
changes, because a basic evolutionary requirement is that proteins remain
sufficiently stable to perform their biological functions. Our work is based on
the idea that it should be possible to use the fact that evolution selects for
stability to infer from related proteins the effects of specific mutations. We
show that we can indeed use protein evolutionary histories to computationally
predict previously measured mutational stability changes more accurately than
methods based on either of the two main existing strategies. We then test
whether we can predict mutations that increase the stability of hemagglutinin,
an influenza protein whose rapid evolution is partly responsible for the ability
of this virus to cause yearly epidemics. We experimentally create viruses
carrying predicted stabilizing mutations and find that several do in fact
improve the virus's ability to grow at higher temperatures. Our
computational approach may therefore be of use in understanding the evolution of
this medically important virus.
Collapse
Affiliation(s)
- Jesse D Bloom
- Division of Biology, California Institute of Technology, Pasadena, California, USA.
| | | |
Collapse
|
15
|
Wu LZ, Ma BL, Sheng YB, Wang W. Equilibrium and kinetic analysis on the folding of hen egg lysozyme in the aqueous-glycerol solution. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2008.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Yang ST, Wang H, Guo L, Gao Y, Liu Y, Cao A. Interaction of fullerenol with lysozyme investigated by experimental and computational approaches. NANOTECHNOLOGY 2008; 19:395101. [PMID: 21832583 DOI: 10.1088/0957-4484/19/39/395101] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The potential biomedical applications of fullerenol C(60)(OH)(x) (x≈24) have been extensively studied. However, the structural information of the interaction of fullerenol with the bio-system at the molecular level, which is essential for understanding its bioactivity and toxicity, is still missing. In this study, lysozyme was selected as a model protein to investigate the interaction between fullerenol and biomolecules. A strong induced circular dichroism (CD) signal of achiral fullerenol was observed after binding with lysozyme. Activity assay shows that lysozyme activity is inhibited significantly by fullerenol. No heat capacity difference between the folded and unfolded states of lysozyme was measured by differential scanning calorimetry (DSC) in the presence of fullerenol, indicating that fullerenol prefers to bind with the hydrophobic residues. Both experimental and Autodock computational results suggest that the binding site on lysozyme for fullerenol is close to Trp 62, and a π-π stacking interaction might play an important role in binding.
Collapse
Affiliation(s)
- Sheng-Tao Yang
- Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Lu RC, Cao AN, Lai LH, Xiao JX. Protein–surfactant interaction: Differences between fluorinated and hydrogenated surfactants. Colloids Surf B Biointerfaces 2008; 64:98-103. [DOI: 10.1016/j.colsurfb.2008.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/08/2008] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
|
18
|
Abstract
The equilibrium unfolding and the kinetic folding and unfolding of goat alpha-lactalbumin (GLA) were studied by near- and far-ultraviolet circular dichroism (CD) and by stopped-flow fluorescence spectroscopy. Specifically, the influence of environmental conditions such as pH and Ca2+ binding was examined. Compared to the apo-form, the Ca2+-bound form was found to be strongly stabilized in equilibrium conditions at pH 7.5 and 25 degrees C. The kinetics of the refolding of apo-GLA show a major change of fluorescence intensity during the experimental dead-time, but this unresolved effect is strongly diminished in holo-GLA. In both cases, however, the chevron plots can adequately be fitted to a three-state model. Moreover, double-mix stopped-flow experiments showed that the native state (N) is reached through one major pathway without the occurrence of alternative tracks. In contrast to the homologous bovine alpha-lactalbumin (BLA), the compactness of GLA is strongly influenced by the presence of Ca2+ ions. Unlike the two-state transition observed in guanidine hydrochloride (GdnHCl)-induced equilibrium denaturation experiments at higher pH, an equilibrium intermediate state (I) is involved in denaturation at pH 4.5. In the latter case, analysis of the kinetic data makes clear that the intermediate and the unfolded states (U) show practically no Gibbs free energy difference and that they are in rapid equilibrium with each other. A possible explanation for these variations in stability and in folding characteristics with pH could be the degree of protonation of His107 that directly influences non-native interactions. Variation of environmental conditions and even small differences in sequence, therefore, can result in important effects on thermodynamic and folding parameters.
Collapse
Affiliation(s)
- Allel Chedad
- Interdisciplinary Research Center, K.U.Leuven Campus Kortrijk, Kortrijk, Belgium
| | | |
Collapse
|
19
|
Mishra R, Seckler R, Bhat R. Efficient refolding of aggregation-prone citrate synthase by polyol osmolytes: how well are protein folding and stability aspects coupled? J Biol Chem 2005; 280:15553-60. [PMID: 15695514 DOI: 10.1074/jbc.m410947200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient refolding of proteins and prevention of their aggregation during folding are of vital importance in recombinant protein production and in finding cures for several diseases. We have used citrate synthase (CS) as a model to understand the mechanism of aggregation during refolding and its prevention using several known structure-stabilizing cosolvent additives of the polyol series. Interestingly, no parallel correlation between the folding effect and the general stabilizing effect exerted by polyols was observed. Although increasing concentrations of polyols increased protein stability in general, the refolding yields for CS decreased at higher polyol concentrations, with erythritol reducing the folding yields at all concentrations tested. Among the various polyols used, glycerol was the most effective in enhancing the CS refolding yield, and a complete recovery of enzymatic activity was obtained at 7 m glycerol and 10 mug/ml protein, a result superior to the action of the molecular chaperones GroEL and GroES in vitro. A good correlation between the refolding yields and the suppression of protein aggregation by glycerol was observed, with no aggregation detected at 7 m. The polyols prevented the aggregation of CS depending on the number of hydroxyl groups in them. Stopped-flow fluorescence kinetics experiments suggested that polyols, including glycerol, act very early in the refolding process, as no fast and slow phases were detectable. The results conclusively demonstrate that both the thermodynamic and kinetic aspects are critical in the folding process and that all structure-stabilizing molecules need not always help in productive folding to the native state. These findings are important for the rational design of small molecules for efficient refolding of various aggregation-prone proteins of commercial and medical relevance.
Collapse
Affiliation(s)
- Rajesh Mishra
- Centre for Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | |
Collapse
|
20
|
Cao A, Hu D, Lai L. Formation of amyloid fibrils from fully reduced hen egg white lysozyme. Protein Sci 2004; 13:319-24. [PMID: 14718651 PMCID: PMC2286694 DOI: 10.1110/ps.03183404] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The fully reduced hen egg white lysozyme (HEWL), which is a good model of random coil structure, has been converted to highly organized amyloid fibrils at low pH by adding ethanol. In the presence of 90% (v/v) ethanol, the fully reduced HEWL adopts beta-sheet secondary structure at pH 4.5 and 5.0, and an alpha-to-beta transition is observed at pH 4.0. A red shift of the Congo red absorption spectrum caused by the precipitation of the fully reduced HEWL in the presence of 90% (v/v) ethanol is typical of the presence of amyloid aggregation. EM reveals unbranched fibrils with a diameter of 2-5 nm and as long as 1-2 microm. The pH dependence of the initial structure of the fully reduced HEWL in the presence of 90% (v/v) ethanol suggests that Asp and His residues may play an important role.
Collapse
Affiliation(s)
- Aoneng Cao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | | | | |
Collapse
|