1
|
Bai X, Wang B, Cui Y, Tian S, Zhang Y, You L, Chang YZ, Gao G. Hepcidin deficiency impairs hippocampal neurogenesis and mediates brain atrophy and memory decline in mice. J Neuroinflammation 2024; 21:15. [PMID: 38195497 PMCID: PMC10777572 DOI: 10.1186/s12974-023-03008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Hepcidin is the master regulator of iron homeostasis. Hepcidin downregulation has been demonstrated in the brains of Alzheimer's disease (AD) patients. However, the mechanism underlying the role of hepcidin downregulation in cognitive impairment has not been elucidated. METHODS In the present study, we generated GFAP-Cre-mediated hepcidin conditional knockout mice (HampGFAP cKO) to explore the effect of hepcidin deficiency on hippocampal structure and neurocognition. RESULTS We found that the HampGFAP cKO mice developed AD-like brain atrophy and memory deficits. In particular, the weight of the hippocampus and the number of granule neurons in the dentate gyrus were significantly reduced. Further investigation demonstrated that the morphological change in the hippocampus of HampGFAP cKO mice was attributed to impaired neurogenesis caused by decreased proliferation of neural stem cells. Regarding the molecular mechanism, increased iron content after depletion of hepcidin followed by an elevated level of the inflammatory factor tumor necrosis factor-α accounted for the impairment of hippocampal neurogenesis in HampGFAP cKO mice. These observations were further verified in GFAP promoter-driven hepcidin knockdown mice and in Nestin-Cre-mediated hepcidin conditional knockout mice. CONCLUSIONS The present findings demonstrated a critical role for hepcidin in hippocampal neurogenesis and validated the importance of iron and associated inflammatory cytokines as key modulators of neurodevelopment, providing insights into the potential pathogenesis of cognitive dysfunction and related treatments.
Collapse
Affiliation(s)
- Xue Bai
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Bing Wang
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Yiduo Cui
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Siqi Tian
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Yi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Linhao You
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| |
Collapse
|
2
|
Fahoum L, Belisowski S, Ghatpande N, Guttmann-Raviv N, Zhang W, Li K, Tong WH, Nyska A, Waterman M, Weisshof R, Zuckerman A, Meyron-Holtz E. Iron Regulatory Protein 1 is Required for the Propagation of Inflammation in Inflammatory Bowel Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525690. [PMID: 36789413 PMCID: PMC9928023 DOI: 10.1101/2023.01.27.525690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective Inflammatory bowel diseases (IBD) are complex disorders. Iron accumulates in the inflamed tissue of IBD patients, yet neither a mechanism for the accumulation nor its implication on the course of inflammation are known. We hypothesized that the inflammation modifies iron homeostasis, affects tissue iron distribution and that this in turn perpetuates the inflammation. Design This study analyzed human biopsies, animal models and cellular systems to decipher the role of iron homeostasis in IBD. Results We found inflammation-mediated modifications of iron distribution, and iron-decoupled activation of the iron regulatory protein (IRP)1. To understand the role of IRP1 in the course of this inflammation-associated iron pattern, a novel cellular co-culture model was established, that replicated the iron-pattern observed in vivo, and supported involvement of nitric oxide in the activation of IRP1 and the typical iron pattern in inflammation. Importantly, deletion of IRP1 from an IBD mouse model completely abolished both, the misdistribution of iron and intestinal inflammation. Conclusion These findings suggest that IRP1 plays a central role in the coordination of the inflammatory response in the intestinal mucosa and that it is a viable candidate for therapeutic intervention in IBD.
Collapse
Affiliation(s)
- L. Fahoum
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| | - S. Belisowski
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| | - N. Ghatpande
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| | - N. Guttmann-Raviv
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| | - W. Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - K. Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - W-H. Tong
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - A. Nyska
- Tel Aviv University and Consultant in Toxicologic Pathology, Tel Aviv, Israel
| | - M. Waterman
- Rambam / Technion– Israel Institute of Technology, Haifa, Israel
| | - R. Weisshof
- Rambam / Technion– Israel Institute of Technology, Haifa, Israel
| | | | - E.G. Meyron-Holtz
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Shieh JT, Tintos-Hernández JA, Murali CN, Penon-Portmann M, Flores-Mendez M, Santana A, Bulos JA, Du K, Dupuis L, Damseh N, Mendoza-Londoño R, Berera C, Lee JC, Phillips JJ, Alves CAPF, Dmochowski IJ, Ortiz-González XR. Heterozygous Nonsense Variants in the Ferritin Heavy Chain Gene FTH1 Cause a Novel Pediatric Neuroferritinopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.30.23285099. [PMID: 36778397 PMCID: PMC9915813 DOI: 10.1101/2023.01.30.23285099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ferritin, the iron storage protein, is composed of light and heavy chain subunits, encoded by FTL and FTH1 , respectively. Heterozygous variants in FTL cause hereditary neuroferritinopathy, a type of neurodegeneration with brain iron accumulation (NBIA). Variants in FTH1 have not been previously associated with neurologic disease. We describe the clinical, neuroimaging, and neuropathology findings of five unrelated pediatric patients with de novo heterozygous FTH1 variants. Children presented with developmental delay, epilepsy, and progressive neurologic decline. Nonsense FTH1 variants were identified using whole exome sequencing, with a recurrent de novo variant (p.F171*) identified in three unrelated individuals. Neuroimaging revealed diffuse volume loss, features of pontocerebellar hypoplasia and iron accumulation in the basal ganglia. Neuropathology demonstrated widespread ferritin inclusions in the brain. Patient-derived fibroblasts were assayed for ferritin expression, susceptibility to iron accumulation, and oxidative stress. Variant FTH1 mRNA transcripts escape nonsense-mediated decay (NMD), and fibroblasts show elevated ferritin protein levels, markers of oxidative stress, and increased susceptibility to iron accumulation. C-terminus variants in FTH1 truncate ferritin's E-helix, altering the four-fold symmetric pores of the heteropolymer and likely diminish iron-storage capacity. FTH1 pathogenic variants appear to act by a dominant, toxic gain-of-function mechanism. The data support the conclusion that truncating variants in the last exon of FTH1 cause a novel disorder in the spectrum of NBIA. Targeted knock-down of mutant FTH1 transcript with antisense oligonucleotides rescues cellular phenotypes and suggests a potential therapeutic strategy for this novel pediatric neurodegenerative disorder.
Collapse
Affiliation(s)
- Joseph T Shieh
- Institute for Human Genetics and Department of Pediatrics, University of California San Francisco, CA, 94143
- These authors contributed equally to this work
| | - Jesus A Tintos-Hernández
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
- These authors contributed equally to this work
| | - Chaya N. Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Monica Penon-Portmann
- Institute for Human Genetics and Department of Pediatrics, University of California San Francisco, CA, 94143
| | - Marco Flores-Mendez
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Adrian Santana
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Joshua A. Bulos
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Kang Du
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Nadirah Damseh
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Roberto Mendoza-Londoño
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Camilla Berera
- Institute for Human Genetics and Department of Pediatrics, University of California San Francisco, CA, 94143
| | - Julieann C Lee
- Division of Neuropathology, Department of Pathology, University of California San Francisco, CA, 94143
| | - Joanna J Phillips
- Division of Neuropathology, Department of Pathology, University of California San Francisco, CA, 94143
- Department of Neurological Surgery, University of California San Francisco, CA, 94143
| | - César A P F Alves
- Division of Neuroradiology, Department of Pediatrics, The Children’s Hospital of Philadelphia
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Xilma R Ortiz-González
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
- Epilepsy Neurogenetics Initiative (ENGIN), The Children’s Hospital of Philadelphia and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
4
|
Zeidan RS, Han SM, Leeuwenburgh C, Xiao R. Iron homeostasis and organismal aging. Ageing Res Rev 2021; 72:101510. [PMID: 34767974 DOI: 10.1016/j.arr.2021.101510] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Iron is indispensable for normal body functions across species because of its critical roles in red blood cell function and many essential proteins and enzymes required for numerous physiological processes. Regulation of iron homeostasis is an intricate process involving multiple modulators at the systemic, cellular, and molecular levels. Interestingly, emerging evidence has demonstrated that many modulators of iron homeostasis contribute to organismal aging and longevity. On the other hand, the age-related dysregulation of iron homeostasis is often associated with multiple age-related pathologies including bone resorption and neurodegenerative diseases such as Alzheimer's disease. Thus, a thorough understanding on the interconnections between systemic and cellular iron balance and organismal aging may help decipher the etiologies of multiple age-related diseases, which could ultimately lead to developing therapeutic strategies to delay aging and treat various age-related diseases. Here we present the current understanding on the mechanisms of iron homeostasis. We also discuss the impacts of aging on iron homeostatic processes and how dysregulated iron metabolism may affect aging and organismal longevity.
Collapse
|
5
|
Peng Y, Chang X, Lang M. Iron Homeostasis Disorder and Alzheimer's Disease. Int J Mol Sci 2021; 22:12442. [PMID: 34830326 PMCID: PMC8622469 DOI: 10.3390/ijms222212442] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Iron is an essential trace metal for almost all organisms, including human; however, oxidative stress can easily be caused when iron is in excess, producing toxicity to the human body due to its capability to be both an electron donor and an electron acceptor. Although there is a strict regulation mechanism for iron homeostasis in the human body and brain, it is usually inevitably disturbed by genetic and environmental factors, or disordered with aging, which leads to iron metabolism diseases, including many neurodegenerative diseases such as Alzheimer's disease (AD). AD is one of the most common degenerative diseases of the central nervous system (CNS) threatening human health. However, the precise pathogenesis of AD is still unclear, which seriously restricts the design of interventions and treatment drugs based on the pathogenesis of AD. Many studies have observed abnormal iron accumulation in different regions of the AD brain, resulting in cognitive, memory, motor and other nerve damages. Understanding the metabolic balance mechanism of iron in the brain is crucial for the treatment of AD, which would provide new cures for the disease. This paper reviews the recent progress in the relationship between iron and AD from the aspects of iron absorption in intestinal cells, storage and regulation of iron in cells and organs, especially for the regulation of iron homeostasis in the human brain and prospects the future directions for AD treatments.
Collapse
Affiliation(s)
- Yu Peng
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
| | - Xuejiao Chang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
6
|
Chen J, Wu W, Wang Z, Zhai C, Deng B, Alzogool M, Wang Y. Novel Corneal Protein Biomarker Candidates Reveal Iron Metabolic Disturbance in High Myopia Eyes. Front Cell Dev Biol 2021; 9:689917. [PMID: 34660571 PMCID: PMC8517150 DOI: 10.3389/fcell.2021.689917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
Myopia is a major public health concern with increasing global prevalence and is the leading cause of vision loss and complications. The potential role of the cornea, a substantial component of refractive power and the protective fortress of the eye, has been underestimated in the development of myopia. Our study acquired corneal stroma tissues from myopic patients undergoing femtosecond laser-assisted small incision lenticule extraction (SMILE) surgery and investigated the differential expression of circulating proteins between subjects with low and high myopia by means of high-throughput proteomic approaches—the quantitative tandem mass tag (TMT) labeling method and parallel reaction monitoring (PRM) validation. Across all corneal stroma tissue samples, a total of 2,455 proteins were identified qualitatively and quantitatively, 103 of which were differentially expressed between those with low and high myopia. The differentially abundant proteins (DAPs) between the groups of stroma samples mostly demonstrated catalytic activity and molecular function regulator and transporter activity and participated in metabolic processes, biological regulation, response to stimulus, and so forth. Pathway enrichment showed that mineral absorption, ferroptosis, and HIF-1 signaling pathways were activated in the human myopic cornea. Furthermore, TMT analysis and PRM validation revealed that the expression of ferritin light chain (FTL, P02792) and ferritin heavy chain (FTH1, P02794) was negatively associated with myopia development, while the expression of serotransferrin (TF, P02787) was positively related to myopia status. Overall, our results indicated that subjects with low and high myopia could have different proteomic profiles or signatures in the cornea. These findings revealed disturbances in iron metabolism and corneal oxidative stress in the more myopic eyes. Iron metabolic proteins could serve as an essential modulator in the pathogenesis of myopia.
Collapse
Affiliation(s)
- Jingyi Chen
- School of Medicine, NanKai University, Tianjin, China.,Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Eye Hospital, Tianjin, China
| | - Wenjing Wu
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Eye Hospital, Tianjin, China
| | - Zhiqian Wang
- Department of Optometry, Shenyang Eye Institute, The 4th People's Hospital of Shenyang, Shenyang, China
| | - Chuannan Zhai
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Baocheng Deng
- Department of Infectious Disease, The 1st Affiliated Hospital of China Medical University, Shenyang, China
| | | | - Yan Wang
- School of Medicine, NanKai University, Tianjin, China.,Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Eye Hospital, Tianjin, China
| |
Collapse
|
7
|
Zhang X, Gou YJ, Zhang Y, Li J, Han K, Xu Y, Li H, You LH, Yu P, Chang YZ, Gao G. Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-β induced brain damage in mice. Cell Death Discov 2020; 6:113. [PMID: 33298837 PMCID: PMC7603348 DOI: 10.1038/s41420-020-00346-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
Progressive iron accumulation in the brain and iron-induced oxidative stress are considered to be one of the initial causes of Alzheimer’s disease (AD), and modulation of brain iron level shows promise for its treatment. Hepcidin expressed by astrocytes has been speculated to regulate iron transport across the blood–brain barrier (BBB) and control the whole brain iron load. Whether increasing the expression of astrocyte hepcidin can reduce brain iron level and relieve AD symptoms has yet to be studied. Here, we overexpressed hepcidin in astrocytes of the mouse brain and challenged the mice with amyloid-β25–35 (Aβ25–35) by intracerebroventricular injection. Our results revealed that hepcidin overexpression in astrocytes significantly ameliorated Aβ25–35-induced cell damage in both the cerebral cortex and hippocampus. This protective role was also attested by behavioral tests of the mice. Our data further demonstrated that astrocyte-overexpressed hepcidin could decrease brain iron level, possibly by acting on ferroportin 1 (FPN1) on the brain microvascular endothelial cells (BMVECs), which in turn reduced Aβ25–35-induced oxidative stress and apoptosis, and ultimately protected cells from damage. This study provided in vivo evidences of the important role of astrocyte hepcidin in the regulation of brain iron metabolism and protection against Aβ-induced cortical and hippocampal damages and implied its potential in the treatment of oxidative stress-related brain disorders.
Collapse
Affiliation(s)
- Xinwei Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China
| | - Yu-Jing Gou
- Chengde Medical University, Shuang Qiao District, An Yuan Road, 067000, Chengde, China
| | - Yating Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China
| | - Jie Li
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China
| | - Kang Han
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China
| | - Yong Xu
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China
| | - Haiyan Li
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China.,Chengde Medical University, Shuang Qiao District, An Yuan Road, 067000, Chengde, China
| | - Lin-Hao You
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China
| | - Peng Yu
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China.
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China.
| |
Collapse
|
8
|
Aversa I, Chirillo R, Chiarella E, Zolea F, Di Sanzo M, Biamonte F, Palmieri C, Costanzo F. Chemoresistance in H-Ferritin Silenced Cells: The Role of NF-κB. Int J Mol Sci 2018; 19:ijms19102969. [PMID: 30274235 PMCID: PMC6213748 DOI: 10.3390/ijms19102969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
Abstract
Nuclear Factor-κB (NF-κB) is frequently activated in tumor cells contributing to aggressive tumor growth and resistance to chemotherapy. Here we demonstrate that Ferritin Heavy Chain (FHC) protein expression inversely correlates with NF-κB activation in cancer cell lines. In fact, FHC silencing in K562 and SKOV3 cancer cell lines induced p65 nuclear accumulation, whereas FHC overexpression correlated with p65 nuclear depletion in the same cell lines. In FHC-silenced cells, the p65 nuclear accumulation was reverted by treatment with the reactive oxygen species (ROS) scavenger, indicating that NF-κB activation was an indirect effect of FHC on redox metabolism. Finally, FHC knock-down in K562 and SKOV3 cancer cell lines resulted in an improved cell viability following doxorubicin or cisplatin treatment, being counteracted by the transient expression of inhibitory of NF-κB, IκBα. Our results provide an additional layer of information on the complex interplay of FHC with cellular metabolism, and highlight a novel scenario of NF-κB-mediated chemoresistance triggered by the downregulation of FHC with potential therapeutic implications.
Collapse
Affiliation(s)
- Ilenia Aversa
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Roberta Chirillo
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Emanuela Chiarella
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Fabiana Zolea
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Maddalena Di Sanzo
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Flavia Biamonte
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
- Interdepartmental Center of Services (CIS), University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| |
Collapse
|
9
|
Watson E, Yilmaz LS, Walhout AJM. Understanding Metabolic Regulation at a Systems Level: Metabolite Sensing, Mathematical Predictions, and Model Organisms. Annu Rev Genet 2016; 49:553-75. [PMID: 26631516 DOI: 10.1146/annurev-genet-112414-055257] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabolic networks are extensively regulated to facilitate tissue-specific metabolic programs and robustly maintain homeostasis in response to dietary changes. Homeostatic metabolic regulation is achieved through metabolite sensing coupled to feedback regulation of metabolic enzyme activity or expression. With a wealth of transcriptomic, proteomic, and metabolomic data available for different cell types across various conditions, we are challenged with understanding global metabolic network regulation and the resulting metabolic outputs. Stoichiometric metabolic network modeling integrated with "omics" data has addressed this challenge by generating nonintuitive, testable hypotheses about metabolic flux rewiring. Model organism studies have also yielded novel insight into metabolic networks. This review covers three topics: the feedback loops inherent in metabolic regulatory networks, metabolic network modeling, and interspecies studies utilizing Caenorhabditis elegans and various bacterial diets that have revealed novel metabolic paradigms.
Collapse
Affiliation(s)
- Emma Watson
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605; , ,
| | - L Safak Yilmaz
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605; , ,
| | - Albertha J M Walhout
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605; , ,
| |
Collapse
|
10
|
Hatcher HC, Tesfay L, Torti SV, Torti FM. Cytoprotective Effect of Ferritin H in Renal Ischemia Reperfusion Injury. PLoS One 2015; 10:e0138505. [PMID: 26379029 PMCID: PMC4574775 DOI: 10.1371/journal.pone.0138505] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/31/2015] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress is a major contributor to kidney injury following ischemia reperfusion. Ferritin, a highly conserved iron-binding protein, is a key protein in the maintenance of cellular iron homeostasis and protection from oxidative stress. Ferritin mitigates oxidant stress by sequestering iron and preventing its participation in reactions that generate reactive oxygen species. Ferritin is composed of two subunit types, ferritin H and ferritin L. Using an in vivo model that enables conditional tissue-specific doxycycline-inducible expression of ferritin H in the mouse kidney, we tested the hypothesis that an increased level of H-rich ferritin is renoprotective in ischemic acute renal failure. Prior to induction of ischemia, doxycycline increased ferritin H in the kidneys of the transgenic mice nearly 6.5-fold. Following reperfusion for 24 hours, induction of neutrophil gelatinous-associated lipocalin (NGAL, a urine marker of renal dysfunction) was reduced in the ferritin H overexpressers compared to controls. Histopathologic examination following ischemia reperfusion revealed that ferritin H overexpression increased intact nuclei in renal tubules, reduced the frequency of tubular profiles with luminal cast materials, and reduced activated caspase-3 in the kidney. In addition, generation of 4-hydroxy 2-nonenal protein adducts, a measurement of oxidant stress, was decreased in ischemia-reperfused kidneys of ferritin H overexpressers. These studies demonstrate that ferritin H can inhibit apoptotic cell death, enhance tubular epithelial viability, and preserve renal function by limiting oxidative stress following ischemia reperfusion injury.
Collapse
Affiliation(s)
- Heather C. Hatcher
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Lia Tesfay
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Suzy V. Torti
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Frank M. Torti
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Ferritin heavy chain-mediated iron homoeostasis regulates expression of IL-10 inChlamydia trachomatis-infected HeLa cells. Cell Biol Int 2014; 35:793-8. [DOI: 10.1042/cbi20100463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Clingman CC, Ryder SP. Metabolite sensing in eukaryotic mRNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:387-96. [PMID: 23653333 DOI: 10.1002/wrna.1167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 01/16/2023]
Abstract
All living creatures change their gene expression program in response to nutrient availability and metabolic demands. Nutrients and metabolites can directly control transcription and activate second-messenger systems. More recent studies reveal that metabolites also affect post-transcriptional regulatory mechanisms. Here, we review the increasing number of connections between metabolism and post-transcriptional regulation in eukaryotic organisms. First, we present evidence that riboswitches, a common mechanism of metabolite sensing in bacteria, also function in eukaryotes. Next, we review an example of a double stranded RNA modifying enzyme that directly interacts with a metabolite, suggesting a link between RNA editing and metabolic state. Finally, we discuss work that shows some metabolic enzymes bind directly to RNA to affect mRNA stability or translation efficiency. These examples were discovered through gene-specific genetic, biochemical, and structural studies. A directed systems level approach will be necessary to determine whether they are anomalies of evolution or pioneer discoveries in what may be a broadly connected network of metabolism and post-transcriptional regulation.
Collapse
Affiliation(s)
- Carina C Clingman
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
13
|
Micronutrient (Zn, Cu, Fe)-gene interactions in ageing and inflammatory age-related diseases: implications for treatments. Ageing Res Rev 2012; 11:297-319. [PMID: 22322094 DOI: 10.1016/j.arr.2012.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 02/07/2023]
Abstract
In ageing, alterations in inflammatory/immune response and antioxidant capacity lead to increased susceptibility to diseases and loss of mobility and agility. Various essential micronutrients in the diet are involved in age-altered biological functions. Micronutrients (zinc, copper, iron) play a pivotal role either in maintaining and reinforcing the immune and antioxidant performances or in affecting the complex network of genes (nutrigenomic approach) involved in encoding proteins for a correct inflammatory/immune response. By the other side, the genetic inter-individual variability may affect the absorption and uptake of the micronutrients (nutrigenetic approach) with subsequent altered effects on inflammatory/immune response and antioxidant activity. Therefore, the individual micronutrient-gene interactions are fundamental to achieve healthy ageing. In this review, we report and discuss the role of micronutrients (Zn, Cu, Fe)-gene interactions in relation to the inflammatory status and the possibility of a supplement in the event of a micronutrient deficiency or chelation in presence of micronutrient overload in relation to specific polymorphisms of inflammatory proteins or proteins related of the delivery of the micronutriemts to various organs and tissues. In this last context, we report the protein-metal speciation analysis in order to have, coupled with micronutrient-gene interactions, a more complete picture of the individual need in micronutrient supplementation or chelation to achieve healthy ageing and longevity.
Collapse
|
14
|
Hausmann A, Lee J, Pantopoulos K. Redox control of iron regulatory protein 2 stability. FEBS Lett 2011; 585:687-92. [PMID: 21281640 DOI: 10.1016/j.febslet.2011.01.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 01/02/2023]
Abstract
Iron regulatory protein 2 (IRP2) is a critical switch for cellular and systemic iron homeostasis. In iron-deficient or hypoxic cells, IRP2 binds to mRNAs containing iron responsive elements (IREs) and regulates their expression. Iron promotes proteasomal degradation of IRP2 via the F-box protein FBXL5. Here, we explored the effects of oxygen and cellular redox status on IRP2 stability. We show that iron-dependent decay of tetracycline-inducible IRP2 proceeds efficiently under mild hypoxic conditions (3% oxygen) but is compromised in severe hypoxia (0.1% oxygen). A treatment of cells with exogenous H(2)O(2) protects IRP2 against iron and increases its IRE-binding activity. IRP2 is also stabilized during menadione-induced oxidative stress. These data demonstrate that the degradation of IRP2 in iron-replete cells is not only oxygen-dependent but also sensitive to redox perturbations.
Collapse
Affiliation(s)
- Anja Hausmann
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
15
|
Affiliation(s)
- Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, USA
| | | |
Collapse
|
16
|
Yu Y, Kalinowski DS, Kovacevic Z, Siafakas AR, Jansson PJ, Stefani C, Lovejoy DB, Sharpe PC, Bernhardt PV, Richardson DR. Thiosemicarbazones from the old to new: iron chelators that are more than just ribonucleotide reductase inhibitors. J Med Chem 2009; 52:5271-94. [PMID: 19601577 DOI: 10.1021/jm900552r] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yu Yu
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Heart protection by ischemic preconditioning: a novel pathway initiated by iron and mediated by ferritin. J Mol Cell Cardiol 2008; 45:839-45. [PMID: 18817783 DOI: 10.1016/j.yjmcc.2008.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 08/11/2008] [Accepted: 08/22/2008] [Indexed: 12/20/2022]
Abstract
Ischemic preconditioning is a well-known procedure transiently protecting the heart against injury associated with prolonged ischemia, through mechanism/s only partly understood. The aim of this study was to test whether preconditioning-induced protection of the heart involves an iron-based mechanism, including the generation of an iron signal followed by accumulation of ferritin. In isolated rat hearts perfused in the Langendorff configuration, we measured heart contractility, ferritin levels, ferritin-iron content, and mRNA levels of ferritin subunits. Ischemic preconditioning caused rapid accumulation of ferritin, reaching 359% of the baseline value (set at 100%). This was accompanied by a parallel decline in ferritin-bound iron: from 2191+/-548 down to 760+/-34 Fe atoms/ferritin molecule, p<0.05. Ferritin levels remained high during the subsequent period of prolonged ischemia, and returned to nearly the baseline value during the reperfusion phase. Selective iron chelators (acetyl hydroxamate or Zn-desferrioxamine) abrogated the functional protection and suppressed ferritin accumulation, thus demonstrating the essentiality of an iron signal in the preconditioning-induced protective mechanism. Moreover, introduction of an iron-containing ternary complex, known to import iron into cells, caused a three-fold accumulation of ferritin and simulated the preconditioning-induced functional protection against prolonged myocardial ischemia. The ischemic preconditioning-and-ischemia-induced increase in ferritin levels correlated well with the accumulation of ferritin L-subunit mRNA: 5.44+/-0.47 vs 1.23+/-0.15 (units) in the baseline, p<0.05, suggesting that transcriptional control of ferritin L-subunit synthesis had been activated. Ischemic preconditioning initiates de novo synthesis of ferritin in the heart; the extra ferritin is proposed to serve a 'sink' for redox-active iron, thus protecting the heart from iron-mediated oxidative damage associated with ischemia-reperfusion injury. The present results substantiate a novel iron-based mechanism of ischemic preconditioning and could pave the way for the development of new modalities of heart protection.
Collapse
|
18
|
Transcriptional regulation of ferritin mRNA levels by iron in the freshwater giant prawn, Macrobrachium rosenbergii. Comp Biochem Physiol B Biochem Mol Biol 2008; 150:320-5. [DOI: 10.1016/j.cbpb.2008.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/21/2008] [Accepted: 03/31/2008] [Indexed: 11/21/2022]
|
19
|
Sammarco MC, Ditch S, Banerjee A, Grabczyk E. Ferritin L and H subunits are differentially regulated on a post-transcriptional level. J Biol Chem 2007; 283:4578-87. [PMID: 18160403 DOI: 10.1074/jbc.m703456200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ferritin plays an important role in the storage and release of iron, an element utilized in cellular processes such as respiration, gene regulation, and DNA replication and repair. Ferritin in animals is composed of 24 ferritin L (FTL) and ferritin H (FTH) subunits in ratios that vary in different cell types. Because the subunits are not functionally interchangeable, both L and H units are critical for maintaining iron homeostasis and protecting against iron overload. FTL and FTH are regulated primarily at a post-transcriptional level in response to cellular iron concentrations. Individual regulation of FTL and FTH is of much interest, and although transcriptional differences between FTL and FTH have been shown, differences in their post-transcriptional regulation have not been evaluated. We report here that FTL and FTH are differentially regulated in 1% oxygen on a post-transcriptional level. We have designed a quantitative assay system sensitive enough to detect differences between FTL and FTH iron regulatory elements (IREs) that a standard electrophoretic mobility shift assay does not. The FTL IRE is the primary responder in the presence of an iron donor in hypoxic conditions, and this response is reflected in endogenous FTL protein levels. These results provide evidence that FTL and FTH subunits respond independently to cellular iron concentrations and underscore the importance of evaluating FTL and FTH IREs separately.
Collapse
Affiliation(s)
- Mimi C Sammarco
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
20
|
He X, Hahn P, Iacovelli J, Wong R, King C, Bhisitkul R, Massaro-Giordano M, Dunaief JL. Iron homeostasis and toxicity in retinal degeneration. Prog Retin Eye Res 2007; 26:649-73. [PMID: 17921041 DOI: 10.1016/j.preteyeres.2007.07.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron is essential for many metabolic processes but can also cause damage. As a potent generator of hydroxyl radical, the most reactive of the free radicals, iron can cause considerable oxidative stress. Since iron is absorbed through diet but not excreted except through menstruation, total body iron levels buildup with age. Macular iron levels increase with age, in both men and women. This iron has the potential to contribute to retinal degeneration. Here we present an overview of the evidence suggesting that iron may contribute to retinal degenerations. Intraocular iron foreign bodies cause retinal degeneration. Retinal iron buildup resulting from hereditary iron homeostasis disorders aceruloplasminemia, Friedreich's ataxia, and panthothenate kinase-associated neurodegeneration cause retinal degeneration. Mice with targeted mutation of the iron exporter ceruloplasmin have age-dependent retinal iron overload and a resulting retinal degeneration with features of age-related macular degeneration (AMD). Post mortem retinas from patients with AMD have more iron and the iron carrier transferrin than age-matched controls. Over the past 10 years much has been learned about the intricate network of proteins involved in iron handling. Many of these, including transferrin, transferrin receptor, divalent metal transporter-1, ferritin, ferroportin, ceruloplasmin, hephaestin, iron-regulatory protein, and histocompatibility leukocyte antigen class I-like protein involved in iron homeostasis (HFE) have been found in the retina. Some of these proteins have been found in the cornea and lens as well. Levels of the iron carrier transferrin are high in the aqueous and vitreous humors. The functions of these proteins in other tissues, combined with studies on cultured ocular tissues, genetically engineered mice, and eye exams on patients with hereditary iron diseases provide clues regarding their ocular functions. Iron may play a role in a broad range of ocular diseases, including glaucoma, cataract, AMD, and conditions causing intraocular hemorrhage. While iron deficiency must be prevented, the therapeutic potential of limiting iron-induced ocular oxidative damage is high. Systemic, local, or topical iron chelation with an expanding repertoire of drugs has clinical potential.
Collapse
Affiliation(s)
- Xining He
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, 305 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gottesman S, McCullen C, Guillier M, Vanderpool C, Majdalani N, Benhammou J, Thompson K, FitzGerald P, Sowa N, FitzGerald D. Small RNA regulators and the bacterial response to stress. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:1-11. [PMID: 17381274 PMCID: PMC3592358 DOI: 10.1101/sqb.2006.71.016] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies have uncovered dozens of regulatory small RNAs in bacteria. A large number of these small RNAs act by pairing to their target mRNAs. The outcome of pairing can be either stimulation or inhibition of translation. Pairing in vivo frequently depends on the RNA-binding protein Hfq. Synthesis of these small RNAs is tightly regulated at the level of transcription; many of the well-studied stress response regulons have now been found to include a regulatory RNA. Expression of the small RNA can help the cell cope with environmental stress by redirecting cellular metabolism, exemplified by RyhB, a small RNA expressed upon iron starvation. Although small RNAs found in Escherichia coli can usually be identified by sequence comparison to closely related enterobacteria, other approaches are necessary to find the equivalent RNAs in other bacterial species. Nonetheless, it is becoming increasingly clear that many if not all bacteria encode significant numbers of these important regulators. Tracing their evolution through bacterial genomes remains a challenge.
Collapse
Affiliation(s)
- Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
- Corresponding author: Bldg. 37, Rm. 5132, National Cancer Institute, Bethesda, MD. 20892; phone: 301-496-3524; fax: 301-496-3875;
| | - Colleen McCullen
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Maude Guillier
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Carin Vanderpool
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Jihane Benhammou
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Karl Thompson
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Peter FitzGerald
- Genome Analysis Unit, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Nathaniel Sowa
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - David FitzGerald
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| |
Collapse
|
22
|
Oates PS. The relevance of the intestinal crypt and enterocyte in regulating iron absorption. Pflugers Arch 2007; 455:201-13. [PMID: 17473933 DOI: 10.1007/s00424-007-0264-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 03/28/2007] [Indexed: 12/27/2022]
Abstract
Rigorous regulation of iron absorption is required to meet the requirements of the body and to limit excess iron accumulation that can produce oxidative stress. Regulation of iron absorption is controlled by hepcidin and probably by the crypt program. Hepcidin is a humoral mediator of iron absorption that interacts with the basolateral transporter, ferroportin. High levels of hepcidin reduce iron absorption by targeting ferroportin to lysosomes for destruction. It is also proposed that ferroportin is expressed on the apical membrane and coordinates with ferroportin-hepcidin derived from the basal surface to modulate the uptake phase of iron absorption. The crypt program suggests that as crypt cells differentiate and migrate into the absorptive zone they absorb iron from the diet at levels inverse to the amount of iron taken up from transferrin. Under most circumstances, intestinal iron absorption is controlled at multiple levels that lead to hepcidin/ferroportin modulation of the enterocyte labile iron pool (LIP). It is likely that transcription of iron transport proteins involved in the apical and basolateral transport of iron are differentially regulated by separate LIPs. Iron-responsive protein (IRP) 1 and IRP2 do not appear to play a significant role in the expression of iron transport proteins, although IRP2 regulates L- and H-ferritin expression. Despite the importance of hepcidin, there is evidence of hepcidin-independent regulation of iron absorption possibly involving haemojuvelin (HJV) and neogenin, which may be up-regulated during ineffective erythropoiesis.
Collapse
Affiliation(s)
- Phillip S Oates
- School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Nedlands 6009, Australia.
| |
Collapse
|
23
|
Banerjee S, Nandyala AK, Raviprasad P, Ahmed N, Hasnain SE. Iron-dependent RNA-binding activity of Mycobacterium tuberculosis aconitase. J Bacteriol 2007; 189:4046-52. [PMID: 17384188 PMCID: PMC1913386 DOI: 10.1128/jb.00026-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cellular iron levels are closely monitored by iron regulatory and sensor proteins of Mycobacterium tuberculosis for survival inside macrophages. One such class of proteins systematically studied in eukaryotes and reported in a few prokaryotes are the iron-responsive proteins (IRPs). These IRPs bind to iron-responsive elements (IREs) present at untranslated regions (UTRs) of mRNAs and are responsible for posttranscriptional regulation of the expression of proteins involved in iron homeostasis. Amino acid sequence analysis of M. tuberculosis aconitase (Acn), a tricarboxylic acid (TCA) cycle enzyme, showed the presence of the conserved residues of the IRP class of proteins. We demonstrate that M. tuberculosis Acn is bifunctional. It is a monomeric protein that is enzymatically active in converting isocitrate to cis-aconitate at a broad pH range of 7 to 10 (optimum, pH 8). As evident from gel retardation assays, M. tuberculosis Acn also behaves like an IRP by binding to known mammalian IRE-like sequences and to predicted IRE-like sequences present at the 3' UTR of thioredoxin (trxC) and the 5' UTR of the iron-dependent repressor and activator (ideR) of M. tuberculosis. M. tuberculosis Acn when reactivated with Fe(2+) functions as a TCA cycle enzyme, but upon iron depletion by a specific iron chelator, it behaves like an IRP, binding to the selected IREs in vitro. Since iron is required for the Acn activity and inhibits the RNA-binding activity of Acn, the two activities of M. tuberculosis Acn are mutually exclusive. Our results demonstrate the bifunctional nature of M. tuberculosis Acn, pointing to its likely role in iron homeostasis.
Collapse
|
24
|
Christova T, Templeton DM. Effect of hypoxia on the binding and subcellular distribution of iron regulatory proteins. Mol Cell Biochem 2007; 301:21-32. [PMID: 17200797 DOI: 10.1007/s11010-006-9393-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
Iron regulatory proteins 1 and 2 (IRP1, IRP2) are key determinants of uptake and storage of iron by the liver, and are responsive to oxidative stress and hypoxia potentially at the level of both protein concentration and mRNA-binding activity. We examined the effect of hypoxia (1% O(2)) on IRP1 and IRP2 levels (Western blots) and mRNA-binding activity (gel shift assays) in human hepatoma HepG2 cells, and compared them with HEK 293 cells, a renal cell line known to respond to hypoxia. Total IRP binding to an iron responsive element (IRE) mRNA probe was increased several fold by hypoxia in HEK 293 cells, maximally at 4-8 h. An earlier and more modest increase (1.5- to 2-fold, peaking at 2 h and then declining) was seen in HepG2 cells. In both cell lines, IRP1 made a greater contribution to IRE-binding activity than IRP2. IRP1 protein levels were increased slightly by hypoxia in HEK 293 but not in HepG2 cells. IRP1 was distributed between cytosolic and membrane-bound fractions, and in both cells hypoxia increased both the amount and IRE-binding activity of the membrane-associated IRP1 fraction. Further density gradient fractionation of HepG2 membranes revealed that hypoxia caused an increase in total membrane IRP1, with a shift in the membrane-bound fraction from Golgi to an endoplasmic reticulum (ER)-enriched fraction. Translocation of IRP to the ER has previously been shown to stabilize transferrin receptor mRNA, thus increasing iron availability to the cell. Iron depletion with deferoxamine also caused an increase in ER-associated IRP1. Phorbol ester caused serine phosphorylation of IRP1 and increased its association with the ER. The calcium ionophore ionomycin likewise increased ER-associated IRP1, without affecting total IRE-binding activity. We conclude that IRP1 is translocated to the ER by multiple signals in HepG2 cells, including hypoxia, thereby facilitating its role in regulation of hepatic gene expression.
Collapse
Affiliation(s)
- Tania Christova
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
25
|
Abstract
This review discusses the need to re-examine some popular but unproven ideas about regulation of translation in eukaryotes. Translational control is invoked often on superficial grounds, such as a discrepancy between mRNA and protein levels which could be explained instead by rapid turnover of the protein. It is essential to verify that there is translational control (i.e., essential to rule out alternative mechanisms) before asking how translation is regulated. Many of the postulated control mechanisms are dubious. It is easy to create artifactual regulation (a slight increase or decrease in translation) by over-expressing recombinant RNA-binding proteins. The internal-initiation hypothesis is the source of other misunderstandings. Recent claims about the involvement of internal ribosome entry sequences (IRESs) in cancer and other diseases are discussed. The scanning model for initiation provides a more credible framework for understanding many aspects of translation, including ways to restrict the production of potent regulatory proteins which would be harmful if over-expressed. The rare production in eukaryotes of dicistronic mRNAs (e.g., from retrotransposons) raises questions about how the 3' cistron gets translated. Some proposed mechanisms are discussed, but the available evidence does not allow resolution of the issue.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
26
|
Wilkinson J, Di X, Schönig K, Buss JL, Kock ND, Cline JM, Saunders TL, Bujard H, Torti SV, Torti FM. Tissue-specific expression of ferritin H regulates cellular iron homoeostasis in vivo. Biochem J 2006; 395:501-7. [PMID: 16448386 PMCID: PMC1462685 DOI: 10.1042/bj20060063] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ferritin is a ubiquitously distributed iron-binding protein. Cell culture studies have demonstrated that ferritin plays a role in maintenance of iron homoeostasis and in the protection against cytokine- and oxidant-induced stress. To test whether FerH (ferritin H) can regulate tissue iron homoeostasis in vivo, we prepared transgenic mice that conditionally express FerH and EGFP (enhanced green fluorescent protein) from a bicistronic tetracycline-inducible promoter. Two transgenic models were explored. In the first, the FerH and EGFP transgenes were controlled by the tTA(CMV) (Tet-OFF) (where tTA and CMV are tet transactivator protein and cytomegalovirus respectively). In skeletal muscle of mice bearing the FerH/EGFP and tTA(CMV) transgenes, FerH expression was increased 6.0+/-1.1-fold (mean+/-S.D.) compared with controls. In the second model, the FerH/EGFP transgenes were controlled by an optimized Tet-ON transactivator, rtTA2(S)-S2(LAP) (where rtTA is reverse tTA and LAP is liver activator protein), resulting in expression predominantly in the kidney and liver. In mice expressing these transgenes, doxycycline induced FerH in the kidney by 14.2+/-4.8-fold (mean+/-S.D.). Notably, increases in ferritin in overexpressers versus control littermates were accompanied by an elevation of IRP (iron regulatory protein) activity of 2.3+/-0.9-fold (mean+/-S.D.), concurrent with a 4.5+/-2.1-fold (mean+/-S.D.) increase in transferrin receptor, indicating that overexpression of FerH is sufficient to elicit a phenotype of iron depletion. These results demonstrate that FerH not only responds to changes in tissue iron (its classic role), but can actively regulate overall tissue iron balance.
Collapse
Affiliation(s)
- John Wilkinson
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yarian CS, Sohal RS. In the aging housefly aconitase is the only citric acid cycle enzyme to decline significantly. J Bioenerg Biomembr 2005; 37:91-6. [PMID: 15906154 DOI: 10.1007/s10863-005-4132-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 12/27/2004] [Indexed: 11/30/2022]
Abstract
The main objective of this study was to determine if the activities of the mitochondrial citric acid cycle enzymes are altered during the normal aging process. Flight muscle mitochondria of houseflies of different ages were used as a model system because of their apparent age-related decline in bioenergetic efficiency, evident as a failure of flying ability. The maximal activities of each of the citric acid cycle enzymes were determined in preparations of mitochondria from flies of relatively young, middle, and old age. Aconitase was the only enzyme exhibiting altered activity during aging. The maximal activity of aconitase from old flies was decreased by 44% compared to that from young flies while the other citric acid cycle enzymes showed no change in activity with age. It is suggested that the selective age-related decrease in aconitase activity is likely to contribute to a decline in the efficiency of mitochondrial bioenergetics, as well as result in secondary effects associated with accumulation of citrate and redox-active iron.
Collapse
Affiliation(s)
- Connie S Yarian
- Department of Molecular Pharmacology and Toxicology, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | |
Collapse
|
28
|
Radha KS, Sugiki M, Harish Kumar M, Omura S, Maruyama M. Post-transcriptional regulation of plasminogen activator inhibitor-1 by intracellular iron in cultured human lung fibroblasts--interaction of an 81-kDa nuclear protein with the 3'-UTR. J Thromb Haemost 2005; 3:1001-8. [PMID: 15869597 DOI: 10.1111/j.1538-7836.2005.01272.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The proteinase inhibitor, type-1 plasminogen activator inhibitor (PAI-1), is a major regulator of the plasminogen activator system involved in plasmin formation and fibrinolysis. The present study explores the effects of intracellular iron on the expression of PAI-1 and associated cell-surface plasmin activity in human lung fibroblasts; and reports the presence of a novel iron-responsive protein. ELISA revealed a dose-dependent increase in PAI-1 antigen levels expressed in the conditioned medium of cells treated with deferoxamine, in the three cell lines studied. A concomitant increase in mRNA levels was also observed by Northern analyses. Presaturation with ferric citrate quenched the effect of deferoxamine. Experiments with transcription and translation inhibitors on TIG 3-20 cells demonstrated that intracellular iron modulated PAI-1 expression at the post-transcriptional level with the requirement of de-novo protein synthesis. Electrophoretic mobility shift assay and UV crosslinking assays revealed the presence of an approximately 81-kDa nuclear protein that interacted with the 3'-UTR of PAI-1 mRNA in an iron-sensitive manner. Finally, we demonstrated that the increased PAI-1 is functional in suppressing cell-surface plasmin activity, a process that can affect wound healing and tissue remodeling.
Collapse
Affiliation(s)
- K S Radha
- Department of Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | | | | | | | | |
Collapse
|
29
|
Kozak M. How strong is the case for regulation of the initiation step of translation by elements at the 3' end of eukaryotic mRNAs? Gene 2005; 343:41-54. [PMID: 15563830 DOI: 10.1016/j.gene.2004.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 07/30/2004] [Accepted: 08/12/2004] [Indexed: 02/04/2023]
Abstract
The belief that initiation of translation requires communication between the 5' and 3' ends of the mRNA guides--or misguides--the interpretation of many experiments. The closed-loop model for initiation creates the expectation that sequences at the 3' end of eukaryotic mRNAs should regulate translation. This review looks closely at the evidence in three prominent cases where such regulation is claimed. The mRNAs in question encode 15-lipoxygenase, ceruloplasmin, and histones. Vertebrate histone mRNAs lack a poly(A) tail, instead of which a 3' stem-loop structure is said to promote translation by binding a protein which purportedly binds initiation factors. The proffered evidence for this hypothesis has many flaws. Temporal control of 15-lipoxygenase production in reticulocytes is often cited as another well-documented example of translational regulation via the 3' untranslated region, but inspection of the evidence reveals significant gaps and contradictions. Solid evidence is lacking also for the idea that a ribosomal protein binds to and shuts off translation of ceruloplasmin mRNA. Some viral RNAs that lack a poly(A) tail have alternative 3' structures which are said to promote translation via circularization of the mRNA, but in no case has this been shown convincingly. Interpretation of many experiments is compromised by possible effects of the 3' structures on mRNA stability rather than translation. The functional-half-life assay, which is often employed to rule out effects on mRNA stability, might not be adequate to settle the question. Other issues, such as the possibility of artifacts caused by overexpression of RNA-binding proteins, can complicate studies of translational regulation. There is no doubt that elements at the 3' end of eukaryotic mRNAs can regulate gene expression in a variety of ways. It has not been shown unequivocally that one of these ways involves direct participation of the 3' untranslated region in the initiation step of translation.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
30
|
Popovic Z, Templeton DM. Iron accumulation and iron-regulatory protein activity in human hepatoma (HepG2) cells. Mol Cell Biochem 2005; 265:37-45. [PMID: 15543932 DOI: 10.1023/b:mcbi.0000044313.19574.c6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Iron may populate distinct hepatocellular iron pools that differentially regulate expression of proteins such as ferritin and transferrin receptor (TfR) through iron-regulatory mRNA-binding proteins (IRPs), and may additionally regulate uptake and accumulation of non-transferrin-bound iron (NTBI). We examined iron-regulatory protein (IRP) binding activity and ferritin/TfR expression in human hepatoma (HepG2) cells exposed to iron at different levels for different periods. Several iron-dependent RNA-binding activities were identified, but only IRP increased with beta-mercaptoethanol. With exposures between 0 and 20 microg/ml iron, decreases in IRP binding accompanied large changes in TfR and ferritin expression, while chelation of residual iron with deferoxamine (DFO) caused a large increase in IRP binding with little additional effect on TfR or ferritin expression. Cellular iron content increased beyond 4 days of exposure to iron at 20 microg/ml, when IRP binding, TfR, and ferritin had all reached stable levels. However, iron content of the cells plateaued by 7 days, or decreased with 24 h exposure to very high concentrations (>50 microg/ml) of iron. These results indicate that iron-replete HepG2 cells exhibit a narrow range of maximal responsiveness of the IRP-regulatory mechanism, whose functional response is blunted both by excessive iron exposure and by removal of iron from a chelatable pool. HepG2 cells are able to limit iron accumulation upon higher or prolonged exposure to NTBI, apparently independent of the IRP mechanism.
Collapse
Affiliation(s)
- Zvezdana Popovic
- Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ont., Canada
| | | |
Collapse
|
31
|
Affiliation(s)
- Ernest Beutler
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
32
|
Connor JR, Wang XS, Patton SM, Menzies SL, Troncoso JC, Earley CJ, Allen RP. Decreased transferrin receptor expression by neuromelanin cells in restless legs syndrome. Neurology 2004; 62:1563-7. [PMID: 15136682 DOI: 10.1212/01.wnl.0000123251.60485.ac] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Restless legs syndrome (RLS) is a sensory-movement disorder affecting 5 to 10% of the population. Its etiology is unknown, but MRI analyses and immunohistochemical studies on autopsy tissue suggest the substantia nigra (SN) of patients with RLS has subnormal amounts of iron. METHODS Neuromelanin cells from the SN of four RLS and four control brains were isolated by laser capture microdissection, and a profile of iron-management protein expression was obtained by immunoblot analysis. Binding assays for iron regulatory protein activity were performed on cell homogenates. RESULTS Ferritin, divalent metal transporter 1, ferroportin, and transferrin receptor (TfR) were decreased in RLS neuromelanin cells compared with control. Transferrin was increased in RLS neuromelanin cells. This protein profile in RLS neuromelanin cells is consistent with iron deficiency with the exception that TfR expression was decreased rather than increased. The concentration and activity of the iron regulatory proteins (IRP1 and IRP2) were analyzed to determine whether there was a functional deficit in the post-transcriptional regulatory mechanism for TfR expression. Total IRP activity, IRP1 activity, and IRP1 protein levels were decreased in RLS, but total IRP2 protein levels were not decreased in RLS. CONCLUSION Restless legs syndrome may result from a defect in iron regulatory protein 1 in neuromelanin cells that promotes destabilization of the transferrin receptor mRNA, leading to cellular iron deficiency.
Collapse
Affiliation(s)
- J R Connor
- Department of Neural and Behavior Sciences, G.M. Leader Family Laboratory for AD Research, Penn Penn State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kaur D, Andersen J. Does cellular iron dysregulation play a causative role in Parkinson's disease? Ageing Res Rev 2004; 3:327-43. [PMID: 15231240 DOI: 10.1016/j.arr.2004.01.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
Selective dopaminergic cell loss in Parkinson's disease is correlated with increased levels of cellular iron. It is still hotly debated as to whether the increase in iron is an upstream event which acts to promote neurodegeneration via formation of oxidative stress or whether iron accumulates as a by-product of the neuronal cell loss. Here we review evidence for loss of iron homeostasis as a causative factor in disease-associated neurodegeneration and the primary players which may be involved. A series of recent studies suggest that iron regulatory proteins (IRPs) coordinate both cellular iron levels and energy metabolism, both of which are disrupted in Parkinson's disease (PD) and may in turn contribute to increased levels of oxidative stress associated with the disease. Iron has also been recently been implicated in promotion of alpha-synuclein aggregation either directly or via increasing levels of oxidative stress suggesting an important role for it in Lewy body formation, another important hallmark of the disease.
Collapse
Affiliation(s)
- Deepinder Kaur
- Buck Institute for Aging Research, 8001 Redwood Blvd, Novato, CA 94945, USA
| | | |
Collapse
|
34
|
Abstract
Cellular iron homeostasis is accomplished by the coordinated regulated expression of the transferrin receptor and ferritin, which mediate iron uptake and storage, respectively. The mechanism is posttranscriptional and involves two cytoplasmic iron regulatory proteins, IRP1 and IRP2. Under conditions of iron starvation, IRPs stabilize the transferrin receptor and inhibit the translation of ferritin mRNAs by binding to "iron responsive elements" (IREs) within their untranslated regions. The IRE/IRP system also controls the expression of additional IRE-containing mRNAs, encoding proteins of iron and energy metabolism. The activities of IRP1 and IRP2 are regulated by distinct posttranslational mechanisms in response to cellular iron levels. Thus, in iron-replete cells, IRP1 assembles a cubane iron-sulfur cluster, which prevents IRE binding, while IRP2 undergoes proteasomal degradation. IRP1 and IRP2 also respond, albeit differentially, to iron-independent signals, such as hydrogen peroxide, hypoxia, or nitric oxide. Basic principles of the IRE/IRP system and recent advances in understanding the regulation and the function of IRP1 and IRP2 are discussed.
Collapse
Affiliation(s)
- Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, and Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
35
|
Wang J, Chen G, Muckenthaler M, Galy B, Hentze MW, Pantopoulos K. Iron-mediated degradation of IRP2, an unexpected pathway involving a 2-oxoglutarate-dependent oxygenase activity. Mol Cell Biol 2004; 24:954-65. [PMID: 14729944 PMCID: PMC321427 DOI: 10.1128/mcb.24.3.954-965.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron regulatory protein 2 (IRP2), a central posttranscriptional regulator of cellular and systemic iron metabolism, undergoes proteasomal degradation in iron-replete cells. The prevailing model postulates that the mechanism involves site-specific oxidation of 3 cysteine residues (C168, C174, and C178) within a 73-amino-acid (73-aa) degradation domain. By expressing wild-type and mutated versions of IRP2 in H1299 cells, we find that a C168S C174S C178S triple mutant, or a deletion mutant lacking the entire "73-aa domain," is sensitive to iron-mediated degradation, like wild-type IRP2. The antioxidants N-acetylcysteine, ascorbate, and alpha-tocopherol not only fail to stabilize IRP2 but, furthermore, promote its proteasomal degradation. The pathway for IRP2 degradation is saturable, which may explain earlier data supporting the "cysteine oxidation model," and shows remarkable similarities with the degradation of the hypoxia-inducible factor 1 alpha (HIF-1 alpha): dimethyl-oxalylglycine, a specific inhibitor of 2-oxoglutarate-dependent oxygenases, stabilizes IRP2 following the administration of iron to iron-deficient cells. Our results challenge the current model for IRP2 regulation and provide direct pharmacological evidence for the involvement of 2-oxoglutarate-dependent oxygenases in a pathway for IRP2 degradation.
Collapse
Affiliation(s)
- Jian Wang
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Bouton C, Drapier JC. Iron regulatory proteins as NO signal transducers. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:pe17. [PMID: 12746546 DOI: 10.1126/stke.2003.182.pe17] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The iron regulatory proteins (IRPs) are an example of different proteins regulating the same metabolic process, iron uptake and metabolism. IRP1 is an iron-sulfur cluster-containing protein that can be converted from a cytosolic aconitase to an RNA binding posttranscriptional regulator in response to nitric oxide (NO). IRP2 lacks aconitase activity and its expression is decreased by NO signaling. In macrophages, NO is produced in response to such inflammatory ligands as interferon-gamma, which is expressed in response to mitogenic and antigenic stimuli, and lipopolysaccharide, a marker of bacterial invasion. Until recently, research results predict that the cellular response to increased NO production should be a decrease in ferritin synthesis, due to IRP1 binding to ferritin mRNA, and an increase in transferrin receptor biosynthesis, due to IRP1 binding to the transferrin mRNA. Surprisingly, however, macrophages exhibit decreased transferrin receptor concentration in response to inflammatory ligands. Bouton and Drapier discuss the physiological role and the mechanisms that may underlie this contradictory response.
Collapse
Affiliation(s)
- Cécile Bouton
- Institut de Chimie des Substances Naturelles, CNRS, 91190 Gif-sur-Yvette, France.
| | | |
Collapse
|