1
|
Vaccines and Immunoinformatics for Vaccine Design. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1368:95-110. [DOI: 10.1007/978-981-16-8969-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Nony E, Moingeon P. Proteomics in support of immunotherapy: contribution to model-based precision medicine. Expert Rev Proteomics 2021; 19:33-42. [PMID: 34937491 DOI: 10.1080/14789450.2021.2020653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Proteomics encompasses a wide and expanding range of methods to identify, characterize, and quantify thousands of proteins from a variety of biological samples, including blood samples, tumors, and tissues. Such methods are supportive of various forms of immunotherapy applied to chronic conditions such as allergies, autoimmune diseases, cancers, and infectious diseases. AREAS COVERED In support of immunotherapy, proteomics based on mass spectrometry has multiple specific applications related to (i) disease modeling and patient stratification, (ii) antigen/ autoantigen/neoantigen/ allergen identification, (iii) characterization of proteins and monoclonal antibodies used for immunotherapeutic or diagnostic purposes, (iv) identification of biomarkers and companion diagnostics and (v) monitoring by immunoproteomics of immune responses elicited in the course of the disease or following immunotherapy. EXPERT OPINION Proteomics contributes as an enabling technology to an evolution of immunotherapy toward a precision medicine approach aiming to better tailor treatments to patients' specificities in multiple disease areas. This trend is favored by a better understanding through multi-omics profiling of both the patient's characteristics, his/her immune status as well as of the features of the immunotherapeutic drug.
Collapse
Affiliation(s)
- Emmanuel Nony
- Protein Sciences Department, Institut de Recherches Servier, Croissy Sur Seine, France
| | - Philippe Moingeon
- Center for Therapeutic Innovation, Immuno-inflammatory Disease, Institut de Recherches Servier, Croissy Sur Seine, France
| |
Collapse
|
3
|
Zhao X, Long J, Liang F, Liu N, Sun Y, Xi Y. Dynamic profiles, biodistribution and integration evaluation after intramuscular/intravenous delivery of a novel therapeutic DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in vaccinated normal rodent. J Nanobiotechnology 2019; 17:94. [PMID: 31492169 PMCID: PMC6729025 DOI: 10.1186/s12951-019-0528-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/28/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The persistence, biodistribution, and risk of integration into the host genome of any new therapeutic DNA vaccine must be established in preclinical studies. We previously developed the DNA vaccine pcDNA-CCOL2A1 encoding chicken type II collagen (CCII) for the treatment of rheumatoid arthritis (RA). In the present study, we characterized its dynamic profile, biodistribution, and potential for genomic DNA integration in normal vaccinated rodent. RESULTS A real-time quantitative PCR analysis (RT-qPCR) of animals administered a single dose of pcDNA-CCOL2A1 (300 μg/kg by intramuscular injection) showed that CCOL2A1 mRNA level in the blood peaked between 2 and 6 h post-immunization and then rapidly declined, and was undetectable between day 1-42. CCOL2A1 transcript was detected at the muscle injection site on days 3-14 post-immunization. Starting from day 14, the transcript was detected in the heart, liver, lung, and kidney but not in the spleen or thymus, and was expressed only in the lung on day 28. There was no CCOL2A1 mRNA present in the testes or ovaries at any time point. Non-invasive in vivo fluorescence imaging revealed CCII protein expression from 2 h up to day 10 and from 2 h up to day 35 after administration of pcDNA-CCOL2A1 via the intravenous and intramuscular routes, respectively; the protein had disappeared by day 42. Importantly, CCOL2A1 was not integrated into the host genome. CONCLUSIONS These results indicate that pcDNA-CCOL2A1 vaccine is rapidly cleared within a short period of time and is therefore safe, and merits further development as a therapeutic vaccine for RA treatment.
Collapse
Affiliation(s)
- Xiao Zhao
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Juan Long
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Fei Liang
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Nan Liu
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Yuying Sun
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Yongzhi Xi
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China.
| |
Collapse
|
4
|
Long J, Zhao X, Liang F, Liu N, Sun Y, Xi Y. Optimization of fermentation conditions for an Escherichia coli strain engineered using the response surface method to produce a novel therapeutic DNA vaccine for rheumatoid arthritis. J Biol Eng 2018; 12:22. [PMID: 30337953 PMCID: PMC6180442 DOI: 10.1186/s13036-018-0110-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/06/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Fermentation condition optimization and nutrients screening are of equal importance for efficient production of plasmid DNA vaccines. This directly affects the downstream purification and final quality and yield of plasmid DNA vaccines. The present study aimed to optimize the fermentation conditions for high-throughput production of therapeutic DNA vaccine pcDNA-CCOL2A1 by engineered Escherichia coli DH5α, using the response surface method (RSM). RESULTS We hypothesized that optimized fermentation conditions significantly increase the yield of pcDNA-CCOL2A1 therapeutic DNA vaccine, a novel DNA vaccine for treating rheumatoid arthritis (RA). Single-factor analysis was performed to evaluate the optimal basal culture medium from LB, 2 × YT, TB, M9 (Glycerol) and M9 (Glucose), respectively. Thereafter, the Plackett-Burman design (PBD) was used to ascertain the three most significant factors affecting the vaccine yields, followed by the paths of steepest ascent to move to the nearest region of maximum response. Initial screening through the PBD revealed that the most key factors were peptone, mannitol, and inoculum concentration. Subsequent use of RSM was further optimized for the production of therapeutic DNA vaccine pcDNA-CCOL2A1 through Box-Behnken design (BBD). The final optimized fermentation conditions were as follows: peptone, 25.86 g/L; mannitol, 8.08 g/L; inoculum concentration, OD = 0.36. Using this statistical experimental design, the yield of therapeutic DNA vaccine pcDNA-CCOL2A1 markedly increased from 223.37 mg/L to339.32 mg/L under optimal conditions, and a 51.9% increase was observed compared with the original medium. CONCLUSIONS The present results provide a basis for further production of high-quality and high-yield therapeutic DNA vaccine pcDNA-CCOL2A1 in pilot-scale and even industrial-scale.
Collapse
Affiliation(s)
- Juan Long
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071 People’s Republic of China
| | - Xiao Zhao
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071 People’s Republic of China
| | - Fei Liang
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071 People’s Republic of China
| | - Nan Liu
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071 People’s Republic of China
| | - Yuying Sun
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071 People’s Republic of China
| | - Yongzhi Xi
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071 People’s Republic of China
| |
Collapse
|
5
|
Zhao X, Long J, Liang F, Liu N, Sun Y, Xi Y. Vaccination with a Novel Antigen-Specific Tolerizing DNA Vaccine Encoding CCOL2A1 Protects Rats from Experimental Rheumatoid Arthritis. Hum Gene Ther 2018; 30:69-78. [PMID: 29901407 DOI: 10.1089/hum.2018.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Antigen-specific tolerizing DNA vaccines are one of the most promising strategies for rheumatoid arthritis (RA) treatment. They act by inducing potent immune tolerance instead of generalized immunosuppression. Recently, we developed a novel antigen-specific tolerizing DNA vaccine pcDNA-CCOL2A1 coding for chicken type II collagen (CCII) and confirmed its potent therapeutic efficacy in an established rat model of collagen-induced arthritis (CIA). Here we report the prophylactic vaccination efficacy of a single 300 μg/kg dose of pcDNA-CCOL2A1 against CIA incidence, severity, and onset. CCOL2A1 transcripts were detected in the blood of CIA rats 14-42 days after intramuscular injection by 300 μg/kg pcDNA-CCOL2A1. The expression of CCOL2A1 transcripts increased quickly on day 21, peaked at day 28, and then gradually decreased thereafter. Importantly, a single prophylactic vaccination of pcDNA-CCOL2A1 14 days before CIA establishment significantly reduced CIA incidence and severity, deferred its onset, and was as efficacious as the current gold standard drug, methotrexate. The marked effects on CIA incidence and severity closely corresponded to the expression of CCOL2A1. Furthermore, prophylactic vaccination with pcDNA-CCOL2A1 markedly decreased serum content of anti-type II collagen (CII) immunoglobulin G (IgG) antibodies, induced Th1-to-Th2 and Tc1-to-Tc2 shifts, and decreased the percentages of CD4+CD29+ and Th17 T cells. Prophylactic vaccination with pcDNA-CCOL2A1 also downregulated various Th1 cytokines, while upregulating both the Th2-type cytokine interleukin-10 and the Th3-type cytokine transforming growth factor β. Our results indicate that the pcDNA-CCOL2A1 DNA vaccine acts as a highly efficient inducer of specific immunotolerance that could be a promising option for RA treatment in the near future.
Collapse
Affiliation(s)
- Xiao Zhao
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, Beijing, P.R. China
| | - Juan Long
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, Beijing, P.R. China
| | - Fei Liang
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, Beijing, P.R. China
| | - Nan Liu
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, Beijing, P.R. China
| | - Yuying Sun
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, Beijing, P.R. China
| | - Yongzhi Xi
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, Beijing, P.R. China
| |
Collapse
|
6
|
Genetic stability of an Escherichia coli strain engineered to produce a novel therapeutic DNA vaccine encoding chicken type II collagen for rheumatoid arthritis. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Xiao Z, Juan L, Song Y, Zhijian Z, Jing J, Kun Y, Yuna H, Dongfa D, Lili D, Liuxin T, Fei L, Nan L, Fang Y, Yuying S, Yongzhi X. Evaluation of humoral and cellular immune responses to a DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats. Hum Vaccin Immunother 2016; 11:938-45. [PMID: 25763999 DOI: 10.1080/21645515.2015.1010977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A major challenge in the development of effective therapies for rheumatoid arthritis (RA) is finding a method for the specific inhibition of the inflammatory disease processes without the induction of generalized immunosuppression. Of note, the development of therapeutic DNA vaccines and boosters that may restore immunological tolerance remains a high priority. pcDNA-CCOL2A1 is a therapeutic DNA vaccine encoding chicken type II collagen(CCII). This vaccine was developed by our laboratory and has been shown to exhibit efficacy comparable to that of the current "gold standard" treatment, methotrexate (MTX). Here, we used enzyme-linked immunosorbent assays with anti-CII IgG antibodies, quantified the expression levels of Th1, Th2, and Th3 cytokines, and performed flow cytometric analyses of different T-cell subsets, including Th1, Th2, Th17, Tc, Ts, Treg, and CD4(+)CD29(+)T cells to systemically evaluate humoral and cellular immune responses to pcDNA-CCOL2A1 vaccine in normal rats. Similar to our observations at maximum dosage of 3 mg/kg, vaccination of normal rats with 300 μg/kg pcDNA-CCOL2A1 vaccine did not induce the production of anti-CII IgG. Furthermore, no significant changes were observed in the expression levels of pro-inflammatory cytokines interleukin (IL)-1α, IL-5, IL-6, IL-12(IL-23p40), monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, regulated on activation in normal T-cell expressed and secreted (RANTES), receptor activator for nuclear factor-κB ligand (RANKL), and granulocyte colony-stimulating factor (G-CSF) or anti-inflammatory cytokines IL-4 and IL-10 in vaccinated normal rats relative to that in controls(P > 0.05). However, transforming growth factor (TGF)-β levels were significantly increased on days 10 and 14, while interferon (IFN)-γ and tumor necrosis factor (TNF)-α levels were significantly decreased on days 28 and 35 after vaccination(P < 0.05). Similarly, there were no significant differences in the percentages of Tc, Ts, Th1/Th2, and Th17 cells between the 2 groups(P > 0.05), with the exception of Treg cells, which were significantly reduced on days 14 and 21 after vaccination (P < 0.05), and CD4(+)CD29(+)T cells, which were significantly increased on days 7 and 14 after vaccination(P < 0.05).Taken together, these results suggested that pcDNA-CCOL2A1 vaccine did not markedly affect the balance of immune system components in vaccinated normal rats, indicating that this DNA vaccine may have clinical applications in the treatment of RA.
Collapse
Affiliation(s)
- Zhao Xiao
- a Department of Immunology and National Center for Biomedicine Analysis ; Beijing 307 Hospital Affiliated to Academy of Military Medical Sciences ; Beijing , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lolli F, Rovero P, Chelli M, Papini AM. Toward biomarkers in multiple sclerosis: new advances. Expert Rev Neurother 2014; 6:781-94. [PMID: 16734525 DOI: 10.1586/14737175.6.5.781] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multiple sclerosis is an autoimmune disease that commonly affects young adults. If initially characterized by acute relapses, it is later followed by only incomplete remission. Over years, progressive disability and irreversible deficit lead to chronic neurological deficits in the majority of patients. The clinical course is protracted and unpredictable, and no biological marker is useful in predicting the evolution of autoaggression and disability. It is difficult to diagnose and to monitor disease progression after the initial symptoms or even during the major clinical manifestations, and it is difficult to treat. In this review, the authors report recent advances in the field, focusing on the search of new antigens as a marker of the disease, in their relevance to the pathophysiology and diagnosis of the disease.
Collapse
Affiliation(s)
- Francesco Lolli
- Laboratorio Interdipartimentale di Chimica & Biologia dei Peptidi & Proteine, Polo Scientifico e Tecnologico, Università degli Studi di Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Italy.
| | | | | | | |
Collapse
|
9
|
Endoscopic Treatment of Salivary Glands Affected by Autoimmune Diseases. J Oral Maxillofac Surg 2011; 69:476-81. [DOI: 10.1016/j.joms.2010.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/01/2010] [Indexed: 11/17/2022]
|
10
|
Burns-Naas LA, Dearman RJ, Germolec DR, Kaminski NE, Kimber I, Ladics GS, Luebke RW, Pfau JC, Pruett SB. “Omics” Technologies and the Immune System. Toxicol Mech Methods 2008; 16:101-19. [DOI: 10.1080/15376520600558424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Kidd BA, Ho PP, Sharpe O, Zhao X, Tomooka BH, Kanter JL, Steinman L, Robinson WH. Epitope spreading to citrullinated antigens in mouse models of autoimmune arthritis and demyelination. Arthritis Res Ther 2008; 10:R119. [PMID: 18826638 PMCID: PMC2592807 DOI: 10.1186/ar2523] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 08/30/2008] [Accepted: 09/30/2008] [Indexed: 01/15/2023] Open
Abstract
Introduction Anti-citrullinated protein antibodies have a diagnostic role in rheumatoid arthritis (RA); however, little is known about their origins and contribution to pathogenesis. Citrullination is the post-translational conversion of arginine to citrulline by peptidyl arginine deiminase, and increased citrullination of proteins is observed in the joint tissue in RA and in brain tissue in multiple sclerosis (MS). Methods We applied synovial and myelin protein arrays to examine epitope spreading of B cell responses to citrullinated epitopes in both the collagen-induced arthritis (CIA) model for RA and the experimental autoimmune encephalomyelitis (EAE) model for MS. Synovial and myelin protein arrays contain a spectrum of proteins and peptides, including native and citrullinated forms, representing candidate autoantigens in RA and MS, respectively. We applied these arrays to characterise the specificity of autoantibodies in serial serum samples derived from mice with acute and chronic stages of CIA and EAE. Results In samples from pre-disease CIA and acute-disease EAE, we observed autoantibody targeting of the immunising antigen and responses to a limited set of citrullinated epitopes. Over the course of diseases, the autoantibody responses expanded to target multiple citrullinated epitopes in both CIA and EAE. Using immunoblotting and mass spectrometry analysis, we identified citrullination of multiple polypeptides in CIA joint and EAE brain tissue that have not previously been described as citrullinated. Conclusions Our results suggest that anti-citrulline antibody responses develop in the early stages of CIA and EAE, and that autoimmune inflammation results in citrullination of joint proteins in CIA and brain proteins in EAE, thereby creating neoantigens that become additional targets in epitope spreading of autoimmune responses.
Collapse
Affiliation(s)
- Brian A Kidd
- Department of Medicine, Division of Immunology and Rheumatology, CCSR 4135, 269 Campus Dr, Stanford University School of Medicine, Stanford, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Multiple sclerosis (MS) is a progressive neurological disease caused by an autoimmune attack to the central nervous system (CNS). MS is thought to result from a complex interaction between genetic and environmental factors. In this review we analyze the contribution of genomics, trancriptomics and proteomics in delineating these factors, as well as their utility for the monitoring of disease progression, the identification of new targets for therapeutic intervention and the early detection of individuals at risk.
Collapse
|
13
|
[Toward a non-empirical treatment for rheumatoid arthritis based on its molecular pathology]. ACTA ACUST UNITED AC 2008; 4:19-31. [PMID: 21794490 DOI: 10.1016/s1699-258x(08)71791-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 11/29/2007] [Indexed: 11/21/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, disabbling disease that affects individuals during the productive years of their lives. Modern treatment for RA includes the so called "biologic" therapy, which is based on recombinant proteins that modify the biologic processes. These agents have potent therapeutic effects and different mechanisms of action. Nevertheless, therapeutic failure still prevails. Treatment that prevents disability in RA must be started in an early manner, before the development of complications and, ideally, with a minimum possibility of therapeutic failure. As yet, there are no clinical or laboratory criteria to identify those patients with a higher probability of responding to particular types of therapy, delaying control of RA ad affecting the prevention of incapacity. Research into gene diversity through single-nucleotide polymorphisms (SNPs) by means of microarray systems, allows the detailed analysis of gene factors associated to a given disease. SNPs have been recently applied to the study of RA, where the major polymorphisms associated to RA occur primarily in genes that code for proteins related to the initiation of an immune response and/or the control of cellular activity in the immune system, in addition to genes related to tissue repair. The specific meaning of these findings is in its initial stages of research. On the other hand, proteomics relate to the analysis of protein expression profiles at multiple levels. Both types of studies will contribute to the knowledge of patterns of gene expression in RA compared to the general population, and will allow an understanding of the pathogenesis of RA. Moreover, proteomic and genomic profiles can be employed to designs probes that identify individuals with the risk of developing RA, individually predict the response to different therapeutic modalities (pharmacogenomics) and for the follow-up of the biologic response to therapy.
Collapse
|
14
|
Villalta D, Tozzoli R, Tonutti E, Bizzaro N. The laboratory approach to the diagnosis of autoimmune diseases: is it time to change? Autoimmun Rev 2007; 6:359-65. [PMID: 17537381 DOI: 10.1016/j.autrev.2007.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Accepted: 01/01/2007] [Indexed: 12/20/2022]
Abstract
Array technology and proteomics are about to launch the era of multiplexed analysis, which allows simultaneous detection of numerous autoantibody specificities and the possibility of defining broad autoantibody profiles. This will probably improve disease staging, risk stratification, prognosis and treatment. However, although these technologies are very promising, they are still in their infancy, and therefore need to undergo strict analytical and clinical validation processes. The latter should involve clinicians and pathologists in prospective, multicentric studies conducted on large numbers of patients to define the specific significance of the various autoantibody profiles. Establishing common standards for the publication and sharing of microarray-generated data will be important for this purpose. Only when these studies have been completed will these new technologies find a place in clinical laboratories. Although we are entering a decade which will probably see a radical change in the diagnostic approach to autoimmune diseases, we do not yet have sufficient knowledge to apply proteomic technologies on a large scale. For the time being, therefore, it is advisable to continue using well-established approaches and diagnostic algorithms such as those reported in the international guidelines, which have been prepared in accordance with the principles of appropriateness and evidence-based medicine.
Collapse
Affiliation(s)
- Danilo Villalta
- Immunologia Clinica e Virologia, Azienda Ospedaliera S. Maria degli Angeli, via Montereale 24, 33170 Pordenone, Italy.
| | | | | | | |
Collapse
|
15
|
Yang F, Chen IH, Xiong Z, Yan Y, Wang H, Yang XF. Model of stimulation-responsive splicing and strategies in identification of immunogenic isoforms of tumor antigens and autoantigens. Clin Immunol 2006; 121:121-33. [PMID: 16890493 DOI: 10.1016/j.clim.2006.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 06/13/2006] [Accepted: 06/15/2006] [Indexed: 01/03/2023]
Abstract
We recently proposed a novel model of stimulation-responsive splicing for the selection of autoantigens and self-tumor antigens. Our model theorizes that the significantly higher rates of alternative splicing of autoantigen and self-tumor antigen transcripts that occur in response to stimuli could induce extra-thymic expression of untolerized antigen epitopes for elicitation of autoimmune and anti-tumor responses. To facilitate the identification of immunogenic isoforms of antigens, we have developed strategies using improved SEREX in conjunction with database-mining and immunogenic isoform mapping. Identification of immunogenic isoforms of autoantigens and self-tumor antigens is very important for the development of novel therapeutics and diagnostic tools for autoimmune diseases and tumors, such as: (1) autoantigen isoform microarrays for disease diagnosis and prognosis; (2) autoantigen isoform-specific tolerizing vaccines and splicing-redirection therapies, as well as (3) immunogenic antigen isoform-specific immunotherapy for tumors.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmacology, Temple University School of Medicine, 3420 North Broad Street, Medical Research Building, Suite 300, Philadelphia, PA 19140, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Balboni I, Chan SM, Kattah M, Tenenbaum JD, Butte AJ, Utz PJ. Multiplexed protein array platforms for analysis of autoimmune diseases. Annu Rev Immunol 2006; 24:391-418. [PMID: 16551254 DOI: 10.1146/annurev.immunol.24.021605.090709] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several proteomics platforms have emerged in the past decade that show great promise for filling in the many gaps that remain from earlier studies of the genome and from the sequencing of the human genome itself. This review describes applications of proteomics technologies to the study of autoimmune diseases. We focus largely on biased technology platforms that are capable of analyzing a large panel of known analytes, as opposed to techniques such as two-dimensional gel electrophoresis (2DIGE) or mass spectroscopy that represent unbiased approaches (as reviewed in 1). At present, the main analytes that can be systematically studied in autoimmunity include autoantibodies, cytokines and chemokines, components of signaling pathways, and cell-surface receptors. We review the most commonly used platforms for such studies, citing important discoveries and limitations that exist. We conclude by reviewing advances in biomedical informatics that will eventually allow the human proteome to be deciphered.
Collapse
Affiliation(s)
- Imelda Balboni
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
17
|
Potti A, Bild A, Dressman HK, Lewis DA, Nevins JR, Ortel TL. Gene-expression patterns predict phenotypes of immune-mediated thrombosis. Blood 2006; 107:1391-6. [PMID: 16263789 PMCID: PMC1895419 DOI: 10.1182/blood-2005-07-2669] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 09/28/2005] [Indexed: 01/02/2023] Open
Abstract
Antiphospholipid antibody syndrome (APS) is a complex autoimmune thrombotic disorder with defined clinical phenotypes. Although not all patients with elevated antiphospholipid antibody (aPLA) levels develop complications, the severity of these potential events mandates aggressive and extended lifelong anti-thrombotic therapy. One hundred twenty-nine patients (57 patients with APS and venous thromboembolism [VTE], 32 patients with VTE without aPLA, 32 patients with aPLA only, and 8 healthy patients) were enrolled. RNA from peripheral-blood collection was used for DNA microarray analysis. Patterns of gene expression that characterize APS as well as thrombosis in the presence of aPLA were identified by hierarchical clustering and binary regression methods. Gene-expression profiles identify and predict individuals with APS from patients with VTE without aPLA. Importantly, similar methods identified expression profiles that accurately predicted those patients with aPLA at high risk for thrombotic events. All profiles were validated in independent cohorts of patients. The ability to predict APS, but more importantly, those patients at risk for venous thrombosis, represents a paradigm for a genomic approach that can be applied to other populations of patients with venous thrombosis, providing for more effective clinical management of disease, while also reflecting the possible underlying biologic processes.
Collapse
Affiliation(s)
- Anil Potti
- Department of Medicine, Duke University Medical Center, Box 3841 Red Zone, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Robinson WH, Fontoura P, Lee BJ, de Vegvar HEN, Tom J, Pedotti R, DiGennaro CD, Mitchell DJ, Fong D, Ho PPK, Ruiz PJ, Maverakis E, Stevens DB, Bernard CCA, Martin R, Kuchroo VK, van Noort JM, Genain CP, Amor S, Olsson T, Utz PJ, Garren H, Steinman L. Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nat Biotechnol 2003; 21:1033-9. [PMID: 12910246 DOI: 10.1038/nbt859] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2003] [Accepted: 06/25/2003] [Indexed: 11/09/2022]
Abstract
The diversity of autoimmune responses poses a formidable challenge to the development of antigen-specific tolerizing therapy. We developed 'myelin proteome' microarrays to profile the evolution of autoantibody responses in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS). Increased diversity of autoantibody responses in acute EAE predicted a more severe clinical course. Chronic EAE was associated with previously undescribed extensive intra- and intermolecular epitope spreading of autoreactive B-cell responses. Array analysis of autoantigens targeted in acute EAE was used to guide the choice of autoantigen cDNAs to be incorporated into expression plasmids so as to generate tolerizing vaccines. Tolerizing DNA vaccines encoding a greater number of array-determined myelin targets proved superior in treating established EAE and reduced epitope spreading of autoreactive B-cell responses. Proteomic monitoring of autoantibody responses provides a useful approach to monitor autoimmune disease and to develop and tailor disease- and patient-specific tolerizing DNA vaccines.
Collapse
Affiliation(s)
- William H Robinson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Large-scale analyses of messenger RNA transcripts and autoantibody responses, taken from the actual sites of disease, provide us with an unprecedented view of the complexity of autoimmunity. Despite an appreciation of the large number of pathways and pathological processes that are involved in these diseases, a few practical targets and several new strategies have emerged from these studies. This review focuses on multiple sclerosis and on the approaches that are being used to identify new targets that might be manipulated to control this disease.
Collapse
Affiliation(s)
- Lawrence Steinman
- Beckman Center for Molecular Medicine B002, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
20
|
Baker D, Hankey DJR. Gene therapy in autoimmune, demyelinating disease of the central nervous system. Gene Ther 2003; 10:844-53. [PMID: 12732870 DOI: 10.1038/sj.gt.3302025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system (CNS), where suspected autoimmune attack causes nerve demyelination and progressive neurodegeneration and should benefit from both anti-inflammatory and neuroprotective strategies. Although neuroprotection strategies are relatively unexplored in MS, systemic delivery of anti-inflammatory agents to people with MS has so far been relatively disappointing. This is most probably because of the limited capacity of these molecules to enter the target tissue, because of exclusion by the blood-brain barrier. The complex natural history of MS also means that any therapeutic agents will have to be administered long-term. Gene therapy offers the possibility of site-directed, long-term expression, and is currently being preclinically investigated in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. While some immune effects may be targeted in the periphery using DNA vaccination, strategies both viral and nonviral are being developed to target agents into the CNS either via direct delivery or using the trafficking properties of cell-carrier systems. Targeting of leucocyte activation, cytokines and nerve growth factors have shown some promising benefit in animal EAE systems, the challenge will be their application in clinical use.
Collapse
Affiliation(s)
- David Baker
- Institute of Neurology, University College London, UK
| | | |
Collapse
|
21
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2448418 DOI: 10.1002/cfg.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
22
|
Hueber W, Utz PJ, Steinman L, Robinson WH. Autoantibody profiling for the study and treatment of autoimmune disease. ARTHRITIS RESEARCH 2002; 4:290-5. [PMID: 12223102 PMCID: PMC128938 DOI: 10.1186/ar426] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2002] [Revised: 03/05/2002] [Accepted: 03/11/2002] [Indexed: 01/12/2023]
Abstract
Proteomics technologies enable profiling of autoantibody responses using biological fluids derived from patients with autoimmune disease. They provide a powerful tool to characterize autoreactive B-cell responses in diseases including rheumatoid arthritis, multiple sclerosis, autoimmune diabetes, and systemic lupus erythematosus. Autoantibody profiling may serve purposes including classification of individual patients and subsets of patients based on their 'autoantibody fingerprint', examination of epitope spreading and antibody isotype usage, discovery and characterization of candidate autoantigens, and tailoring antigen-specific therapy. In the coming decades, proteomics technologies will broaden our understanding of the underlying mechanisms of and will further our ability to diagnose, prognosticate and treat autoimmune disease.
Collapse
Affiliation(s)
- Wolfgang Hueber
- Department of Medicine, Division of Rheumatology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Paul J Utz
- Department of Medicine, Division of Rheumatology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Tolerion, Palo Alto, California, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Tolerion, Palo Alto, California, USA
| | - William H Robinson
- Department of Medicine, Division of Rheumatology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Tolerion, Palo Alto, California, USA
| |
Collapse
|