1
|
Li YX, Kang XL, Li YL, Wang XP, Yan Q, Wang JX, Zhao XF. Receptor tyrosine kinases CAD96CA and FGFR1 function as the cell membrane receptors of insect juvenile hormone. eLife 2025; 13:RP97189. [PMID: 40085503 PMCID: PMC11908783 DOI: 10.7554/elife.97189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Juvenile hormone (JH) is important to maintain insect larval status; however, its cell membrane receptor has not been identified. Using the lepidopteran insect Helicoverpa armigera (cotton bollworm), a serious agricultural pest, as a model, we determined that receptor tyrosine kinases (RTKs) cadherin 96ca (CAD96CA) and fibroblast growth factor receptor homologue (FGFR1) function as JH cell membrane receptors by their roles in JH-regulated gene expression, larval status maintaining, rapid intracellular calcium increase, phosphorylation of JH intracellular receptor MET1 and cofactor Taiman, and high affinity to JH III. Gene knockout of Cad96ca and Fgfr1 by CRISPR/Cas9 in embryo and knockdown in various insect cells, and overexpression of CAD96CA and FGFR1 in mammalian HEK-293T cells all supported CAD96CA and FGFR1 transmitting JH signal as JH cell membrane receptors.
Collapse
Affiliation(s)
- Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Xin-Le Kang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Yan-Li Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Qiao Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| |
Collapse
|
2
|
Konopová B. Evolution of insect metamorphosis - an update. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101289. [PMID: 39490982 DOI: 10.1016/j.cois.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Metamorphosis endowed the insects with properties that enabled them to conquer the Earth. It is a hormonally controlled morphogenetic process that transforms the larva into the adult. Metamorphosis appeared with the origin of wings and flight. The sesquiterpenoid juvenile hormone (JH) suppresses wing morphogenesis and ensures that metamorphosis takes place at the right ontogenetic time. This review explores the origin of insect metamorphosis and the ancestral function of JH. Fossil record shows that the first Paleozoic winged insects had (hemimetabolous) metamorphosis, and their larvae were likely aquatic. In the primitive wingless silverfish that lacks metamorphosis, JH is essential for late embryogenesis and reproduction. JH production after the embryo dorsal closure promotes hatching and terminal tissue maturation.
Collapse
Affiliation(s)
- Barbora Konopová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
3
|
Han S, Wang X, Han H, Wang D, He Y. Hairy and Krüppel homolog 1 Comediate the Action of Juvenile Hormone/ Methoprene-Tolerant Signaling Pathway in Vitellogenesis of Spodoptera frugiperda (J.E. Smith). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1122-1130. [PMID: 39745858 DOI: 10.1021/acs.jafc.4c08653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Spodoptera frugiperda is a major migratory invasive pest and is of global concern. Vitellogenesis, a crucial process for population multiplication in oviparous insects, is regulated by endocrine hormones. In this study, three primary responders to JH signaling, the JH receptor gene Met, and the downstream transcription factor Kr-h1 and Hairy, were first cloned and identified. RNA interference results showed that silencing SfMet significantly down-regulated the transcription levels of SfKr-h1 and SfHairy, as well as the key reproductive genes Vitellogenin (SfVg) and Vitellogenin receptor (SfVgR). Similarly, silencing SfKr-h1 and SfHairy also inhibited the transcription of SfVg and SfVgR. Silencing of SfMet, SfKr-h1, and SfHairy genes resulted in blocked ovarian development and a significant decrease in reproduction. These findings confirm that Hairy and Kr-h1 comediate the action of the JH-Met signaling pathway in vitellogenesis of S. frugiperda, providing new targets and insights for pest control.
Collapse
Affiliation(s)
- Shipeng Han
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271000, P. R. China
| | - Xiaoqi Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071000, P. R. China
| | - Hui Han
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong 277000, P. R. China
| | - Da Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071000, P. R. China
| | - Yunzhuan He
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071000, P. R. China
| |
Collapse
|
4
|
Barton LJ, Sanny J, Packard Dawson E, Nouzova M, Noriega FG, Stadtfeld M, Lehmann R. Juvenile hormones direct primordial germ cell migration to the embryonic gonad. Curr Biol 2024; 34:505-518.e6. [PMID: 38215744 PMCID: PMC10872347 DOI: 10.1016/j.cub.2023.12.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024]
Abstract
Germ cells are essential to sexual reproduction. Across the animal kingdom, extracellular signaling isoprenoids, such as retinoic acids (RAs) in vertebrates and juvenile hormones (JHs) in invertebrates, facilitate multiple processes in reproduction. Here we investigated the role of these potent signaling molecules in embryonic germ cell development, using JHs in Drosophila melanogaster as a model system. In contrast to their established endocrine roles during larval and adult germline development, we found that JH signaling acts locally during embryonic development. Using an in vivo biosensor, we observed active JH signaling first within and near primordial germ cells (PGCs) as they migrate to the developing gonad. Through in vivo and in vitro assays, we determined that JHs are both necessary and sufficient for PGC migration. Analysis into the mechanisms of this newly uncovered paracrine JH function revealed that PGC migration was compromised when JHs were decreased or increased, suggesting that specific titers or spatiotemporal JH dynamics are required for robust PGC colonization of the gonad. Compromised PGC migration can impair fertility and cause germ cell tumors in many species, including humans. In mammals, retinoids have many roles in development and reproduction. We found that like JHs in Drosophila, RA was sufficient to impact mouse PGC migration in vitro. Together, our study reveals a previously unanticipated role of isoprenoids as local effectors of pre-gonadal PGC development and suggests a broadly shared mechanism in PGC migration.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Justina Sanny
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Emily Packard Dawson
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Marcela Nouzova
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, 11200 SW 8(th) Street, Miami, FL 33199, USA; Institute of Parasitology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
| | - Fernando Gabriel Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, 11200 SW 8(th) Street, Miami, FL 33199, USA; Department of Parasitology, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Matthias Stadtfeld
- Sanford I. Weill Department of Medicine, Weill Cornell Medicine, 413 E 69th Street, New York, NY, USA
| | - Ruth Lehmann
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA; Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Gong ZX, Cheng FP, Xu JN, Yan WY, Wang ZL. The Juvenile-Hormone-Responsive Factor AmKr-h1 Regulates Caste Differentiation in Honey Bees. Biomolecules 2023; 13:1657. [PMID: 38002339 PMCID: PMC10669509 DOI: 10.3390/biom13111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Honey bees are typical model organisms for the study of caste differentiation, and the juvenile hormone (JH) is a crucial link in the regulatory network of caste differentiation in honey bees. To investigate the mechanism of JH-mediated caste differentiation, we analyzed the effect of the JH response gene AmKr-h1 on this process. We observed that AmKr-h1 expression levels were significantly higher in queen larvae than in worker larvae at the 48 h, 84 h, and 120 h larval stages, and were regulated by JH. Inhibiting AmKr-h1 expression in honey bee larvae using RNAi could lead to the development of larvae toward workers. We also analyzed the transcriptome changes in honey bee larvae after AmKr-h1 RNAi and identified 191 differentially expressed genes (DEGs) and 682 differentially expressed alternative splicing events (DEASEs); of these, many were related to honey bee caste differentiation. Our results indicate that AmKr-h1 regulates caste differentiation in honey bees by acting as a JH-responsive gene.
Collapse
Affiliation(s)
- Zhi-Xian Gong
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Z.-X.G.); (F.-P.C.); (J.-N.X.); (W.-Y.Y.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Fu-Ping Cheng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Z.-X.G.); (F.-P.C.); (J.-N.X.); (W.-Y.Y.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jia-Ning Xu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Z.-X.G.); (F.-P.C.); (J.-N.X.); (W.-Y.Y.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Wei-Yu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Z.-X.G.); (F.-P.C.); (J.-N.X.); (W.-Y.Y.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Zi-Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Z.-X.G.); (F.-P.C.); (J.-N.X.); (W.-Y.Y.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| |
Collapse
|
6
|
Truman JW, Riddiford LM. Drosophila postembryonic nervous system development: a model for the endocrine control of development. Genetics 2023; 223:iyac184. [PMID: 36645270 PMCID: PMC9991519 DOI: 10.1093/genetics/iyac184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
During postembryonic life, hormones, including ecdysteroids, juvenile hormones, insulin-like peptides, and activin/TGFβ ligands act to transform the larval nervous system into an adult version, which is a fine-grained mosaic of recycled larval neurons and adult-specific neurons. Hormones provide both instructional signals that make cells competent to undergo developmental change and timing cues to evoke these changes across the nervous system. While touching on all the above hormones, our emphasis is on the ecdysteroids, ecdysone and 20-hydroxyecdysone (20E). These are the prime movers of insect molting and metamorphosis and are involved in all phases of nervous system development, including neurogenesis, pruning, arbor outgrowth, and cell death. Ecdysteroids appear as a series of steroid peaks that coordinate the larval molts and the different phases of metamorphosis. Each peak directs a stereotyped cascade of transcription factor expression. The cascade components then direct temporal programs of effector gene expression, but the latter vary markedly according to tissue and life stage. The neurons read the ecdysteroid titer through various isoforms of the ecdysone receptor, a nuclear hormone receptor. For example, at metamorphosis the pruning of larval neurons is mediated through the B isoforms, which have strong activation functions, whereas subsequent outgrowth is mediated through the A isoform through which ecdysteroids play a permissive role to allow local tissue interactions to direct outgrowth. The major circulating ecdysteroid can also change through development. During adult development ecdysone promotes early adult patterning and differentiation while its metabolite, 20E, later evokes terminal adult differentiation.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Noncoding RNA Regulation of Hormonal and Metabolic Systems in the Fruit Fly Drosophila. Metabolites 2023; 13:metabo13020152. [PMID: 36837772 PMCID: PMC9967906 DOI: 10.3390/metabo13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The importance of RNAs is commonly recognised thanks to protein-coding RNAs, whereas non-coding RNAs (ncRNAs) were conventionally regarded as 'junk'. In the last decade, ncRNAs' significance and roles are becoming noticeable in various biological activities, including those in hormonal and metabolic regulation. Among the ncRNAs: microRNA (miRNA) is a small RNA transcript with ~20 nucleotides in length; long non-coding RNA (lncRNA) is an RNA transcript with >200 nucleotides; and circular RNA (circRNA) is derived from back-splicing of pre-mRNA. These ncRNAs can regulate gene expression levels at epigenetic, transcriptional, and post-transcriptional levels through various mechanisms in insects. A better understanding of these crucial regulators is essential to both basic and applied entomology. In this review, we intend to summarise and discuss the current understanding and knowledge of miRNA, lncRNA, and circRNA in the best-studied insect model, the fruit fly Drosophila.
Collapse
|
8
|
Wu JJ, Chen F, Yang R, Shen CH, Ze LJ, Jin L, Li GQ. Knockdown of Ecdysone-Induced Protein 93F Causes Abnormal Pupae and Adults in the Eggplant Lady Beetle. BIOLOGY 2022; 11:1640. [PMID: 36358341 PMCID: PMC9687827 DOI: 10.3390/biology11111640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 05/11/2025]
Abstract
Ecdysone-induced protein 93F (E93) plays triple roles during post-embryonic development in insects whose juvenile instars are more than four. However, it only acts as a specifier of adult structures in Drosophila flies whose larval instars are fixed at three. In this study, we determined the functions of E93 in the eggplant lady beetle (Henosepilachna vigintioctopunctata), which has four larval instars. We uncovered that E93 was abundantly expressed at the prepupal and pupal stages. A precocious inhibition of the juvenile hormone signal by RNA interference (RNAi) of HvKr-h1 or HvHairy, two vital downstream developmental effectors, at the penultimate instar larval stage increased the expression of E93, Conversely, ingestion of JH by the third-instar larvae stimulated the expression of HvKr-h1 but repressed the transcription of either HvE93X1 or HvE93X2. However, disturbance of the JH signal neither drove premature metamorphosis nor caused supernumerary instars. In contrast, depletion of E93 at the third- and fourth-instar larval and prepupal stages severely impaired pupation and caused a larval-pupal mixed phenotype: pupal spines and larval scoli were simultaneously presented on the cuticle. RNAi of E93 at the pupal stage affected adult eclosion. When the beetles had suffered from a dsE93 injection at the fourth-instar larval and pupal stages, a few resultant adults emerged, with separated elytra, abnormally folded hindwings, a small body size and short appendages. Taken together, our results suggest the larval instars are fixed in H. vigintioctopunctata; E93 serves as a repressor of larval characters and a specifier of adult structures during the larval-pupal-adult transition.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
He Q, Zhang Y. Kr-h1, a Cornerstone Gene in Insect Life History. Front Physiol 2022; 13:905441. [PMID: 35574485 PMCID: PMC9092015 DOI: 10.3389/fphys.2022.905441] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Insect life cycle is coordinated by hormones and their downstream effectors. Krüppel homolog1 (Kr-h1) is one of the crucial effectors which mediates the actions of the two critical hormones of insects, the juvenile hormone (JH) and 20-hydroxyecdysone (20E). It is a transcription factor with a DNA-binding motif of eight C2H2 zinc fingers which is found to be conserved among insect orders. The expression of Kr-h1 is fluctuant during insect development with high abundance in juvenile instars and lower levels in the final instar and pupal stage, and reappearance in adults, which is governed by the coordination of JH, 20E, and miRNAs. The dynamic expression pattern of Kr-h1 is closely linked to its function in the entire life of insects. Over the past several years, accumulating studies have advanced our understanding of the role of Kr-h1 during insect development. It acts as a universal antimetamorphic factor in both hemimetabolous and holometabolous species by directly inhibiting the transcription of 20E signaling genes Broad-Complex (Br-C) and Ecdysone induced protein 93F (E93), and steroidogenic enzyme genes involved in ecdysone biosynthesis. Meanwhile, it promotes vitellogenesis and ovarian development in the majority of studied insects. In addition, Kr-h1 regulates insect behavioral plasticity and caste identity, neuronal morphogenesis, maturation of sexual behavior, as well as embryogenesis and metabolic homeostasis. Hence, Kr-h1 acts as a cornerstone regulator in insect life.
Collapse
Affiliation(s)
- Qianyu He
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuanxi Zhang
- Daqing Municipal Ecology and Environment Bureau, Daqing, China
| |
Collapse
|
10
|
Chinmo is the larval member of the molecular trinity that directs Drosophila metamorphosis. Proc Natl Acad Sci U S A 2022; 119:e2201071119. [PMID: 35377802 PMCID: PMC9169713 DOI: 10.1073/pnas.2201071119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The genome of insects with complete metamorphosis contains the instructions for making three distinct body forms, that of the larva, of the pupa, and of the adult. However, the molecular mechanisms by which each gene set is called forth and stably expressed are poorly understood. A half century ago, it was proposed that there was a set of three master genes that inhibited each other’s expression and enabled the expression of genes for each respective stage. We show that the transcription factor chinmo is essential for maintaining the larval stage in Drosophila, and with two other regulatory genes, broad and E93, makes up the trinity of mutually repressive master genes that underlie insect metamorphosis. The molecular control of insect metamorphosis from larva to pupa to adult has long been a mystery. The Broad and E93 transcription factors, which can modify chromatin domains, are known to direct the production of the pupa and the adult, respectively. We now show that chinmo, a gene related to broad, is essential for the repression of these metamorphic genes. Chinmo is strongly expressed during the formation and growth of the larva and its removal results in the precocious expression of broad and E93 in the first stage larva, causing a shift from larval to premetamorphic functions. This trinity of Chinmo, Broad, and E93 regulatory factors is mutually inhibitory. The interaction of this network with regulatory hormones likely ensures the orderly progression through insect metamorphosis.
Collapse
|
11
|
Sun YY, Fu DY, Liu B, Wang LJ, Chen H. Roles of Krüppel Homolog 1 and Broad-Complex in the Development of Dendroctonus armandi (Coleoptera: Scolytinae). Front Physiol 2022; 13:865442. [PMID: 35464080 PMCID: PMC9019567 DOI: 10.3389/fphys.2022.865442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
In insects, metamorphosis is controlled by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Krüppel homolog 1 (Kr-h1), a key JH-early inducible gene, is responsible for the suppression of metamorphosis and the regulation of the Broad-Complex (Br-C) gene, which is induced by 20E and functions as a “pupal specifier”. In this study, we identified and characterized the expression patterns and tissue distribution of DaKr-h1 and DaBr-C at various developmental stages of Dendroctonus armandi. The expression of the two genes was induced by JH analog (JHA) methoprene and 20E, and their functions were investigated by RNA interference. DaKr-h1 and DaBr-C were predominantly expressed in the heads of larvae and were significantly downregulated during the molting stage. In contrast, the DaKr-h1 transcript level was highest in the adult anterior midgut. DaBr-C was mainly expressed in female adults, with the highest transcript levels in the ovaries. In the larval and pupal stages, both JHA and 20E significantly induced DaKr-h1, but only 20E significantly induced DaBr-C, indicating the importance of hormones in metamorphosis. DaKr-h1 knockdown in larvae upregulated DaBr-C expression, resulting in precocious metamorphosis from larvae to pupae and the formation of miniature pupae. DaKr-h1 knockdown in pupae suppressed DaBr-C expression, increased emergence, caused abnormal morphology, and caused the formation of small-winged adults. These results suggest that DaKr-h1 is required for the metamorphosis of D. armandi. Our findings provide insight into the roles of DaKr-h1 and DaBr-C in JH-induced transcriptional repression and highlight DaKr-h1 as a potential target for metamorphosis suppression in D. armandi.
Collapse
Affiliation(s)
- Ya-Ya Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Dan-Yang Fu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Bin Liu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Lin-Jun Wang
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- *Correspondence: Hui Chen,
| |
Collapse
|
12
|
Wang X, Zhou Y, Guan J, Cheng Y, Lu Y, Wei Y. FKBP39 Controls the Larval Stage JH Activity and Development in Drosophila melanogaster. INSECTS 2022; 13:insects13040330. [PMID: 35447772 PMCID: PMC9030728 DOI: 10.3390/insects13040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Two endocrine hormones, ecdysone and juvenile hormone (JH), control insect development and reproduction. Some studies in the literature have suggested that FKBP39 functions as a transcriptional factor and regulates the JH pathway in Drosophila. However, the physiological roles of FKBP39 are still elusive. To determine the FKBP39 roles in vivo, we first developed an antibody to check the FKBP39 expression pattern and then detected JH activity-related phenotypes in fkbp39 mutants, such as pupariation, reproduction, and Kr-h1 expression. We found that FKBP39 expresses at a high level and controls JH activity at the larval stage. Moreover, we found that rp49, the most widely used reference gene for Real-time quantitative PCR (qRT-PCR), significantly decreased in the fkbp39 mutant. This work will provide valuable information for studies on JH activity and insect development. Abstract FK506-binding protein 39kD (FKBP39) localizes in the nucleus and contains multiple functional domains. Structural analysis suggests that FKBP39 might function as a transcriptional factor and control juvenile hormone (JH) activity. Here, we show that FKBP39 expresses at a high level and localizes in the nucleolus of fat body cells during the first two larval stages and early third larval stage. The fkbp39 mutant displays delayed larval-pupal transition and an increased expression of Kr-h1, the main mediator of the JH pathway, at the early third larval stage. Moreover, the fkbp39 mutant has a fertility defect that is independent of JH activity. Interestingly, the expression of rp49, the most widely used reference gene for qRT-PCR in Drosophila, significantly decreased in the fkbp39 mutant, suggesting that FKBP39 might regulate ribosome assembly. Taken together, our data demonstrate the expression pattern and physiological roles of FKBP39 in Drosophila.
Collapse
Affiliation(s)
- Xinyu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.Z.); (J.G.); (Y.C.); (Y.L.)
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Ying Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.Z.); (J.G.); (Y.C.); (Y.L.)
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jianwen Guan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.Z.); (J.G.); (Y.C.); (Y.L.)
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yang Cheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.Z.); (J.G.); (Y.C.); (Y.L.)
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Lu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.Z.); (J.G.); (Y.C.); (Y.L.)
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Youheng Wei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.Z.); (J.G.); (Y.C.); (Y.L.)
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
13
|
Gospocic J, Glastad KM, Sheng L, Shields EJ, Berger SL, Bonasio R. Kr-h1 maintains distinct caste-specific neurotranscriptomes in response to socially regulated hormones. Cell 2021; 184:5807-5823.e14. [PMID: 34739833 DOI: 10.1016/j.cell.2021.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
Abstract
Behavioral plasticity is key to animal survival. Harpegnathos saltator ants can switch between worker and queen-like status (gamergate) depending on the outcome of social conflicts, providing an opportunity to study how distinct behavioral states are achieved in adult brains. Using social and molecular manipulations in live ants and ant neuronal cultures, we show that ecdysone and juvenile hormone drive molecular and functional differences in the brains of workers and gamergates and direct the transcriptional repressor Kr-h1 to different target genes. Depletion of Kr-h1 in the brain caused de-repression of "socially inappropriate" genes: gamergate genes were upregulated in workers, whereas worker genes were upregulated in gamergates. At the phenotypic level, loss of Kr-h1 resulted in the emergence of worker-specific behaviors in gamergates and gamergate-specific traits in workers. We conclude that Kr-h1 is a transcription factor that maintains distinct brain states established in response to socially regulated hormones.
Collapse
Affiliation(s)
- Janko Gospocic
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl M Glastad
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lihong Sheng
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Emily J Shields
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shelley L Berger
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania School of Arts and Sciences, Philadelphia, PA 19104, USA.
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Cross-talk of insulin-like peptides, juvenile hormone, and 20-hydroxyecdysone in regulation of metabolism in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2021; 118:2023470118. [PMID: 33526700 DOI: 10.1073/pnas.2023470118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Female mosquitoes feed sequentially on carbohydrates (nectar) and proteins (blood) during each gonadotrophic cycle to become reproductively competent and effective disease vectors. Accordingly, metabolism is synchronized to support this reproductive cyclicity. However, regulatory pathways linking metabolism to reproductive cycles are not fully understood. Two key hormones, juvenile hormone (JH) and ecdysteroids (20-hydroxyecdysone, 20E, is the most active form) govern female mosquito reproduction. Aedes aegypti genome codes for eight insulin-like peptides (ILPs) that are critical for controlling metabolism. We examined the effects of the JH and 20E pathways on mosquito ILP expression to decipher regulation of metabolism in a reproducing female mosquito. Chromatin immunoprecipitation assays showed genomic interactions between ilp genes and the JH receptor, methoprene-tolerant, a transcription factor, Krüppel homolog 1 (Kr-h1), and two isoforms of the ecdysone response early gene, E74. The luciferase reporter assays showed that Kr-h1 activates ilps 2, 6, and 7, but represses ilps 4 and 5 The 20E pathway displayed the opposite effect in the regulation of ilps E74B repressed ilps 2 and 6, while E74A activated ilps 4 and 5 Combining RNA interference, CRISPR gene tagging and enzyme-linked immunosorbent assay, we have shown that the JH and 20E regulate protein levels of all eight Ae. aegypti ILPs. Thus, we have established a regulatory axis between ILPs, JH, and 20E in coordination of metabolism during gonadotrophic cycles of Ae. aegypti.
Collapse
|
15
|
Arya SK, Singh S, Upadhyay SK, Tiwari V, Saxena G, Verma PC. RNAi-based gene silencing in Phenacoccus solenopsis and its validation by in planta expression of a double-stranded RNA. PEST MANAGEMENT SCIENCE 2021; 77:1796-1805. [PMID: 33270964 DOI: 10.1002/ps.6204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cotton is a cash crop majorly affected by many hemipteran pests, among them the cotton mealybug, Phenacoccus solenopsis. Cotton mealybug attack has a devastating effect on cotton production and causes huge yield losses. RESULTS In this study, 25 potential RNA interference (RNAi) target genes were selected from the iBeetle database and a transcriptome data set for P. solenopsis. To assess the effectiveness of the selected target genes, three methods were utilized to deliver double-stranded (ds)RNA (ingestion, artificial diet bioassay and transient gene silencing). dsRNA molecules at different concentrations were fed to insects and insect mortality was recorded for each target gene. Based on the mortality data, three genes, Krüppel homologue-1, ADP-ATP/Translocase and IDGF-1, were selected for further gene expression studies using a reduced concentration of dsRNA (5 μg/ml). Of the three genes, Krüppel homologue-1 showed significantly downregulated expression (by 70.81% and 84.33%) at two different time points (8 and 14 days). An RNAi silencing construct was designed for Krüppel homologue-1 under control of the double enhancer CamV35S promoter in the plant binary vector. Significant downregulation of gene expression, by 66.69% and 81.80%, was found for Krüppel homologue-1 using transient gene silencing at the same time intervals. CONCLUSION This work provides the first evidence for targeting the Krüppel homologue-1 gene in a hemipteran pest, P. solenopsis, using RNAi technology through oral delivery and in planta-based transient gene silencing methods. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Surjeet Kumar Arya
- Plant Molecular Biology and Genetic Engineering Department, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, India
| | - Sanchita Singh
- Plant Molecular Biology and Genetic Engineering Department, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Department of Botany, Lucknow University, Lucknow, Uttar Pradesh, 226007, India
| | | | - Vipin Tiwari
- Plant Molecular Biology and Genetic Engineering Department, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Gauri Saxena
- Department of Botany, Lucknow University, Lucknow, Uttar Pradesh, 226007, India
- Department of Botany, Panjab University, Chandigarh, India
| | - Praveen C Verma
- Plant Molecular Biology and Genetic Engineering Department, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
16
|
Zhu Z, Tong C, Qiu B, Yang H, Xu J, Zheng S, Song Q, Feng Q, Deng H. 20E-mediated regulation of BmKr-h1 by BmKRP promotes oocyte maturation. BMC Biol 2021; 19:39. [PMID: 33632227 PMCID: PMC7905918 DOI: 10.1186/s12915-021-00952-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/06/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Krüppel homolog 1 (Kr-h1) is a critical transcription factor for juvenile hormone (JH) signaling, known to play a key role in regulating metamorphosis and adult reproduction in insects. Kr-h1 can also be induced by molting hormone 20-hydroxyecdysone (20E), however, the underlying mechanism of 20E-induced Kr-h1 expression remains unclear. In the present study, we investigated the molecular mechanism of Kr-h1 induction by 20E in the reproductive system of a model lepidopteran insect, Bombyx mori. RESULTS Developmental and tissue-specific expression analysis revealed that BmKr-h1 was highly expressed in ovaries during the late pupal and adult stages and the expression was induced by 20E. RNA interference (RNAi)-mediated depletion of BmKr-h1 in female pupae severely repressed the transcription of vitellogenin receptor (VgR), resulting in the reduction in vitellogenin (Vg) deposition in oocytes. BmKr-h1 specifically bound the Kr-h1 binding site (KBS) between - 2818 and - 2805 nt upstream of BmVgR and enhanced the transcription of BmVgR. A 20E cis-regulatory element (CRE) was identified in the promoter of BmKr-h1 and functionally verified using luciferase reporter assay, EMSA and DNA-ChIP. Using pull-down assays, we identified a novel transcription factor B. mori Kr-h1 regulatory protein (BmKRP) that specifically bound the BmKr-h1 CRE and activated its transcription. CRISPR/Cas9-mediated knockout of BmKRP in female pupae suppressed the transcription of BmKr-h1 and BmVgR, resulting in arrested oogenesis. CONCLUSION We identified BmKRP as a new transcription factor mediating 20E regulation of B. mori oogenesis. Our data suggests that induction of BmKRP by 20E regulates BmKr-h1 expression, which in turn induces BmVgR expression to facilitate Vg uptake and oogenesis.
Collapse
Affiliation(s)
- Zidan Zhu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chunmei Tong
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Binbin Qiu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hongguang Yang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiahui Xu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sichun Zheng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Qili Feng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Huimin Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
17
|
Zhu ZD, Hu QH, Tong CM, Yang HG, Zheng SC, Feng QL, Deng HM. Transcriptomic analysis reveals the regulation network of BmKrüppel homolog 1 in the oocyte development of Bombyx mori. INSECT SCIENCE 2021; 28:47-62. [PMID: 32283000 DOI: 10.1111/1744-7917.12747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 06/11/2023]
Abstract
Krüppel homolog 1 (Kr-h1), a zinc finger transcription factor, is involved in the metamorphosis and adult reproduction of insects. However, the role of Kr-h1 in reproduction of holometabolic insects remains to be elucidated. The regulation network of Kr-h1-associated genes in the reproduction in Bombyx mori was investigated in this study. The higher expression level of BmKr-h1 in the ovaries was detected during the late pupal stage and adults. RNA interference (RNAi)-mediated depletion of BmKr-h1 in the female at day 6 of pupae resulted in abnormal oocytes at 48 h post-double-stranded RNA treatment, which showed less yolk protein deposition and partially transparent chorion. RNA-seq and subsequent differentially expressed transcripts analysis showed that knockdown of BmKr-h1 caused a decrease in the expression of 2882 genes and an increase in the expression of 2565 genes in the oocytes at day 8 of pupae. Totally, 27 genes coding for transcription factors were down-regulated, while six genes coding for other transcription factors were up-regulated. BmKr-h1 bound to the Kr-h1 binding site of the transcription factors AP-1 (activating protein-1) and FOXG1 to increase their messenger RNA transcripts in the BmN cells, respectively. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses of that positively co-expressed with AP-1 and FOXG1 transcripts showed mainly enrichment in the metabolic-related pathways, the nutrient absorption and the yolk protein absorption processes. These data suggested that BmKr-h1 might directly regulate the metabolic-related pathways, the nutrient absorption and the yolk protein absorption processes or probably through AP-1 and /or FOXG1 to regulate oocyte development.
Collapse
Affiliation(s)
- Zi-Dan Zhu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-Hao Hu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Chun-Mei Tong
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hong-Guang Yang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Si-Chun Zheng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-Li Feng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hui-Min Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
18
|
Martín D, Chafino S, Franch-Marro X. How stage identity is established in insects: the role of the Metamorphic Gene Network. CURRENT OPINION IN INSECT SCIENCE 2021; 43:29-38. [PMID: 33075581 DOI: 10.1016/j.cois.2020.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Proper formation of adult insects requires the integration of spatial and temporal regulatory axes. Whereas spatial information confers identity to each tissue, organ and appendage, temporal information specifies at which stage of development the animal is. Regardless of the type of post-embryonic development, either hemimetabolous or holometabolous, temporal specificity is achieved through interactions between the temporal identity genes Kr-h1, E93 and Br-C, whose sequential expression is controlled by the two major developmental hormones, 20-hydroxyecdysone and Juvenile hormone. Given the intimate regulatory connection between these three factors to specify life stage identity, we dubbed the regulatory axis that comprises these genes as the Metamorphic Gene Network (MGN). In this review, we survey the molecular mechanisms underlying the control by the MGN of stage identity and progression in hemimetabolous and holometabolous insects.
Collapse
Affiliation(s)
- David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Silvia Chafino
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
19
|
Ingham VA, Elg S, Nagi SC, Dondelinger F. Capturing the transcription factor interactome in response to sub-lethal insecticide exposure. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:None. [PMID: 34977825 PMCID: PMC8702396 DOI: 10.1016/j.cris.2021.100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/15/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022]
Abstract
The increasing levels of pesticide resistance in agricultural pests and disease vectors represents a threat to both food security and global health. As insecticide resistance intensity strengthens and spreads, the likelihood of a pest encountering a sub-lethal dose of pesticide dramatically increases. Here, we apply dynamic Bayesian networks to a transcriptome time-course generated using sub-lethal pyrethroid exposure on a highly resistant Anopheles coluzzii population. The model accounts for circadian rhythm and ageing effects allowing high confidence identification of transcription factors with key roles in pesticide response. The associations generated by this model show high concordance with lab-based validation and identifies 44 transcription factors putatively regulating insecticide-responsive transcripts. We identify six key regulators, with each displaying differing enrichment terms, demonstrating the complexity of pesticide response. The considerable overlap of resistance mechanisms in agricultural pests and disease vectors strongly suggests that these findings are relevant in a wide variety of pest species.
Collapse
|
20
|
He Q, Zhang Y, Dong W. MicroRNA miR-927 targets the juvenile hormone primary response gene Krüppel homolog1 to control Drosophila developmental growth. INSECT MOLECULAR BIOLOGY 2020; 29:545-554. [PMID: 32715555 DOI: 10.1111/imb.12662] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Krüppel homolog1 (Kr-h1) is a juvenile hormone (JH) response transcriptional factor that transduces JH signalling to repress insect metamorphosis in both hemimetabolous and holometabolous insects. While few studies about microRNAs (miRNAs) downregulating Kr-h1 expression to mediate insect metamorphosis have been demonstrated in hemimetabolous insects, the miRNAs that target the Kr-h1 of holometabolous insects have not been reported. Here, we identified two miR-927 binding sites within the 3'UTR region of Kr-h1 in Drosophila melanogaster, and miR-927 was found to downregulate the expression of Kr-h1. The expression profiles of miR-927 and Kr-h1 displayed relatively opposite pattern during most of the larval development stages. Overexpression of miR-927 in the fat body significantly decreased the expression of Kr-h1 and resulted in reduced oviposition, increased mortality, delayed pupation, and reduced pupal size. Notably, the co-overexpression of Kr-h1 rescued the developmental and growth defects associated with miR-927 overexpression, indicating that Kr-h1 is a biologically relevant target of miR-927. Moreover, the expression of miR-927 was found to be repressed by JH and its receptor Met/gce, forming a positive regulatory loop of JH signalling. Overall, our studies support a conserved role for the JH/miRNA/Kr-h1 regulatory axis in growth control during insect development.
Collapse
Affiliation(s)
- Q He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Y Zhang
- Environmental Monitoring Center Station, DaQing Environmental Protection Agency, Daqing, China
| | - W Dong
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
21
|
Vasudevan D, Neuman SD, Yang A, Lough L, Brown B, Bashirullah A, Cardozo T, Ryoo HD. Translational induction of ATF4 during integrated stress response requires noncanonical initiation factors eIF2D and DENR. Nat Commun 2020; 11:4677. [PMID: 32938929 PMCID: PMC7495428 DOI: 10.1038/s41467-020-18453-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 08/17/2020] [Indexed: 01/25/2023] Open
Abstract
The Integrated Stress Response (ISR) helps metazoan cells adapt to cellular stress by limiting the availability of initiator methionyl-tRNA for translation. Such limiting conditions paradoxically stimulate the translation of ATF4 mRNA through a regulatory 5' leader sequence with multiple upstream Open Reading Frames (uORFs), thereby activating stress-responsive gene expression. Here, we report the identification of two critical regulators of such ATF4 induction, the noncanonical initiation factors eIF2D and DENR. Loss of eIF2D and DENR in Drosophila results in increased vulnerability to amino acid deprivation, susceptibility to retinal degeneration caused by endoplasmic reticulum (ER) stress, and developmental defects similar to ATF4 mutants. eIF2D requires its RNA-binding motif for regulation of 5' leader-mediated ATF4 translation. Consistently, eIF2D and DENR deficient human cells show impaired ATF4 protein induction in response to ER stress. Altogether, our findings indicate that eIF2D and DENR are critical mediators of ATF4 translational induction and stress responses in vivo.
Collapse
Affiliation(s)
- Deepika Vasudevan
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Sarah D Neuman
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Amy Yang
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Lea Lough
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Brian Brown
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Arash Bashirullah
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
22
|
Jaegers J, Gismondi E. Gammarid exposure to pyriproxyfen and/or cadmium: what effects on the methylfarnesoate signalling pathway? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31330-31338. [PMID: 32488711 DOI: 10.1007/s11356-020-09419-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Due to expected changes in climate, it is predicted that disease-carrying mosquitoes will expand their geographical range, resulting in increased use of insect growth regulators (IGRs) to face their proliferation. Among IGRs, pyriproxyfen (PXF) is widely used and has been shown to prevent larvae from developing into adults, rendering them unable to reproduce. However, because of the similarity of crustacean and insect endocrine systems, PXF could also impact aquatic crustaceans. In addition, when spreading in the environment, PXF is found in a mixture with other pollutants such as metallic trace elements, which could alter its effect. Consequently, the present work was devoted to analysing the effects of PXF on the methylfarnesoate (MF) hormonal pathway of the freshwater amphipod Gammarus pulex, as well as its combined binary effects with cadmium (Cd), by measuring MF concentration, as well as the relative transcriptional expression of the farnesoic acid O-methyltransferase (FAMeT) (enzyme limiting the MF production), the methoprene-tolerant receptor (Met), and the broad-complex (BrC) as a transcription factor. Results revealed that single exposures to PXF or Cd have mainly overexpressed FAMeT, Met, and BrC but did not significantly affect MF concentration. Conversely, the mixture exposures seemed to suppress these effects and even achieve antagonistic effects. This work confirmed that PXF single exposure could impact non-target organisms such as amphipods through changes in hormonal pathways of MF. In the same way, it highlighted that Cd could also impair the endocrine system of exposed organisms. However, antagonistic effects have been observed in exposure to mixtures, suggesting different long-term consequences on the growth of amphipods under realistic exposure conditions.
Collapse
Affiliation(s)
- Jeremy Jaegers
- Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, University of Liège, Bât. B6C, 11 allée du 6 Août, B-4000, Sart-Tilman, Belgium.
| | - Eric Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, University of Liège, Bât. B6C, 11 allée du 6 Août, B-4000, Sart-Tilman, Belgium
| |
Collapse
|
23
|
Ahmed TH, Saunders TR, Mullins D, Rahman MZ, Zhu J. Molecular action of pyriproxyfen: Role of the Methoprene-tolerant protein in the pyriproxyfen-induced sterilization of adult female mosquitoes. PLoS Negl Trop Dis 2020; 14:e0008669. [PMID: 32866146 PMCID: PMC7485974 DOI: 10.1371/journal.pntd.0008669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/11/2020] [Accepted: 08/03/2020] [Indexed: 01/02/2023] Open
Abstract
Exposure of adult mosquitoes to pyriproxyfen (PPF), an analog of insect juvenile hormone (JH), has shown promise to effectively sterilize female mosquitoes. However, the underlying mechanisms of the PPF-induced decrease in mosquito fecundity are largely unknown. We performed a comprehensive study to dissect the mode of PPF action in Aedes aegypti mosquitoes. Exposure to PPF prompted the overgrowth of primary follicles in sugar-fed Ae. aegypti females but blocked the development of primary follicles at Christopher’s Stage III after blood feeding. Secondary follicles were precociously activated in PPF-treated mosquitoes. Moreover, PPF substantially altered the expression of many genes that are essential for mosquito physiology and oocyte development in the fat body and ovary. In particular, many metabolic genes were differentially expressed in response to PPF treatment, thereby affecting the mobilization and utilization of energy reserves. Furthermore, PPF treatment on the previtellogenic female adults considerably modified mosquito responses to JH and 20-hydroxyecdysone (20E), two major hormones that govern mosquito reproduction. Krüppel homolog 1, a JH-inducible transcriptional regulator, showed consistently elevated expression after PPF exposure. Conversely, PPF upregulated the expression of several key players of the 20E regulatory cascades, including HR3 and E75A, in the previtellogenic stage. After blood-feeding, the expression of these 20E response genes was significantly weaker in PPF-treated mosquitoes than the solvent-treated control groups. RNAi-mediated knockdown of the Methoprene-tolerant (Met) protein, the JH receptor, partially rescued the impaired follicular development after PPF exposure and substantially increased the hatching of the eggs produced by PPF-treated female mosquitoes. Thus, the results suggested that PPF relied on Met to exert its sterilizing effects on female mosquitoes. In summary, this study finds that PPF exposure disturbs normal hormonal responses and metabolism in Ae. aegypti, shedding light on the molecular targets and the downstream signaling pathways activated by PPF. Aedes aegypti mosquitoes are responsible for the transmission of dengue, yellow fever, chikungunya, and Zika fever. Insecticides are widely used as the primary tool in the prevention and control of these infectious diseases. In light of the rapid increase of insecticide resistance in mosquito populations, there is an urgent need to find new classes of insecticides with a different mode of action. Here we found that pyriproxyfen, an analog of insect juvenile hormone (JH), had a large impact on the oocyte development, both before and after blood feeding, in female mosquitoes. Pyriproxyfen disturbed normal hormonal responses and caused metabolic shifting in female adults. These actions appear to collectively impair oocyte development and substantially reduce viable progenies of female mosquitoes. Besides, we demonstrated the involvement of the JH receptor Met in pyriproxyfen-induced female sterilization. This study significantly advances our understanding of mosquito reproductive biology and the molecular basis of pyriproxyfen action, which are invaluable for the development of new mosquito control strategies.
Collapse
Affiliation(s)
- Tahmina Hossain Ahmed
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - T. Randolph Saunders
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Donald Mullins
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Mohammad Zillur Rahman
- Quantitative Science Core, Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Jinsong Zhu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
24
|
Riddiford LM. Rhodnius, Golden Oil, and Met: A History of Juvenile Hormone Research. Front Cell Dev Biol 2020; 8:679. [PMID: 32850806 PMCID: PMC7426621 DOI: 10.3389/fcell.2020.00679] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Juvenile hormone (JH) is a unique sesquiterpenoid hormone which regulates both insect metamorphosis and insect reproduction. It also may be utilized by some insects to mediate polyphenisms and other life history events that are environmentally regulated. This article details the history of the research on this versatile hormone that began with studies by V. B. Wigglesworth on the "kissing bug" Rhodnius prolixus in 1934, through the discovery of a natural source of JH in the abdomen of male Hyalophora cecropia moths by C. M. Williams that allowed its isolation ("golden oil") and identification, to the recent research on its receptor, termed Methoprene-tolerant (Met). Our present knowledge of cellular actions of JH in metamorphosis springs primarily from studies on Rhodnius and the tobacco hornworm Manduca sexta, with recent studies on the flour beetle Tribolium castaneum, the silkworm Bombyx mori, and the fruit fly Drosophila melanogaster contributing to the molecular understanding of these actions. Many questions still need to be resolved including the molecular basis of competence to metamorphose, differential tissue responses to JH, and the interaction of nutrition and other environmental signals regulating JH synthesis and degradation.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| |
Collapse
|
25
|
Kidera H, Hatabu T, Takahashi KH. Apoptosis inhibition mitigates aging effects in Drosophila melanogaster. Genetica 2020; 148:69-76. [PMID: 32219590 DOI: 10.1007/s10709-020-00088-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/14/2020] [Indexed: 11/30/2022]
Abstract
Aging is a natural biological process that results in progressive loss of cell, tissue, and organ function. One of the causing factors of the aging process is the decrease in muscle mass, which has not been fully verified in Drosophila. Apoptotic cell death may result in aberrant cell loss and can eventually diminish tissue function and muscle atrophy. If so, inhibition of apoptosis may prolong longevity and reduce motor function and muscle mass decline with age in Drosophila flies. Here, we used Drosophila melanogaster as study material, and induced the overexpression of Drosophila inhibitor of apoptosis protein 1 gene to inhibit apoptosis, and investigated the effect of apoptosis inhibition on the longevity and age-related declines in flight and climbing ability and muscle mass. As a result, the inhibition of apoptosis tended to mitigate the aging effects and prolonged longevity and reduced climbing ability decline with age. The current study suggests that apoptosis inhibition could mitigate the aging effects in D. melanogaster. Although such effects have already been known in mammals, the current results suggest that the apoptosis may play a similar role in insects as well.
Collapse
Affiliation(s)
- Hiroaki Kidera
- Graduate School of Environmental Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Toshimitsu Hatabu
- Graduate School of Environmental Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Kazuo H Takahashi
- Graduate School of Environmental Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
26
|
Belles X. Krüppel homolog 1 and E93: The doorkeeper and the key to insect metamorphosis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21609. [PMID: 31385626 DOI: 10.1002/arch.21609] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Insect metamorphosis is regulated by two main hormones: ecdysone (20E), which promotes molting, and juvenile hormone (JH), which inhibits adult morphogenesis. The transduction mechanisms for the respective hormonal signals include the transcription factors Krüppel homolog 1 (Kr-h1) and E93, which are JH- and 20E-dependent, respectively. Kr-h1 is the main effector of the antimetamorphic action of JH, while E93 is a key promoter of metamorphosis. The ancestral regulatory axis of metamorphosis, which operates in insects with hemimetabolan (gradual) metamorphosis and is known as the MEKRE93 pathway, is based on Kr-h1 repression of E93. In the last juvenile stage, when the production of JH dramatically decreases, Kr-h1 expression is almost completely interrupted, E93 becomes upregulated and metamorphosis proceeds. The holometabolan (complete) metamorphosis mode of development includes the peculiar pupal stage, a sort of intermediate between the final larval instar and the adult stage. In holometabolan species, Broad-Complex (BR-C) transcription factors determine the pupal stage and E93 stimulates the expression of BR-C in the prepupa. The MEKRE93 pathway is conserved in holometabolan insects, which have added the E93/BR-C interaction loop to the ancestral (hemimetabolan) pathway during the evolution from hemimetaboly to holometaboly.
Collapse
Affiliation(s)
- Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
27
|
Marchetti G, Tavosanis G. Modulators of hormonal response regulate temporal fate specification in the Drosophila brain. PLoS Genet 2019; 15:e1008491. [PMID: 31809495 PMCID: PMC6919624 DOI: 10.1371/journal.pgen.1008491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 12/18/2019] [Accepted: 10/24/2019] [Indexed: 12/03/2022] Open
Abstract
Neuronal diversity is at the core of the complex processing operated by the nervous system supporting fundamental functions such as sensory perception, motor control or memory formation. A small number of progenitors guarantee the production of this neuronal diversity, with each progenitor giving origin to different neuronal types over time. How a progenitor sequentially produces neurons of different fates and the impact of extrinsic signals conveying information about developmental progress or environmental conditions on this process represent key, but elusive questions. Each of the four progenitors of the Drosophila mushroom body (MB) sequentially gives rise to the MB neuron subtypes. The temporal fate determination pattern of MB neurons can be influenced by extrinsic cues, conveyed by the steroid hormone ecdysone. Here, we show that the activation of Transforming Growth Factor-β (TGF-β) signalling via glial-derived Myoglianin regulates the fate transition between the early-born α’β’ and the pioneer αβ MB neurons by promoting the expression of the ecdysone receptor B1 isoform (EcR-B1). While TGF-β signalling is required in MB neuronal progenitors to promote the expression of EcR-B1, ecdysone signalling acts postmitotically to consolidate theα’β’ MB fate. Indeed, we propose that if these signalling cascades are impaired α’β’ neurons lose their fate and convert to pioneer αβ. Conversely, an intrinsic signal conducted by the zinc finger transcription factor Krüppel-homolog 1 (Kr-h1) antagonises TGF-β signalling and acts as negative regulator of the response mediated by ecdysone in promoting α’β’ MB neuron fate consolidation. Taken together, the consolidation of α’β’ MB neuron fate requires the response of progenitors to local signalling to enable postmitotic neurons to sense a systemic signal. Throughout the development of the central nervous system (CNS), a vast number of neuronal types are produced with striking precision. The unique identity of each neuronal cell type and the great cellular complexity in the CNS are established by intricate gene regulatory networks. Disruption of these identity programs leads to neurodevelopmental disorders and defects in cognition. Here, we report an important regulatory mechanism involved in consolidating neuronal fate. We show that during brain development local signalling, derived from interactions between glial cells and neuronal progenitors, is required to promote the expression of a hormone receptor in immature neurons. The perception of a systemic hormonal cue in those postmitotic neurons is fundamental for the consolidation of their neuronal fate. In this context, we additionally uncover an intrinsic regulatory mechanism that coordinates the hormone response to maintain the final neuronal fate.
Collapse
Affiliation(s)
- Giovanni Marchetti
- Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE), Germany
- * E-mail: (GM); (GT)
| | - Gaia Tavosanis
- Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE), Germany
- LIMES-Institute, University of Bonn, Germany
- * E-mail: (GM); (GT)
| |
Collapse
|
28
|
Saha TT, Roy S, Pei G, Dou W, Zou Z, Raikhel AS. Synergistic action of the transcription factors Krüppel homolog 1 and Hairy in juvenile hormone/Methoprene-tolerant-mediated gene-repression in the mosquito Aedes aegypti. PLoS Genet 2019; 15:e1008443. [PMID: 31661489 PMCID: PMC6818763 DOI: 10.1371/journal.pgen.1008443] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
Arthropod-specific juvenile hormones control numerous essential functions in development and reproduction. In the dengue-fever mosquito Aedes aegypti, in addition to its role in immature stages, juvenile hormone III (JH) governs post-eclosion (PE) development in adult females, a phase required for competence acquisition for blood feeding and subsequent egg maturation. During PE, JH through its receptor Methoprene-tolerant (Met) regulate the expression of many genes, causing either activation or repression. Met-mediated gene repression is indirect, requiring involvement of intermediate repressors. Hairy, which functions downstream of Met in the JH gene-repression hierarchy, is one such factor. Krüppel-homolog 1, a zinc-finger transcriptional factor, is directly regulated by Met and has been implicated in both activation and repression of JH-regulated genes. However, the interaction between Hairy and Kr-h1 in the JH-repression hierarchy is not well understood. Our RNAseq-based transcriptomic analysis of the Kr-h1-depleted mosquito fat body revealed that 92% of Kr-h1 repressed genes are also repressed by Met, supporting the existence of a hierarchy between Met and Kr-h1 as previously demonstrated in various insects. Notably, 130 genes are co-repressed by both Kr-h1 and Hairy, indicating regulatory complexity of the JH-mediated PE gene repression. A mosquito Kr-h1 binding site in genes co-regulated by this factor and Hairy was identified computationally. Moreover, this was validated using electrophoretic mobility shift assays. A complete phenocopy of the effect of Met RNAi depletion on target genes could only be observed after Kr-h1 and Hairy double RNAi knockdown, suggesting a synergistic action between these two factors in target gene repression. This was confirmed using a cell-culture-based luciferase reporter assay. Taken together, our results indicate that Hairy and Kr-h1 not only function as intermediate downstream factors, but also act together in a synergistic fashion in the JH/Met gene repression hierarchy. Juvenile hormone (JH) plays an essential role in preparing Aedes aegypti female mosquitoes for blood feeding, egg development, and pathogen transmission. JH acting through its receptor Methoprene-tolerant (Met) regulates the expression of large gene cohorts. JH mediated gene repression, unlike activation that is directly mediated by Met, is indirect and requires intermediate transcriptional repressors Hairy and Krüppel-homolog 1 (Kr-h1). Here, we demonstrate that Hairy and Kr-h1 can act synergistically in the JH-Met gene repression pathway in Aedes female mosquitoes. These interact directly with regulatory regions of the genes that have both Hairy and Kr-h1 binding sites. Thus, this study has significantly advanced our understanding of the complexity of the JH-mediated gene expression pathway. This research yields valuable information about the JH control of reproductive development of the mosquito A. aegypti, one of the most important vectors of human diseases.
Collapse
Affiliation(s)
- Tusar T. Saha
- Department of Entomology and Institute of Integrative Biology, University of California, Riverside, California, United States of America
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, India
| | - Sourav Roy
- Department of Entomology and Institute of Integrative Biology, University of California, Riverside, California, United States of America
- Department of Biological Sciences, University of Texas El Paso, Texas
| | - Gaofeng Pei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Dou
- Department of Entomology and Institute of Integrative Biology, University of California, Riverside, California, United States of America
- College of Plant Protection, Southwest University, Chongqing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Alexander S. Raikhel
- Department of Entomology and Institute of Integrative Biology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Jindra M. Where did the pupa come from? The timing of juvenile hormone signalling supports homology between stages of hemimetabolous and holometabolous insects. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190064. [PMID: 31438814 DOI: 10.1098/rstb.2019.0064] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Insect metamorphosis boasts spectacular cases of postembryonic development when juveniles undergo massive morphogenesis before attaining the adult form and function; in moths or flies the larvae do not even remotely resemble their adult parents. A selective advantage of complete metamorphosis (holometaboly) is that within one species the two forms with different lifestyles can exploit diverse habitats. It was the environmental adaptation and specialization of larvae, primarily the delay and internalization of wing development, that eventually required an intermediate stage that we call a pupa. It is a long-held and parsimonious hypothesis that the holometabolous pupa evolved through modification of a final juvenile stage of an ancestor developing through incomplete metamorphosis (hemimetaboly). Alternative hypotheses see the pupa as an equivalent of all hemimetabolous moulting cycles (instars) collapsed into one, and consider any preceding holometabolous larval instars free-living embryos stalled in development. Discoveries on juvenile hormone signalling that controls metamorphosis grant new support to the former hypothesis deriving the pupa from a final pre-adult stage. The timing of expression of genes that repress and promote adult development downstream of hormonal signals supports homology between postembryonic stages of hemimetabolous and holometabolous insects. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice 370 05, Czech Republic
| |
Collapse
|
30
|
Truman JW, Riddiford LM. The evolution of insect metamorphosis: a developmental and endocrine view. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190070. [PMID: 31438820 PMCID: PMC6711285 DOI: 10.1098/rstb.2019.0070] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Developmental, genetic and endocrine data from diverse taxa provide insight into the evolution of insect metamorphosis. We equate the larva–pupa–adult of the Holometabola to the pronymph–nymph–adult of hemimetabolous insects. The hemimetabolous pronymph is a cryptic embryonic stage with unique endocrinology and behavioural modifications that probably served as preadaptations for the larva. It develops in the absence of juvenile hormone (JH) as embryonic primordia undergo patterning and morphogenesis, the processes that were arrested for the evolution of the larva. Embryonic JH then drives tissue differentiation and nymph formation. Experimental treatment of pronymphs with JH terminates patterning and induces differentiation, mimicking the processes that occurred during the evolution of the larva. Unpatterned portions of primordia persist in the larva, becoming imaginal discs that form pupal and adult structures. Key transcription factors are associated with the holometabolous life stages: Krüppel-homolog 1 (Kr-h1) in the larva, broad in the pupa and E93 in the adult. Kr-h1 mediates JH action and is found whenever JH acts, while the other two genes direct the formation of their corresponding stages. In hemimetabolous forms, the pronymph has low Broad expression, followed by Broad expression through the nymphal moults, then a switch to E93 to form the adult. This article is part of the theme issue ‘The evolution of complete metamorphosis’.
Collapse
Affiliation(s)
- James W Truman
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Lynn M Riddiford
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| |
Collapse
|
31
|
Li KL, Yuan SY, Nanda S, Wang WX, Lai FX, Fu Q, Wan PJ. The Roles of E93 and Kr-h1 in Metamorphosis of Nilaparvata lugens. Front Physiol 2018; 9:1677. [PMID: 30524315 PMCID: PMC6262030 DOI: 10.3389/fphys.2018.01677] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/08/2018] [Indexed: 11/21/2022] Open
Abstract
Metamorphosis is a crucial process in insect development. Ecdysone-induced protein 93 (E93) is a determinant that promotes adult metamorphosis in both hemimetabolous and holometabolous insects. Krüppel-homolog 1 (Kr-h1), an early juvenile hormone (JH)-inducible gene, participates in JH signaling pathway controlling insect metamorphosis. In the current study, an E93 cDNA (NlE93) and two Kr-h1 cDNA variants (NlKr-h1-a and NlKr-h1-b) were cloned from Nilaparvata lugens (Stål), one of the most destructive hemimetabolous insect pests on rice. Multiple sequence alignment showed that both NlE93 and NlKr-h1 share high identity with their orthologs from other insects. The expression patterns revealed that decreasing NlKr-h1 mRNA levels were correlated with increasing NlE93 mRNA levels and vice versa. Moreover, RNA interference (RNAi) assays showed that the knockdown of one of the two genes resulted in significantly upregulated expression of the other. Correspondingly, phenotypical observation of the RNAi insects revealed that depletion of NlE93 prevented nymph–adult transition (causing a supernumerary nymphal instar), while depletion of NlKr-h1 triggered precocious formation of incomplete adult features. The results suggest that Nlkr-h1 and NlE93 are mutual repressors, fitting into the MEKRE93 pathway. The balance between these two genes plays a critical role in the metamorphosis of N. lugens determining the proper timing for activating metamorphosis during the nymphal stage.
Collapse
Affiliation(s)
- Kai Long Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, China
| | - San Yue Yuan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Satyabrata Nanda
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Xia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Feng Xiang Lai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Pin Jun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
32
|
Wang K, Fan RL, Ji WN, Zhang WW, Chen XM, Wang S, Yin L, Gao FC, Chen GH, Ji T. Transcriptome Analysis of Newly Emerged Honeybees Exposure to Sublethal Carbendazim During Larval Stage. Front Genet 2018; 9:426. [PMID: 30349555 PMCID: PMC6186791 DOI: 10.3389/fgene.2018.00426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/10/2018] [Indexed: 01/26/2023] Open
Abstract
There are increasing concerns regarding the impact of agrochemical pesticides on non-target organisms. Pesticides could cause honeybee abnormal development in response to neurotoxins such as neonicotinoid. However, knowledge of carbendazim, a widespread fungicide in beekeeping practice, influencing on honeybee (Apis mellifera L.) brain development is lacking. Large-scale transcriptome approaches were applied to determine the changes in global gene expression in the brains of newly emerged honeybees after carbendazim exposure during the larval stage. To further understand the effects of carbendazim on the brain development of honeybees, the functions of differentially expressed genes were compared between the treatment and control groups. We found that neuroregulatory genes were down-regulated after carbendazim exposure, which suggest the neurotoxic effects of this fungicide on honeybee nervous system. Carbendazim exposure also altered the expression of genes implicated in metabolism, transport, sensor, and hormone. Notably, larvae in the carbendazim-treated group observed longer time to shift into the dormant pupal state than the control group. Moreover, a low juvenile hormone and high ecdysone titers were found in the treatment group compared to control group. The data is the first report of neurotoxic effects on honeybee caused by carbendazim, and the sublethal carbendazim may disturb honeybee development and is a potential chemical threating the honeybee colonies.
Collapse
Affiliation(s)
- Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Rong-Li Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wen-Na Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wen-Wen Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiao-Mei Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuang Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Ling Yin
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Fu-Chao Gao
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guo-Hong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Xie X, Liu M, Jiang Q, Zheng H, Zheng L, Zhu D. Role of Kruppel homolog 1 (Kr-h1) in methyl farnesoate-mediated vitellogenesis in the swimming crab Portunus trituberculatus. Gene 2018; 679:260-265. [PMID: 30189269 DOI: 10.1016/j.gene.2018.08.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/14/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
Similar to the role of juvenile hormone (JH) in insects, methyl farnesoate (MF), the unepoxidized form of JH III, regulates many developmental processes in crustaceans, such as molting and reproduction. We have previously showed that the JH receptor, Methoprene-tolerant (Met), which is also a candidate receptor for MF, might be involved in the MF-mediated vitellogenesis in the swimming crab Portunus trituberculatus. In this study, the role of Kruppel homolog 1 (Kr-h1), a transcription factor downstream Met in JH signaling, was further investigated. The deduced protein of Pt-Kr-h1 contained seven repeats of zinc finger motifs, similar to Kr-h1s from other crustacean species, but differing from the eight zinc finger motifs found in insect Kr-h1s. MF treatment in vitro induced the expression of Pt-Kr-h1 in hepatopancreas but not ovary, which is similar to the MF-responsive pattern of Pt-Met as previously reported. Moreover, the expression of Pt-Kr-h1 decreased significantly after treating with Pt-Met dsRNA, strongly indicating that the Pt-Kr-h1 might be involved in the Met-mediated MF signaling pathway. RNAi of Pt-Met and Pt-Kr-h1 both led to a decrease in vitellogenin (Vg) expression, and the reduction cannot be rescued by adding MF, suggesting the regulation of vitellogenesis by MF may act through Met and Kr-h1. These results would help to enhance the current understanding of the regulatory mechanism of MF signaling, and provide a vital resource for further research into the evolution of hormonal pathways in arthropods.
Collapse
Affiliation(s)
- Xi Xie
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, China
| | - Mingxin Liu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, China
| | - Qinghua Jiang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, China
| | - Hongkun Zheng
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, China
| | - Liang Zheng
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, China
| | - Dongfa Zhu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, China.
| |
Collapse
|
34
|
Zhang WN, Ma L, Liu C, Chen L, Xiao HJ, Liang GM. Dissecting the role of Krüppel homolog 1 in the metamorphosis and female reproduction of the cotton bollworm, Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2018; 27:492-504. [PMID: 29719076 DOI: 10.1111/imb.12389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In insects, metamorphosis and reproduction are controlled by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Krüppel homolog 1 (Kr-h1), a transcription factor, is regarded as a JH-early inducible gene responsible for the repression of metamorphosis. However, the role of Kr-h1 in reproduction of holometabolic insects is relatively less understood. In this study, we studied the role of Kr-h1 in larvae-pupae transition and female reproduction in the major agricultural pest Helicoverpa armigera. Two HaKr-h1 isoforms (HaKr-h1α and HaKr-h1ß) were identified, with HaKr-h1α predominant in the cotton bollworm. In larvae, HaKr-h1 was predominately expressed in the epidermis and markedly up-regulated during the moult stage, whereas in adults HaKr-h1 was mainly expressed in females and the highest transcription was detected in the ovaries. Considering the function of hormones in larval metamorphosis, we examined the modulation of gene expression in response to hormones, which showed that HaKr-h1 was significantly induced by both JH analogue (JHA) and 20E. Knockdown of HaKr-h1 in fifth-instar larvae resulted in precocious metamorphosis from larvae to pupae. Moreover, a fluorescence immunoassay coupled with heterologous expression revealed that HaKr-h1 was localized in the nucleus of oocyte membrane. In female adults, depletion of HaKr-h1 severely repressed the transcription of vitellogenin, disrupted oocyte maturation and reduced the number of eggs laid, suggesting that HaKr-h1 is required for vitellogenesis and egg production in H. armigera. The present study provides insight into the roles of HaKr-h1 in JH-mediated reproduction and highlights HaKr-h1 as a target for suppression of lepidopteran pests.
Collapse
Affiliation(s)
- W-N Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - L Ma
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, China
| | - C Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - L Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - H-J Xiao
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - G-M Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Riddiford LM, Truman JW, Nern A. Juvenile hormone reveals mosaic developmental programs in the metamorphosing optic lobe of Drosophila melanogaster. Biol Open 2018; 7:bio.034025. [PMID: 29618455 PMCID: PMC5936066 DOI: 10.1242/bio.034025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The development of the adult optic lobe (OL) of Drosophila melanogaster is directed by a wave of ingrowth of the photoreceptors over a 2-day period at the outset of metamorphosis, which is accompanied by the appearance of the pupal-specific transcription factor Broad-Z3 (Br-Z3) and expression of early drivers in OL neurons. During this time, there are pulses of ecdysteroids that time the metamorphic events. At the outset, the transient appearance of juvenile hormone (JH) prevents precocious development of the OL caused by the ecdysteroid peak that initiates pupariation, but the artificial maintenance of JH after this time misdirects subsequent development. Axon ingrowth, Br-Z3 appearance and the expression of early drivers were unaffected, but aspects of later development such as the dendritic expansion of the lamina monopolar neurons and the expression of late drivers were suppressed. This effect of the exogenous JH mimic (JHM) pyriproxifen is lost by 24 h after pupariation. Part of this effect of JHM is due to its suppression of the appearance of ecdysone receptor EcR-B1 that occurs after pupation and during early adult development. Summary: Developmental gradients and steroid surges interact during optic lobe development. Early, ectopic juvenile hormone treatment alters steroid receptor levels, suppresses late events but not early events linked to developmental gradients.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
36
|
Ojani R, Fu X, Ahmed T, Liu P, Zhu J. Krüppel homologue 1 acts as a repressor and an activator in the transcriptional response to juvenile hormone in adult mosquitoes. INSECT MOLECULAR BIOLOGY 2018; 27:268-278. [PMID: 29314423 PMCID: PMC5837916 DOI: 10.1111/imb.12370] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Krüppel homologue 1 (Kr-h1) is a zinc finger transcription factor that is upregulated in insects by juvenile hormone (JH) in metamorphosis and adult reproduction. The molecular function of Kr-h1 in reproduction remains largely unknown. Here we report that AaKr-h1 functions as an important transcription regulator in adult female Aedes aegypti mosquitoes. The amount of AaKr-h1 protein increases with rising JH levels after adult emergence, reaches its peak at 48 h after eclosion, then decreases gradually and disappears after blood feeding. RNA interference (RNAi)-mediated depletion of AaKr-h1 substantially reduced egg production after blood feeding. Using a chromatin immunoprecipitation cloning approach, we identified in vivo AaKr-h1 binding sites in previtellogenic female mosquitoes. Binding of AaKr-h1 to the target genes correlated with its protein abundance. Interestingly, RNAi experiments indicated that AaKr-h1 played distinct roles when it bound to individual target genes. For example, depletion of AaKr-h1 led to substantial upregulation of AAEL005545 and AAEL004444, but also significantly decreased the expression of AAEL005957 and AAEL013177 when compared with the control mosquitoes. In summary, AaKr-h1 directly binds to the regulatory regions of its target genes and acts as a transcriptional activator or a repressor in a promoter-specific manner.
Collapse
Affiliation(s)
- Reyhaneh Ojani
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaonan Fu
- Program of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Tahmina Ahmed
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Pengcheng Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jinsong Zhu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
37
|
Miyakawa H, Watanabe M, Araki M, Ogino Y, Miyagawa S, Iguchi T. Juvenile hormone-independent function of Krüppel homolog 1 in early development of water flea Daphnia pulex. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 93:12-18. [PMID: 29253529 DOI: 10.1016/j.ibmb.2017.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Elaborate regulation of insect metamorphosis is the consequence of physiological cooperation among multiple endocrine factors such as juvenile hormones (JHs) and ecdysteroids. Hormone-induced transcription factors play important roles in substantive interactions between hormonal signaling pathways. In insects, zinc finger transcription factor Krüppel homolog 1 (Kr-h1) is a key gene of the endocrine signaling pathway in which it is directly upregulated by JH receptor Methoprene-tolerant (Met) in the presence of JH and then regulates multiple downstream factors, including components of the ecdysteroid signaling pathway. Although JH also plays a role in various biological phenomena in other arthropod species, little is known about the molecular basis of the JH signaling pathway. Here we cloned Kr-h1 from a branchiopod crustacean, Daphnia pulex, (DappuKr-h1) and analyzed its expression profile and developmental function together with consideration of its relationship to the JH signaling pathway. We suggest that DappuKr-h1 lacks JH responsiveness and regulatory relationship with the JH receptor. Moreover our loss-of-function analysis revealed that maternal mRNA of DappuKr-h1 plays a critical role in early development independent from the JH signaling pathway. These findings provide insights about whether and how the JH signaling pathway influenced evolution, leading to greater diversity in phylum Arthropoda.
Collapse
Affiliation(s)
- Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan; Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaijichou, Okazaki, Aichi 444-8787, Japan.
| | - Minae Watanabe
- Faculty of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Marina Araki
- Faculty of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Yukiko Ogino
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan; Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaijichou, Okazaki, Aichi 444-8787, Japan
| | - Shinichi Miyagawa
- Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaijichou, Okazaki, Aichi 444-8787, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan; Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaijichou, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
38
|
CREB-binding protein plays key roles in juvenile hormone action in the red flour beetle, Tribolium Castaneum. Sci Rep 2018; 8:1426. [PMID: 29362416 PMCID: PMC5780420 DOI: 10.1038/s41598-018-19667-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/05/2018] [Indexed: 12/23/2022] Open
Abstract
Juvenile hormones (JH) and ecdysteroids regulate many biological and metabolic processes. CREB-binding protein (CBP) is a transcriptional co-regulator with histone acetyltransferase (HAT) activity. Therefore, CBP is involved in activation of many transcription factors that regulate expression of genes associated with postembryonic development in insects. However, the function of CBP in JH action in insects is not well understood. Hence, we studied the role of CBP in JH action in the red flour beetle, Tribolium castaneum and the Tribolium cell line. CBP knockdown caused a decrease in JH induction of genes, Kr-h1, 4EBP and G13402 in T. castaneum larvae, adults and TcA cells whereas, Trichostatin A [TSA, a histone deacetylase (HDAC) inhibitor] induced the expression of these JH-response genes. Western blot analysis with specific antibodies revealed the requirement of CBP for the acetylation of H3K18 and H3K27 in both T. castaneum and TcA cells. Chromatin immunoprecipitation (Chip) assays showed the importance of CBP-mediated acetylation of H3K27 for JH induction of Kr-h1, 4EBP, and G13402 in TcA cells. These data suggest that CBP plays an important role in JH action in the model insect, T.castaneum.
Collapse
|
39
|
Roy A, George S, Palli SR. Multiple functions of CREB-binding protein during postembryonic development: identification of target genes. BMC Genomics 2017; 18:996. [PMID: 29284404 PMCID: PMC5747157 DOI: 10.1186/s12864-017-4373-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
Background Juvenile hormones (JH) and ecdysteroids control postembryonic development in insects. They serve as valuable targets for pest management. Hence, understanding the molecular mechanisms of their action is of crucial importance. CREB-binding protein (CBP) is a universal transcriptional co-regulator. It controls the expression of several genes including those from hormone signaling pathways through co-activation of many transcription factors. However, the role of CBP during postembryonic development in insects is not well understood. Therefore, we have studied the role of CBP in postembryonic development in Tribolium, a model coleopteran insect. Results CBP is ubiquitously expressed in the red flour beetle, Tribolium castaneum. RNA interference (RNAi) mediated knockdown of CBP resulted in a decrease in JH induction of Kr-h1 gene expression in Tribolium larvae and led to a block in their development. Moreover, the injection of CBP double-stranded RNA (dsRNA) showed lethal phenotypes within 8 days of injection. RNA-seq and subsequent differential gene expression analysis identified CBP target genes in Tribolium. Knockdown of CBP caused a decrease in the expression of 1306 genes coding for transcription factors and other proteins associated with growth and development. Depletion of CBP impaired the expression of several JH response genes (e.g., Kr-h1, Hairy, early trypsin) and ecdysone response genes (EcR, E74, E75, and broad complex). Further, GO enrichment analyses of the downregulated genes showed enrichment in different functions including developmental processes, pigmentation, anatomical structure development, regulation of biological and cellular processes, etc. Conclusion These data suggest diverse but crucial roles for CBP during postembryonic development in the coleopteran model insect, Tribolium. It can serve as a target for RNAi mediated pest management of this stored product pest. Electronic supplementary material The online version of this article (10.1186/s12864-017-4373-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amit Roy
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA.,Present address, Faculty of Forestry and Wood Sciences, EXTEMIT-K, Czech University of Life Sciences, Kamýcká 1176, Prague 6, 165 21, Suchdol, Czech Republic
| | - Smitha George
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
40
|
Drosophila Kruppel homolog 1 represses lipolysis through interaction with dFOXO. Sci Rep 2017; 7:16369. [PMID: 29180716 PMCID: PMC5703730 DOI: 10.1038/s41598-017-16638-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022] Open
Abstract
Transcriptional coordination is a vital process contributing to metabolic homeostasis. As one of the key nodes in the metabolic network, the forkhead transcription factor FOXO has been shown to interact with diverse transcription co-factors and integrate signals from multiple pathways to control metabolism, oxidative stress response, and cell cycle. Recently, insulin/FOXO signaling has been implicated in the regulation of insect development via the interaction with insect hormones, such as ecdysone and juvenile hormone. In this study, we identified an interaction between Drosophila FOXO (dFOXO) and the zinc finger transcription factor Kruppel homolog 1 (Kr-h1), one of the key players in juvenile hormone signaling. We found that Kr-h1 mutants show delayed larval development and altered lipid metabolism, in particular induced lipolysis upon starvation. Notably, Kr-h1 physically and genetically interacts with dFOXO in vitro and in vivo to regulate the transcriptional activation of insulin receptor (InR) and adipose lipase brummer (bmm). The transcriptional co-regulation by Kr-h1 and dFOXO may represent a broad mechanism by which Kruppel-like factors integrate with insulin signaling to maintain metabolic homeostasis and coordinate organism growth.
Collapse
|
41
|
Jia Q, Liu S, Wen D, Cheng Y, Bendena WG, Wang J, Li S. Juvenile hormone and 20-hydroxyecdysone coordinately control the developmental timing of matrix metalloproteinase-induced fat body cell dissociation. J Biol Chem 2017; 292:21504-21516. [PMID: 29118190 DOI: 10.1074/jbc.m117.818880] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/24/2017] [Indexed: 12/31/2022] Open
Abstract
Tissue remodeling is a crucial process in animal development and disease progression. Coordinately controlled by the two main insect hormones, juvenile hormone (JH) and 20-hydroxyecdysone (20E), tissues are remodeled context-specifically during insect metamorphosis. We previously discovered that two matrix metalloproteinases (Mmps) cooperatively induce fat body cell dissociation in Drosophila However, the molecular events involved in this Mmp-mediated dissociation are unclear. Here we report that JH and 20E coordinately and precisely control the developmental timing of Mmp-induced fat body cell dissociation. We found that during the larval-prepupal transition, the anti-metamorphic factor Kr-h1 transduces JH signaling, which directly inhibited Mmp expression and activated expression of tissue inhibitor of metalloproteinases (timp) and thereby suppressed Mmp-induced fat body cell dissociation. We also noted that upon a decline in the JH titer, a prepupal peak of 20E suppresses Mmp-induced fat body cell dissociation through the 20E primary-response genes, E75 and Blimp-1, which inhibited expression of the nuclear receptor and competence factor βftz-F1 Moreover, upon a decline in the 20E titer, βftz-F1 expression was induced by the 20E early-late response gene DHR3, and then βftz-F1 directly activated Mmp expression and inhibited timp expression, causing Mmp-induced fat body cell dissociation during 6-12 h after puparium formation. In conclusion, coordinated signaling via JH and 20E finely tunes the developmental timing of Mmp-induced fat body cell dissociation. Our findings shed critical light on hormonal regulation of insect metamorphosis.
Collapse
Affiliation(s)
- Qiangqiang Jia
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Suning Liu
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Di Wen
- the Department of Life Science, Qiannan Normal College for Nationalities, Duyun, Guizhou 558000, China
| | - Yongxu Cheng
- the College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - William G Bendena
- the Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Jian Wang
- the Department of Entomology, University of Maryland, College Park, Maryland 20742
| | - Sheng Li
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China,
| |
Collapse
|
42
|
The Occurrence of the Holometabolous Pupal Stage Requires the Interaction between E93, Krüppel-Homolog 1 and Broad-Complex. PLoS Genet 2016; 12:e1006020. [PMID: 27135810 PMCID: PMC4852927 DOI: 10.1371/journal.pgen.1006020] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/09/2016] [Indexed: 12/17/2022] Open
Abstract
Complete metamorphosis (Holometaboly) is a key innovation that underlies the spectacular success of holometabolous insects. Phylogenetic analyses indicate that Holometabola form a monophyletic group that evolved from ancestors exhibiting hemimetabolous development (Hemimetaboly). However, the nature of the changes underlying this crucial transition, including the occurrence of the holometabolan-specific pupal stage, is poorly understood. Using the holometabolous beetle Tribolium castaneum as a model insect, here we show that the transient up-regulation of the anti-metamorphic Krüppel-homolog 1 (TcKr-h1) gene at the end of the last larval instar is critical in the formation of the pupa. We find that depletion of this specific TcKr-h1 peak leads to the precocious up-regulation of the adult-specifier factor TcE93 and, hence, to a direct transformation of the larva into the adult form, bypassing the pupal stage. Moreover, we also find that the TcKr-h1-dependent repression of TcE93 is critical to allow the strong up-regulation of Broad-complex (TcBr-C), a key transcription factor that regulates the correct formation of the pupa in holometabolous insects. Notably, we show that the genetic interaction between Kr-h1 and E93 is also present in the penultimate nymphal instar of the hemimetabolous insect Blattella germanica, suggesting that the evolution of the pupa has been facilitated by the co-option of regulatory mechanisms present in hemimetabolan metamorphosis. Our findings, therefore, contribute to the molecular understanding of insect metamorphosis, and indicate the evolutionary conservation of the genetic circuitry that controls hemimetabolan and holometabolan metamorphosis, thereby shedding light on the evolution of complete metamorphosis.
Collapse
|
43
|
Vea IM, Tanaka S, Shiotsuki T, Jouraku A, Tanaka T, Minakuchi C. Differential Juvenile Hormone Variations in Scale Insect Extreme Sexual Dimorphism. PLoS One 2016; 11:e0149459. [PMID: 26894583 PMCID: PMC4760703 DOI: 10.1371/journal.pone.0149459] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/01/2016] [Indexed: 11/29/2022] Open
Abstract
Scale insects have evolved extreme sexual dimorphism, as demonstrated by sedentary juvenile-like females and ephemeral winged males. This dimorphism is established during the post-embryonic development; however, the underlying regulatory mechanisms have not yet been examined. We herein assessed the role of juvenile hormone (JH) on the diverging developmental pathways occurring in the male and female Japanese mealybug Planococcus kraunhiae (Kuwana). We provide, for the first time, detailed gene expression profiles related to JH signaling in scale insects. Prior to adult emergence, the transcript levels of JH acid O-methyltransferase, encoding a rate-limiting enzyme in JH biosynthesis, were higher in males than in females, suggesting that JH levels are higher in males. Furthermore, male quiescent pupal-like stages were associated with higher transcript levels of the JH receptor gene, Methoprene-tolerant and its co-activator taiman, as well as the JH early-response genes, Krüppel homolog 1 and broad. The exposure of male juveniles to an ectopic JH mimic prolonged the expression of Krüppel homolog 1 and broad, and delayed adult emergence by producing a supernumeral pupal stage. We propose that male wing development is first induced by up-regulated JH signaling compared to female expression pattern, but a decrease at the end of the prepupal stage is necessary for adult emergence, as evidenced by the JH mimic treatments. Furthermore, wing development seems linked to JH titers as JHM treatments on the pupal stage led to wing deformation. The female pedomorphic appearance was not reflected by the maintenance of high levels of JH. The results in this study suggest that differential variations in JH signaling may be responsible for sex-specific and radically different modes of metamorphosis.
Collapse
Affiliation(s)
- Isabelle Mifom Vea
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail:
| | - Sayumi Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Akiya Jouraku
- National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Toshiharu Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chieka Minakuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
44
|
Jindra M, Bellés X, Shinoda T. Molecular basis of juvenile hormone signaling. CURRENT OPINION IN INSECT SCIENCE 2015; 11:39-46. [PMID: 28285758 DOI: 10.1016/j.cois.2015.08.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 05/23/2023]
Abstract
Despite important roles played by juvenile hormone (JH) in insects, the mechanisms underlying its action were until recently unknown. A breakthrough has been the demonstration that the bHLH-PAS protein Met is an intracellular receptor for JH. Binding of JH to Met triggers dimerization of Met with its partner protein Tai, and the resulting complex induces transcription of target genes. In addition, JH can potentiate this response by phosphorylating Met and Tai via cell membrane, second-messenger signaling. An important gene induced by the JH-Met-Tai complex is Kr-h1, which inhibits metamorphosis. Kr-h1 represses an 'adult specifier' gene E93. The action of this JH-activated pathway in maintaining the juvenile status is dispensable during early postembryonic development when larvae/nymphs lack competence to metamorphose.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Center, Czech Academy of Sciences, Branisovska 31, Ceske Budejovice 37005, Czech Republic.
| | - Xavier Bellés
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003 Barcelona, Spain
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
45
|
Jindra M, Uhlirova M, Charles JP, Smykal V, Hill RJ. Genetic Evidence for Function of the bHLH-PAS Protein Gce/Met As a Juvenile Hormone Receptor. PLoS Genet 2015; 11:e1005394. [PMID: 26161662 PMCID: PMC4498814 DOI: 10.1371/journal.pgen.1005394] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/26/2015] [Indexed: 12/31/2022] Open
Abstract
Juvenile hormones (JHs) play a major role in controlling development and reproduction in insects and other arthropods. Synthetic JH-mimicking compounds such as methoprene are employed as potent insecticides against significant agricultural, household and disease vector pests. However, a receptor mediating effects of JH and its insecticidal mimics has long been the subject of controversy. The bHLH-PAS protein Methoprene-tolerant (Met), along with its Drosophila melanogaster paralog germ cell-expressed (Gce), has emerged as a prime JH receptor candidate, but critical evidence that this protein must bind JH to fulfill its role in normal insect development has been missing. Here, we show that Gce binds a native D. melanogaster JH, its precursor methyl farnesoate, and some synthetic JH mimics. Conditional on this ligand binding, Gce mediates JH-dependent gene expression and the hormone's vital role during development of the fly. Any one of three different single amino acid mutations in the ligand-binding pocket that prevent binding of JH to the protein block these functions. Only transgenic Gce capable of binding JH can restore sensitivity to JH mimics in D. melanogaster Met-null mutants and rescue viability in flies lacking both Gce and Met that would otherwise die at pupation. Similarly, the absence of Gce and Met can be compensated by expression of wild-type but not mutated transgenic D. melanogaster Met protein. This genetic evidence definitively establishes Gce/Met in a JH receptor role, thus resolving a long-standing question in arthropod biology.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Center, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Food and Nutrition Flagship, North Ryde, New South Wales, Australia
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jean-Philippe Charles
- Centre des Sciences du Gout et de l’Alimentation (CSGA), CNRS 6265, INRA 1324, Université Bourgogne-Franche-Comté, Dijon, France
| | - Vlastimil Smykal
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Ronald J. Hill
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Food and Nutrition Flagship, North Ryde, New South Wales, Australia
| |
Collapse
|
46
|
Cui Y, Sui Y, Xu J, Zhu F, Palli SR. Juvenile hormone regulates Aedes aegypti Krüppel homolog 1 through a conserved E box motif. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:23-32. [PMID: 24931431 PMCID: PMC4143451 DOI: 10.1016/j.ibmb.2014.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/16/2014] [Accepted: 05/28/2014] [Indexed: 05/19/2023]
Abstract
Juvenile hormone (JH) plays important roles in regulation of many physiological processes including development, reproduction and metabolism in insects. However, the molecular mechanisms of JH signaling pathway are not completely understood. To elucidate the molecular mechanisms of JH regulation of Krüppel homolog 1 gene (Kr-h1) in Aedes aegypti, we employed JH-sensitive Aag-2 cells developed from the embryos of this insect. In Aag-2 cells, AaKr-h1 gene is induced by nanomolar concentration of JH III, its expression peaked at 1.5 h after treatment with JH III. RNAi studies showed that JH induction of this gene requires the presence of Ae. aegypti methoprene-tolerant (AaMet). A conserved 13 nucleotide JH response element (JHRE, TGCCTCCACGTGC) containing canonical E box motif (underlined) identified in the promoter of AaKr-h1 is required for JH induction of this gene. Critical nucleotides in the JHRE required for JH action were identified by employing mutagenesis and reporter assays. Reporter assays also showed that basic helix loop helix (bHLH) domain of AaMet is required for JH induction of AaKr-h1. 5' rapid amplification of cDNA ends method identified two isoforms of AaKr-h1, AaKr-h1α and AaKr-h1β, the expression of both isoforms is induced by JH III, but AaKr-h1α is the predominant isoform in both Aag-2 cells and Ae. aegypti larvae.
Collapse
Affiliation(s)
- Yingjun Cui
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States
| | - Yipeng Sui
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States
| | - Jingjing Xu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States
| | - Fang Zhu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|
47
|
Song J, Wu Z, Wang Z, Deng S, Zhou S. Krüppel-homolog 1 mediates juvenile hormone action to promote vitellogenesis and oocyte maturation in the migratory locust. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:94-101. [PMID: 25017142 DOI: 10.1016/j.ibmb.2014.07.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/19/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
Juvenile hormone (JH) prevents insect larval metamorphosis and stimulates processes for adult reproduction. Krüppel-homolog 1 (Kr-h1), a zinc finger transcription factor, is shown to mediate the anti-metamorphic effect of JH in both holometabolous and hemimetabolous insects. However, the role of Kr-h1 in JH-mediated reproduction has not been determined. Using the migratory locust, Locusta migratoria, we showed here that Kr-h1 was expressed in response to JH in female adults, and Kr-h1 transcription was directly regulated by the JH-receptor complex comprised of Methoprene-tolerant (Met) and steroid receptor co-activator. We demonstrated that Kr-h1 RNAi phenocopied Met RNAi and JH-deprived condition during post-eclosion development and vitellogenesis of female locusts. Knockdown of Kr-h1 resulted in substantial reduction of Vg expression in the fat body and lipid accumulation in the primary oocytes, accompanied by blocked follicular epithelium development, oocyte maturation and ovarian growth. Our data therefore reveal a crucial role of Kr-h1 in insect vitellogenesis and egg production. This study suggests that JH-Met-Kr-h1 signaling pathway is also functional in insect reproduction.
Collapse
Affiliation(s)
- Jiasheng Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongxia Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Zhiming Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shun Deng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shutang Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
48
|
He Q, Wen D, Jia Q, Cui C, Wang J, Palli SR, Li S. Heat shock protein 83 (Hsp83) facilitates methoprene-tolerant (Met) nuclear import to modulate juvenile hormone signaling. J Biol Chem 2014; 289:27874-85. [PMID: 25122763 DOI: 10.1074/jbc.m114.582825] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Juvenile hormone (JH) receptors, methoprene-tolerant (Met) and Germ-cell expressed (Gce), transduce JH signals to induce Kr-h1 expression in Drosophila. Dual luciferase assay identified a 120-bp JH response region (JHRR) in the Kr-h1α promoter. Both in vitro and in vivo experiments revealed that Met and Gce transduce JH signals to induce Kr-h1 expression through the JHRR. DNA affinity purification identified chaperone protein Hsp83 as one of the proteins bound to the JHRR in the presence of JH. Interestingly, Hsp83 physically interacts with PAS-B and basic helix-loop-helix domains of Met, and JH induces Met-Hsp83 interaction. As determined by immunohistochemistry, Met is mainly distributed in the cytoplasm of fat body cells of the larval when the JH titer is low and JH induces Met nuclear import. Hsp83 was accumulated in the cytoplasm area adjunct to the nucleus in the presence of JH and Met/Gce. Loss-of-function of Hsp83 attenuated JH binding and JH-induced nuclear import of Met, resulting in a decrease in the JHRR-driven reporter activity leading to reduction of Kr-h1 expression. These data show that Hsp83 facilitates the JH-induced nuclear import of Met that induces Kr-h1 expression through the JHRR.
Collapse
Affiliation(s)
- Qianyu He
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China, the College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Di Wen
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiangqiang Jia
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunlai Cui
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian Wang
- the Department of Entomology, University of Maryland, College Park, Maryland 20742, and
| | - Subba R Palli
- the Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky 40546
| | - Sheng Li
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China,
| |
Collapse
|
49
|
Kayukawa T, Murata M, Kobayashi I, Muramatsu D, Okada C, Uchino K, Sezutsu H, Kiuchi M, Tamura T, Hiruma K, Ishikawa Y, Shinoda T. Hormonal regulation and developmental role of Krüppel homolog 1, a repressor of metamorphosis, in the silkworm Bombyx mori. Dev Biol 2014; 388:48-56. [DOI: 10.1016/j.ydbio.2014.01.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/17/2014] [Accepted: 01/26/2014] [Indexed: 10/25/2022]
|
50
|
Hepat R, Kim Y. JH modulates a cellular immunity of Tribolium castaneum in a Met-independent manner. JOURNAL OF INSECT PHYSIOLOGY 2014; 63:40-47. [PMID: 24607640 DOI: 10.1016/j.jinsphys.2014.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/12/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
Juvenile hormone (JH) regulates diverse physiological processes in insects during entire developmental stages. Especially, the identification of Methoprene-tolerant (Met), a JH nuclear receptor, allows us to better understand molecular actions of JH to control gene expressions related with metamorphosis. However, several physiological processes including cellular immune response and some molecular actions of JH have been suspected to be mediated via its non-genomic actions. To prove its non-genomic action, JH nuclear signals were suppressed by RNA interference (RNAi) of Met or its downstream gene, Krüppel homolog 1 (Kr-h1), in the red flour beetle, Tribolium castaneum. These RNAi-treated larvae failed to undergo a normal development and suffered precocious metamorphosis. Hemocytes of T. castaneum exhibited their spreading behavior on extracellular matrix and nodule formation in response to bacterial challenge. When the larvae were treated with either RNAi of Met or Kr-h1, the hemocytes of the treated larvae were responsive to JH without any significant difference with those of control larvae. These results suggest that the response of hemocytes to JH is not mediated by its nuclear signal. On the other hand, the JH modulation of hemocyte behaviors of T. castaneum was significantly influenced by membrane and cytosolic protein activities, in which ethoxyzolamide (a specific inhibitor of carbonic anhydrase), calphostin C (a specific inhibitor of protein kinase C) or ouabain (a specific inhibitor of Na(+)-K(+) ATPase) significantly suppressed the responsiveness of hemocytes to JH.
Collapse
Affiliation(s)
- Rahul Hepat
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea.
| |
Collapse
|