1
|
Singha I, Poria DK, Ray PS, Das SK. Role of Grape ( Vitis vinifera) Extracts of Different Cultivars Against γ-Radiation Induced DNA Damage and Gene Expression in Human Lymphocytes. Indian J Clin Biochem 2025; 40:127-135. [PMID: 39835232 PMCID: PMC11741972 DOI: 10.1007/s12291-023-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/19/2023] [Indexed: 01/22/2025]
Abstract
Radiation therapy uses ionizing radiation (IR) to kill cancer cells. However, during radiotherapy normal cells are also damaged and killed by the generation of reactive oxygen species. Polyphenolic compounds are known to mitigate the damaging effects of radiation. Grape (Vitis vinifera) contains a variety of bioactive phytochemicals. We investigated the Ferric reducing antioxidant power assay for commonly available four grape (Vitis vinifera L.) cultivars, including 'Flame seedless', 'Kishmish chorni', 'Red globe' and 'Thompson seedless'. Grape seed showed the maximum reducing power and antioxidant capacity, followed by its skin, and then pulp of the same cultivars. Kishmish chorni seed showed maximum reducing and antioxidant power. Therefore, we had selected the Kishmish chorni cultivars to determine the protective efficacy against γ-ray irradiated DNA damage and apoptotic gene expression in human peripheral lymphocytes, and their efficacy was compared with widely cultivated Thompson seedless Cultivars. Annexin V-FITC and propidium iodide double staining suggested that apoptosis is a major mode of induction of cell death after irradiation in human lymphocytes. Comet assay revealed that DNA damage in human lymphocytes due to gamma irradiation at a dose of 4-Gy is significantly (P < 0.05) mitigated by pretreatment with grape extracts. Bax and p53 mRNA levels that were up-regulated in gamma irradiated lymphocytes, were significantly down-regulated when irradiated lymphocytes were pretreated with grape extracts. In conclusion, the grape extracts of different cultivars act as an essential source of natural antioxidants at varying degree, which are able to attenuate DNA damage by scavenging free radicals, and regulate apoptosis by modulating apoptotic genes such as p53 and Bax in human lymphocytes induced by IR.
Collapse
Affiliation(s)
- Indrani Singha
- Department of Biochemistry, College of Medicine and J.N.M Hospital, WBUHS, Kalyani, West Bengal 741235 India
| | - Dipak Kumar Poria
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246 India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246 India
| | - Subir Kumar Das
- Department of Biochemistry, College of Medicine and J.N.M Hospital, WBUHS, Kalyani, West Bengal 741235 India
| |
Collapse
|
2
|
Exogenous Nitric Oxide Suppresses in Vivo X-ray-Induced Targeted and Non-Targeted Effects in Zebrafish Embryos. Int J Mol Sci 2016; 17:ijms17081321. [PMID: 27529238 PMCID: PMC5000718 DOI: 10.3390/ijms17081321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/19/2016] [Accepted: 08/04/2016] [Indexed: 01/07/2023] Open
Abstract
The present paper studied the X-ray-induced targeted effect in irradiated zebrafish embryos (Danio rerio), as well as a non-targeted effect in bystander naïve embryos partnered with irradiated embryos, and examined the influence of exogenous nitric oxide (NO) on these targeted and non-targeted effects. The exogenous NO was generated using an NO donor, S-nitroso-N-acetylpenicillamine (SNAP). The targeted and non-targeted effects, as well as the toxicity of the SNAP, were assessed using the number of apoptotic events in the zebrafish embryos at 24 h post fertilization (hpf) revealed through acridine orange (AO) staining. SNAP with concentrations of 20 and 100 µM were first confirmed to have no significant toxicity on zebrafish embryos. The targeted effect was mitigated in zebrafish embryos if they were pretreated with 100 µM SNAP prior to irradiation with an X-ray dose of 75 mGy but was not alleviated in zebrafish embryos if they were pretreated with 20 µM SNAP. On the other hand, the non-targeted effect was eliminated in the bystander naïve zebrafish embryos if they were pretreated with 20 or 100 µM SNAP prior to partnering with zebrafish embryos having been subjected to irradiation with an X-ray dose of 75 mGy. These findings revealed the importance of NO in the protection against damages induced by ionizing radiations or by radiation-induced bystander signals, and could have important impacts on development of advanced cancer treatment strategies.
Collapse
|
3
|
Hunter CJ, De Plaen IG. Inflammatory signaling in NEC: Role of NF-κB, cytokines and other inflammatory mediators. ACTA ACUST UNITED AC 2013; 21:55-65. [PMID: 24388163 DOI: 10.1016/j.pathophys.2013.11.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Catherine J Hunter
- Department of Surgery, Division of Pediatric Surgery, Northwestern University Feinberg School of Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, United States
| | - Isabelle G De Plaen
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Box 45, Chicago, IL 60611, United States.
| |
Collapse
|
4
|
Abstract
The pathogenesis of necrotizing enterocolitis (NEC) is complex and its speed of progression is variable. To gain understanding of the disease, researchers have examined tissues resected from patients with NEC; however, as these are obtained at late stages of the disease, they do not yield clues about the early pathogenic events leading to NEC. Therefore, animal models are used and have helped identify a role for several mediators of the inflammatory network in NEC. In this article, we discuss the evidence for the role of these inflammatory mediators and conclude with a current unifying hypothesis regarding NEC pathogenesis.
Collapse
Affiliation(s)
- Isabelle G. De Plaen
- Associate Professor of Pediatrics, Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Children’s Hospital of Chicago Research Center, Ann and Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Box 45, Chicago, IL 60611-2605, U.S.A., Tel: (773)-755-6379; fax: (312)-227-9758
| |
Collapse
|
5
|
Miller TW, Isenberg JS, Roberts DD. Molecular regulation of tumor angiogenesis and perfusion via redox signaling. Chem Rev 2009; 109:3099-124. [PMID: 19374334 PMCID: PMC2801866 DOI: 10.1021/cr8005125] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - David D. Roberts
- To whom correspondence should be addressed: NIH, Building 10, Room 2A33, 10 Center Dr, MSC1500, Bethesda, Maryland 20892,
| |
Collapse
|
6
|
Zhou P, Qian L, Iadecola C. Nitric oxide inhibits caspase activation and apoptotic morphology but does not rescue neuronal death. J Cereb Blood Flow Metab 2005; 25:348-57. [PMID: 15660100 DOI: 10.1038/sj.jcbfm.9600036] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitric oxide (NO) has been shown to inhibit apoptotic cell death by S-nitrosylation of the catalytic-site cysteine residue of caspases. However, it is not clear whether in neurons NO-mediated caspase inactivation leads to improved cell survival. To address this issue, we studied the effect of NO donors on caspase activity and cell survival in cortical neuronal culture treated with the apoptosis inducer staurosporine (STS) and camptothecin. In parallel, cell viability was assessed by the MTS assay and MAP2 staining. We found that NO donors ((+/-)-S-nitroso-N-acetylpenicillamine, S-nitrosoglutathione, and NONOates) dose-dependently inhibited caspase-3 and -9 activity induced by STS and camptothecin. The reduction in caspase-3 activity was, in large part, because of the blockage of the proteolytic conversion of pro-caspase-3 to active caspase-3. NO donors also inhibited the appearance of the classical apoptotic nuclear morphology. However, inhibition of both caspase activity and apoptotic morphology was not associated with enhancement of cell viability. Thus, inhibition of caspase and apoptotic morphology by NO donors does not improve neuronal survival. The data suggest that inhibition of caspase by NO unmasks a caspase-independent form of cell death. A better understanding of this form of cell death may provide new strategies for neuroprotection in neuropathologies, such as ischemic brain injury, associated with apoptosis.
Collapse
Affiliation(s)
- Ping Zhou
- Division of Neurobiology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | |
Collapse
|
7
|
Wang ZW, Zhou JM, Huang ZS, Yang AP, Liu ZC, Xia YF, Zeng YX, Zhu XF. Aloe polysaccharides mediated radioprotective effect through the inhibition of apoptosis. JOURNAL OF RADIATION RESEARCH 2004; 45:447-454. [PMID: 15613791 DOI: 10.1269/jrr.45.447] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polysaccharides from aloe are always considered an effective radioprotector on irradiation-induced skin damage. The aim of this study was to determine if aloe polysaccharides (AP) have radioprotective effects on normal human cells in vitro and mouse survival in vivo and to explore the mechanism. Pretreatment with 50 microg/ml AP could improve the surviving fraction at 2 Gy (SF2) of three normal cell lines 293, ECV304, and C. liver from 41.5%, 46.5%, and 40.9% to 49.4%, 72.1%, and 89.1%, respectively. AP could also reduce the apoptotic rate of C. liver cells from 9.5% and 43.0% to 2.2% and 10.9% 48 h and 72 h after 2 Gy irradiation, respectively. Western blot analysis showed that pretreatment with AP could block the upregulation of pro-apoptotic p53, Bax, and Bad and the downregulation of Bcl-2 by irradiation. AP could lower thymocyte apoptosis of mice in vivo after 6 Gy irradiation and abrogate the cell cycle perturbation. Fifty mg/kg of AP treatment for 30 min before 7.5 Gy irradiation provided the best radioprotective effect and improved the 30-day survival rate of mice to 86.0%, from 10.0%. AP exerted radioprotective effects in vitro and in vivo through an inhibition of apoptosis.
Collapse
Affiliation(s)
- Zong-Wei Wang
- Department of Pharmacology, Guangzhou University of Traditional Chinese Medicine School of Pharmaceutical Science, Guangzhou, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Oh HM, Choi SC, Lee HS, Chun CH, Seo GS, Choi EY, Lee HJ, Lee MS, Yeom JJ, Choi SJ, Han WC, Oh JM, Chung YT, Chun JS, Lee KM, Jun CD. Combined action of extracellular signal-regulated kinase and p38 kinase rescues Molt4 T cells from nitric oxide-induced apoptotic and necrotic cell death. Free Radic Biol Med 2004; 37:463-79. [PMID: 15256218 DOI: 10.1016/j.freeradbiomed.2004.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 04/05/2004] [Accepted: 04/28/2004] [Indexed: 11/20/2022]
Abstract
The mechanisms that regulate nitric oxide (NO)-induced apoptosis, especially in T cell apoptosis, are largely uncharacterized. Here, we report that protection from NO-induced cell death by phorbol 12-myristate 13-acetate (PMA) is dependent on both p38 and extracellular signal-regulated kinase (ERK) activation. Exposure of Molt4 cells to NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) induced both apoptotic and necrotic modes of cell death along with a sustained increase in p38 kinase phosphorylation. However, the p38 inhibitor SB202190 only slightly protected Molt4 cells from NO toxicity. In contrast, PMA rapidly phosphorylated both p38 kinase and ERK, and the phosphorylation statuses were not altered in the presence of SNAP. Interestingly, although each mitogen-activated protein kinase (MAPK) inhibitor by itself had only a modest effect, the combination of inhibitors for both MAPKs almost completely abolished the protective effect of PMA. Furthermore, dominant negative or catalytically inactive variants that modulate p38 and ERK mimicked the effects of MAPK inhibitors. We located the action of p38 and ERK upstream of the p53/mitochondrial membrane potential loss and caspases cascade. Together, these findings suggest that the PMA-induced activations of ERK and p38 kinase are parallel events that are both required for inhibition of NO-induced death of Molt4 cells.
Collapse
Affiliation(s)
- Hyun-Mee Oh
- Department of Microbiology and Immunology, Wonkwang University School of Medicine, Iksan, Chonbuk 570-749, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jeong SM, Lee KY, Shin D, Chung H, Jeon SH, Seong RH. Nitric Oxide Inhibits Glucocorticoid-induced Apoptosis of Thymocytes by Repressing the SRG3 Expression. J Biol Chem 2004; 279:34373-9. [PMID: 15187086 DOI: 10.1074/jbc.m403461200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nitric oxide (NO) plays many roles in the immune system. It has been known that NO rescues thymocytes from glucocorticoid (GC)-induced apoptosis. However, the downstream target of NO in the protection from GC-induced thymocyte apoptosis has yet to be identified. We previously reported that GC sensitivity of developing thymocytes is dependent on the expression level of SRG3. In the present report, we found that NO repressed the SRG3 expression in both primary thymocytes and 16610D9 thymoma cells. Specifically, NO down-regulated the transcription of SRG3 via the inactivation of the transcription factor Sp1 DNA-binding activity to the SRG3 promoter. In addition, overexpression of SRG3 by a heterologous promoter reduced NO-mediated rescue of thymocytes from GC-induced apoptosis. These observations strongly suggest that NO may be involved in protecting immature thymocytes from GC-induced apoptosis by repressing the SRG3 expression in thymus.
Collapse
Affiliation(s)
- Seung M Jeong
- School of Biological Sciences and Institute of Molecular Biology & Genetics, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Wang X, Zalcenstein A, Oren M. Nitric oxide promotes p53 nuclear retention and sensitizes neuroblastoma cells to apoptosis by ionizing radiation. Cell Death Differ 2003; 10:468-76. [PMID: 12719724 DOI: 10.1038/sj.cdd.4401181] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nitric oxide (NO) is a potent activator of the p53 tumor suppressor protein. However, the mechanisms underlying p53 activation by NO have not been fully elucidated. We previously reported that a rapid downregulation of Mdm2 by NO may contribute to the early phase of p53 activation. Here we show that NO promotes p53 nuclear retention and inhibits Mdm2-mediated p53 nuclear export. NO induces phosphorylation of p53 on serine 15, which does not require ATM but rather appears to depend on the ATM-related ATR kinase. An ATR-kinase dead mutant or caffeine, which blocks the kinase activity of ATR, effectively abolishes the ability of NO to cause p53 nuclear retention, concomitant with its inhibition of p53 serine 15 phosphorylation. Of note, NO enhances markedly the ability of low-dose ionizing radiation to elicit apoptotic killing of neuroblastoma cells expressing cytoplasmic wild-type p53. These findings imply that, through augmenting p53 nuclear retention, NO can sensitize tumor cells to p53-dependent apoptosis. Thus, NO donors may potentially increase the efficacy of radiotherapy for treatment of certain types of cancer.
Collapse
Affiliation(s)
- X Wang
- 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|