1
|
Waters EM, Yildirim M, Janssen WGM, Lou WYW, McEwen BS, Morrison JH, Milner TA. Estrogen and aging affect the synaptic distribution of estrogen receptor β-immunoreactivity in the CA1 region of female rat hippocampus. Brain Res 2011; 1379:86-97. [PMID: 20875808 PMCID: PMC3046233 DOI: 10.1016/j.brainres.2010.09.069] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/17/2010] [Accepted: 09/17/2010] [Indexed: 11/29/2022]
Abstract
Estradiol (E) mediates increased synaptogenesis in the hippocampal CA1 stratum radiatum (sr) and enhances memory in young and some aged female rats, depending on dose and age. Young female rats express more estrogen receptor α (ERα) immunolabeling in CA1sr spine synapse complexes than aged rats and ERα regulation is E sensitive in young but not aged rats. The current study examined whether estrogen receptor β (ERβ) expression in spine synapse complexes may be altered by age or E treatment. Young (3-4 months) and aged (22-23 months) female rats were ovariectomized 7 days prior to implantation of silastic capsules containing either vehicle (cholesterol) or E (10% in cholesterol) for 2 days. ERβ immunoreactivity (ir) in CA1sr was quantitatively analyzed using post-embedding electron microscopy. ERβ-ir was more prominent post-synaptically than pre-synaptically and both age and E treatment affected its synaptic distribution. While age decreased the spine synaptic complex localization of ERβ-ir (i.e., within 60 nm of the pre- and post-synaptic membranes), E treatment increased synaptic ERβ in both young and aged rats. In addition, the E treatment, but not age, increased dendritic shaft labeling. This data demonstrates that like ERα the levels of ERβ-ir decrease in CA1 axospinous synapses with age, however, unlike ERα the levels of ERβ-ir increase in these synapses in both young and aged rats in response to E. This suggests that synaptic ERβ may be a more responsive target to E, particularly in aged females.
Collapse
Affiliation(s)
- Elizabeth M Waters
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
2
|
Synaptic estrogen receptor-alpha levels in prefrontal cortex in female rhesus monkeys and their correlation with cognitive performance. J Neurosci 2010; 30:12770-6. [PMID: 20861381 DOI: 10.1523/jneurosci.3192-10.2010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In rat hippocampus, estrogen receptor-α (ER-α) can initiate nongenomic signaling mechanisms that modulate synaptic plasticity in response to either circulating or locally synthesized estradiol (E). Here we report quantitative electron microscopic data demonstrating that ER-α is present within excitatory synapses in dorsolateral prefrontal cortex (dlPFC) of young and aged ovariectomized female rhesus monkeys with and without E treatment. There were no treatment or age effects on the percentage of excitatory synapses containing ER-α, nor were there any group differences in distribution of ER-α within the synapse. However, the mean size of synapses containing ER-α was larger than that of unlabeled excitatory synapses. All monkeys were tested on delayed response (DR), a cognitive test of working memory that requires dlPFC. In young ovariectomized monkeys without E treatment, presynaptic ER-α correlated with DR accuracy across memory delays. In aged monkeys that received E treatment, ER-α within the postsynaptic density (30-60 nm from the synaptic membrane) positively correlated with DR performance. Thus, although the lack of group effects suggests that ER-α is primarily in synapses that are stable across age and treatment, synaptic abundance of ER-α is correlated with individual performance in two key age/treatment groups. These data have important implications for individual differences in the cognitive outcome among menopausal women and promote a focus on cortical estrogen receptors for therapeutic efficacy with respect to cognition.
Collapse
|
3
|
Fernández-Monreal M, Oung T, Hanson HH, O'Leary R, Janssen WG, Dolios G, Wang R, Phillips GR. γ-protocadherins are enriched and transported in specialized vesicles associated with the secretory pathway in neurons. Eur J Neurosci 2010; 32:921-31. [PMID: 20849527 DOI: 10.1111/j.1460-9568.2010.07386.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gamma protocadherins (Pcdh-γs) resemble classical cadherins and have the potential to engage in cell-cell interactions with homophilic properties. Emerging evidence suggests non-conventional roles for some protocadherins in neural development. We sought to determine whether Pcdh-γ trafficking in neurons is consistent with an intracellular role for these molecules. Here we show that, in contrast to the largely surface localization of classical cadherins, endogenous Pcdh-γs are primarily intracellular in rat neurons in vivo and are equally distributed within organelles of subsynaptic dendritic and axonal compartments. A strikingly higher proportion of Pcdh-γ-containing organelles in synaptic compartments was observed at postnatal day 16. To determine the origin of Pcdh-γ-trafficking organelles, we isolated organelles with Pcdh-γ antibody-coupled magnetic beads from brain organelle suspensions. Vesicles with high levels of COPII and endoplasmic reticulum-Golgi intermediate compartment (ERGIC) components were isolated with the Pcdh-γ antibody but not with the classical cadherin antibody. In cultured hippocampal neurons, Pcdh-γ immunolabeling partially overlapped with calnexin- and COPII-positive puncta in dendrites. Mobile Pcdh-γ-GFP profiles dynamically codistributed with a DsRed construct coupled to ER retention signals by live imaging. Pcdh-γ expression correlated with accumulations of tubulovesicular and ER-like organelles in dendrites. Our results are consistent with the possibility that Pcdh-γs could have a unique function within the secretory pathway in addition to their documented surface roles.
Collapse
|
4
|
Yildirim M, Janssen WGM, Lou WYW, Akama KT, McEwen BS, Milner TA, Morrison JH. Effects of estrogen and aging on the synaptic distribution of phosphorylated Akt-immunoreactivity in the CA1 region of the female rat hippocampus. Brain Res 2010; 1379:98-108. [PMID: 20709039 DOI: 10.1016/j.brainres.2010.07.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/15/2010] [Accepted: 07/16/2010] [Indexed: 02/08/2023]
Abstract
The estrogen 17β-estradiol (E) increases the axospinous synaptic density and plasticity in the hippocampal CA1 region of young female rats but fails to do so in aged female rats. This E stimulus on synaptic plasticity is associated with the phosphorylation-dependent activation of Akt kinase. Our previous findings demonstrated that increased estrogen levels subsequently increase phosphorylated Akt (pAkt)-immunoreactivity (-IR) within the dendritic shafts and spines of pyramidal neurons in young female rats. Therefore, because Akt can promote cell survival and growth, we tested the hypothesis that the less plastic synapses of aged female rats would contain less E-stimulated pAkt-IR. Here, young (3-4 months) and aged (22-23 months) female rats were ovariectomized 7 days prior to a 48-h administration of either vehicle or E. The pAkt-IR synaptic distribution was then analyzed using post-embedding electron microscopy. In both young and aged rats, pAkt-IR was found in dendritic spines and terminals, and pAkt-IR was particularly abundant at the post-synaptic density. Quantitative analyses revealed that the percentage of pAkt-labeled synapses was significantly greater in young rats compared to aged rats. Nonetheless, E treatment significantly increased pAkt-IR in pre- and post-synaptic profiles of both young and aged rats, although the stimulus in young rats was notably more widespread. These data support the evidence that hormone-activated signaling associated with cell growth and survival is diminished in the aged brain. However, the observation that E can still increase pAkt-IR in aged synapses presents this signaling component as a candidate target for hormone replacement therapies.
Collapse
Affiliation(s)
- Murat Yildirim
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Yildirim M, Janssen WGM, Tabori NE, Adams MM, Yuen GS, Akama KT, McEwen BS, Milner TA, Morrison JH. Estrogen and aging affect synaptic distribution of phosphorylated LIM kinase (pLIMK) in CA1 region of female rat hippocampus. Neuroscience 2008; 152:360-70. [PMID: 18294775 DOI: 10.1016/j.neuroscience.2008.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 01/03/2008] [Accepted: 01/10/2008] [Indexed: 01/03/2023]
Abstract
17beta-Estradiol (E) increases axospinous synapse density in the hippocampal CA1 region of young female rats, but not in aged rats. This may be linked to age-related alterations in signaling pathways activated by synaptic estrogen receptor alpha (ER-alpha) that potentially regulate spine formation, such as LIM-kinase (LIMK), an actin depolymerizing factor/cofilin kinase. We hypothesized that, as with ER-alpha, phospho-LIM-kinase (pLIMK) may be less abundant or responsive to E in CA1 synapses of aged female rats. To address this, cellular and subcellular distribution of pLIMK-immunoreactivity (IR) in CA1 was analyzed by light and electron microscopy in young and aged female rats that were ovariectomized and treated with either vehicle or E. pLIMK-IR was found primarily in perikarya within the pyramidal cell layer and dendritic shafts and spines in stratum radiatum (SR). While pLIMK-IR was occasionally present in terminals, post-embedding quantitative analysis of SR showed that pLIMK had a predominant post-synaptic localization and was preferentially localized within the postsynaptic density (PSD). The percentage of pLIMK-labeled synapses increased (30%) with E treatment (P<0.02) in young animals, and decreased (43%) with age (P<0.002) regardless of treatment. The pattern of distribution of pLIMK-IR within dendritic spines and synapses was unaffected by age or E treatment, with the exception of an E-induced increase in the non-synaptic core of spines in young females. These data suggest that age-related synaptic alterations similar to those seen with ER-alpha occur with signaling molecules such as pLIMK, and support the hypothesis that age-related failure of E treatment to increase synapse number in CA1 may be due to changes in the molecular profile of axospinous synapses with respect to signaling pathways linked to formation of additional spines and synapses in response to E.
Collapse
Affiliation(s)
- M Yildirim
- Department of Pharmacology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Radley JJ, Farb CR, He Y, Janssen WGM, Rodrigues SM, Johnson LR, Hof PR, LeDoux JE, Morrison JH. Distribution of NMDA and AMPA receptor subunits at thalamo-amygdaloid dendritic spines. Brain Res 2007; 1134:87-94. [PMID: 17207780 PMCID: PMC2359729 DOI: 10.1016/j.brainres.2006.11.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 11/03/2006] [Accepted: 11/16/2006] [Indexed: 11/20/2022]
Abstract
Synapses onto dendritic spines in the lateral amygdala formed by afferents from the auditory thalamus represent a site of plasticity in Pavlovian fear conditioning. Previous work has demonstrated that thalamic afferents synapse onto LA spines expressing glutamate receptor (GluR) subunits, but the GluR subunit distribution at the synapse and within the cytoplasm has not been characterized. Therefore, we performed a quantitative analysis for alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits GluR2 and GluR3 and N-methyl-D-aspartate (NMDA) receptor subunits NR1 and NR2B by combining anterograde labeling of thalamo-amygdaloid afferents with postembedding immunoelectron microscopy for the GluRs in adult rats. A high percentage of thalamo-amygdaloid spines was immunoreactive for GluR2 (80%), GluR3 (83%), and NR1 (83%), while a smaller proportion of spines expressed NR2B (59%). To compare across the various subunits, the cytoplasmic to synaptic ratios of GluRs were measured within thalamo-amygdaloid spines. Analyses revealed that the cytoplasmic pool of GluR2 receptors was twice as large compared to the GluR3, NR1, and NR2B subunits. Our data also show that in the adult brain, the NR2B subunit is expressed in the majority of in thalamo-amygdaloid spines and that within these spines, the various GluRs are differentially distributed between synaptic and non-synaptic sites. The prevalence of the NR2B subunit in thalamo-amygdaloid spines provides morphological evidence supporting its role in the fear conditioning circuit while the differential distribution of the GluR subtypes may reflect distinct roles for their involvement in this circuitry and synaptic plasticity.
Collapse
Affiliation(s)
- Jason J Radley
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Malmierca MS, Bjaalie JG, Mugnaini E. Theodor W. Blackstad (1925–2003): a pioneer in quantitative neuroanatomy. Neuroscience 2005; 136:601-6. [PMID: 16344137 DOI: 10.1016/j.neuroscience.2005.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M S Malmierca
- Laboratory for the Neurobiology of Hearing, Institute for Neuroscience of Castilla y León and Faculty of Medicine, University of Salamanca, Spain
| | | | | |
Collapse
|
8
|
Adams MM, Fink SE, Janssen WGM, Shah RA, Morrison JH. Estrogen modulates synapticN-methyl-D-aspartate receptor subunit distribution in the aged hippocampus. J Comp Neurol 2004; 474:419-26. [PMID: 15174084 DOI: 10.1002/cne.20148] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Estrogen interacts with N-methyl-D-aspartate (NMDA) receptors to regulate multiple aspects of morphological and functional plasticity. In hippocampus, estrogen increases both dendritic spine density and synapse number, and NMDA antagonists block these effects. Thus, estrogen-mediated hippocampal plasticity may be of particular importance in the context of age-related changes in endocrine status and cognitive performance. NR1 levels per synapse are increased in CA1 by estrogen in aged rats but not young rats, although no information is available on estrogen-induced synaptic alterations in other NMDA receptor subunits that might impact function. Therefore, the present study was designed to investigate the effect of estrogen on the synaptic and subsynaptic distributions of the NMDA receptor subunits, NR2A and NR2B in CA1 pyramidal cells, within the context of aging. Our results demonstrated that the overall synaptic levels of NR2A and NR2B are similar in young and aged female rats, regardless of estrogen treatment. However, in the aged CA1, estrogen restores NR2B levels back to young levels in the lateral portions of the active synaptic zone. Thus, estrogen may impact the mobility of NMDA receptors across the synapse and, in the process, restore a more youthful synaptic profile. These findings have important implications for the mechanism of estrogen-induced alterations in NMDA receptor-mediated processes, particularly in the context of aging.
Collapse
Affiliation(s)
- Michelle M Adams
- Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
9
|
Estrogen and aging affect the subcellular distribution of estrogen receptor-alpha in the hippocampus of female rats. J Neurosci 2002. [PMID: 11978836 DOI: 10.1523/jneurosci.22-09-03608.2002] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Estrogen replacement increases both the number of dendritic spines and the density of axospinous synapses in the hippocampal CA1 region in young rats, yet this is attenuated in aged rats. The estrogen receptor-alpha (ER-alpha) is localized within select spines of CA1 pyramidal cells in young animals and thus may be involved locally in this process. The present study investigated the effects of estrogen on the ultrastructural distribution of ER-alpha in the CA1 of young (3-4 months) and aged (22-23 months) Sprague Dawley rats using postembedding immunogold electron microscopy. Within dendritic spines, most ER-alpha immunoreactivity (IR) was seen in plasmalemmal and cytoplasmic regions of spine heads, with a smaller proportion within 60 nm of the postsynaptic density. In presynaptic terminals, ER-alpha-IR was clustered and often associated with synaptic vesicles. Significant effects of both aging and estrogen were observed. Quantitative analysis revealed that nonsynaptic pools of ER-alpha-IR within the presynaptic and postsynaptic compartments were decreased (35 and 27%, respectively) in the young estrogen-replaced animals compared with those that received vehicle. Such localized regulation of ER-alpha in response to circulating estrogen levels might directly affect synaptic signaling in CA1 pyramidal cells. No estrogen treatment-related differences were observed in the aged animals. However, 50% fewer spines contained ER-alpha in the aged compared with young hippocampus. These data suggest that the decreased responsiveness of hippocampal synapses to estrogen in aged animals may result from age-related decrements in ER-alpha levels and its subcellular localization vis-à-vis the synapse. Such a role for spinous ER-alpha has important implications for age-related attenuation of estrogen-induced hippocampal plasticity.
Collapse
|
10
|
Adams MM, Shah RA, Janssen WG, Morrison JH. Different modes of hippocampal plasticity in response to estrogen in young and aged female rats. Proc Natl Acad Sci U S A 2001; 98:8071-6. [PMID: 11427724 PMCID: PMC35469 DOI: 10.1073/pnas.141215898] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2001] [Accepted: 05/02/2001] [Indexed: 11/18/2022] Open
Abstract
Estrogen regulates hippocampal dendritic spine density and synapse number in an N-methyl-D-aspartate (NMDA) receptor-dependent manner, and these effects may be of particular importance in the context of age-related changes in endocrine status. We investigated estrogen's effects on axospinous synapse density and the synaptic distribution of the NMDA receptor subunit, NR1, within the context of aging. Although estrogen induced an increase in axospinous synapse density in young animals, it did not alter the synaptic representation of NR1, in that the amount of NR1 per synapse was equivalent across groups. Estrogen replacement in aged female rats failed to increase axospinous synapse density; however, estrogen up-regulated synaptic NR1 compared with aged animals with no estrogen. Therefore, the young and aged hippocampi react differently to estrogen replacement, with the aged animals unable to mount a plasticity response generating additional synapses, yet responsive to estrogen with respect to additional NMDA receptor content per synapse. These findings have important implications for estrogen replacement therapy in the context of aging.
Collapse
Affiliation(s)
- M M Adams
- Kastor Neurobiology of Aging Laboratories, Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
11
|
Torp R, Head E, Milgram NW, Hahn F, Ottersen OP, Cotman CW. Ultrastructural evidence of fibrillar beta-amyloid associated with neuronal membranes in behaviorally characterized aged dog brains. Neuroscience 2000; 96:495-506. [PMID: 10717430 DOI: 10.1016/s0306-4522(99)00568-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The aged dog brain accumulates beta-amyloid in the form of diffuse senile plaques, which provides a potentially useful in vivo model system for studying the events surrounding the deposition of beta-amyloid. We used postembedding immunocytochemistry at the electron microscopic level to determine the subcellular distribution of beta-amyloid 1-40 and beta-amyloid 1-42 peptides in the prefrontal and parietal cortex of behaviorally characterized dogs ranging in age from one to 17 years. Immunogold particles signaling beta-amyloid 1-42 occurred over intracellular and extracellular fibrils that were approximately 8 nm in width. Intracellular beta-amyloid 1-42 fibrils were found in close proximity to glial fibrillary acidic protein fibers within astrocytes, but only in cells with signs of plasma membrane disruption. Neuronal labeling of beta-amyloid 1-42 appears to be associated with the plasma membrane. Membrane-bound beta-amyloid 1-42 occurs in the form of fine fibrils that are embedded in the dendritic membrane and appear to project into the extracellular space as determined by quantitative analysis of the immunogold particle distribution. Bundles of beta-amyloid 1-42 were also closely associated and/or integrated with degenerating myelin sheaths of axons. In one dog that was impaired on several cognitive tasks, extensive beta-amyloid 1-42 deposition was associated with microvacuolar changes and vascular pathology. The present findings suggest that beta-amyloid 1-42 may be generated at the dendritic plasma membrane as well as in intracellular compartments. The close association between beta-amyloid 1-42 and destroyed myelin suggests one possible new mechanism by which beta-amyloid 1-42 induces neurodegeneration.
Collapse
Affiliation(s)
- R Torp
- Institute of Basic Medical Sciences, Department of Anatomy, University of Oslo, P.O. Box 1105, Blindern N-0317, Oslo, Norway
| | | | | | | | | | | |
Collapse
|