1
|
Matakatsu H, Fehon RG. Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. J Cell Biol 2024; 223:e202406119. [PMID: 39373700 PMCID: PMC11461286 DOI: 10.1083/jcb.202406119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Two protocadherins, Dachsous and Fat, regulate organ growth in Drosophila via the Hippo pathway. Dachsous and Fat bind heterotypically to regulate the abundance and subcellular localization of a "core complex" consisting of Dachs, Dlish, and Approximated. This complex localizes to the junctional cortex where it represses Warts. Dachsous is believed to promote growth by recruiting and stabilizing this complex, while Fat represses growth by promoting its degradation. Here, we examine the functional relationships between the intracellular domains of Dachsous and Fat and the core complex. While Dachsous promotes the accumulation of core complex proteins in puncta, it is not required for their assembly. Indeed, the core complex accumulates maximally in the absence of both Dachsous and Fat. Furthermore, Dachsous represses growth in the absence of Fat by removing the core complex from the junctional cortex. Fat similarly recruits core complex components but promotes their degradation. Our findings reveal that Dachsous and Fat coordinately constrain tissue growth by repressing the core complex.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Matakatsu H, Fehon RG. Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599638. [PMID: 38948705 PMCID: PMC11212998 DOI: 10.1101/2024.06.18.599638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Two protocadherins, Dachsous (Ds) and Fat (Ft), regulate organ growth in Drosophila via the Hippo pathway. Ds and Ft bind heterotypically to regulate the abundance and subcellular localization of a 'core complex' consisting of Dachs, Dlish and Approximated. This complex localizes to the junctional cortex where it promotes growth by repressing the pathway kinase Warts. Ds is believed to promote growth by recruiting and stabilizing the core complex at the junctional cortex, while Ft represses growth by promoting degradation of core complex components. Here, we examine the functions of intracellular domains of Ds and Ft and their relationship to the core complex. While Ds promotes accumulation of the core complex proteins in cortical puncta, it is not required for core complex assembly. Indeed, the core complex assembles maximally in the absence of both Ds and Ft. Furthermore, while Ds promotes growth in the presence of Ft, it represses growth in the absence of Ft by removing the core complex from the junctional cortex. Ft similarly recruits core complex components, however it normally promotes their degradation. Our findings reveal that Ds and Ft constrain tissue growth by repressing the default 'on' state of the core complex.
Collapse
|
3
|
Singh A, Thale S, Leibner T, Lamparter L, Ricker A, Nüsse H, Klingauf J, Galic M, Ohlberger M, Matis M. Dynamic interplay of microtubule and actomyosin forces drive tissue extension. Nat Commun 2024; 15:3198. [PMID: 38609383 PMCID: PMC11014958 DOI: 10.1038/s41467-024-47596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In order to shape a tissue, individual cell-based mechanical forces have to be integrated into a global force pattern. Over the last decades, the importance of actomyosin contractile arrays, which are the key constituents of various morphogenetic processes, has been established for many tissues. Recent studies have demonstrated that the microtubule cytoskeleton mediates folding and elongation of the epithelial sheet during Drosophila morphogenesis, placing microtubule mechanics on par with actin-based processes. While these studies establish the importance of both cytoskeletal systems during cell and tissue rearrangements, a mechanistic understanding of their functional hierarchy is currently missing. Here, we dissect the individual roles of these two key generators of mechanical forces during epithelium elongation in the developing Drosophila wing. We show that wing extension, which entails columnar-to-cuboidal cell shape remodeling in a cell-autonomous manner, is driven by anisotropic cell expansion caused by the remodeling of the microtubule cytoskeleton from apico-basal to planarly polarized. Importantly, cell and tissue elongation is not associated with Myosin activity. Instead, Myosin II exhibits a homeostatic role, as actomyosin contraction balances polarized microtubule-based forces to determine the final cell shape. Using a reductionist model, we confirm that pairing microtubule and actomyosin-based forces is sufficient to recapitulate cell elongation and the final cell shape. These results support a hierarchical mechanism whereby microtubule-based forces in some epithelial systems prime actomyosin-generated forces.
Collapse
Affiliation(s)
- Amrita Singh
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
| | - Sameedha Thale
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
| | - Tobias Leibner
- Applied Mathematics, Institute for Analysis and Numerics, Faculty of Mathematics and Computer science, University of Münster, Münster, Germany
| | - Lucas Lamparter
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Andrea Ricker
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Jürgen Klingauf
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Milos Galic
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Mario Ohlberger
- Applied Mathematics, Institute for Analysis and Numerics, Faculty of Mathematics and Computer science, University of Münster, Münster, Germany
| | - Maja Matis
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany.
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany.
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany.
| |
Collapse
|
4
|
Chorro A, Verma B, Homfeldt M, Ibáñez B, Lawrence PA, Casal J. Planar cell polarity: intracellular asymmetry and supracellular gradients of Dachsous. Open Biol 2022; 12:220195. [PMID: 36476047 PMCID: PMC9554717 DOI: 10.1098/rsob.220195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The slope of a supracellular molecular gradient has long been thought to orient and coordinate planar cell polarity (PCP). Here we demonstrate and measure that gradient. Dachsous (Ds) is a conserved and elemental molecule of PCP; Ds forms intercellular bridges with another cadherin molecule, Fat (Ft), an interaction modulated by the Golgi protein Four-jointed (Fj). Using genetic mosaics and tagged Ds, we measure Ds in vivo in membranes of individual cells over a whole metamere of the Drosophila abdomen. We find as follows. (i) A supracellular gradient rises from head to tail in the anterior compartment (A) and then falls in the posterior compartment (P). (ii) There is more Ds in the front than the rear membranes of all cells in the A compartment, except that compartment's most anterior and most posterior cells. There is more Ds in the rear than in the front membranes of all cells of the P compartment. (iii) The loss of Fj removes intracellular asymmetry anteriorly in the segment and reduces it elsewhere. Additional experiments show that Fj makes PCP more robust. Using Dachs (D) as a molecular indicator of polarity, we confirm that opposing gradients of PCP meet slightly out of register with compartment boundaries.
Collapse
Affiliation(s)
- Adrià Chorro
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Bhavna Verma
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Maylin Homfeldt
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Beatríz Ibáñez
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Peter A. Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
5
|
Kudla AM, Miranda X, Nijhout HF. The roles of growth regulation and appendage patterning genes in the morphogenesis of treehopper pronota. Proc Biol Sci 2022; 289:20212682. [PMID: 35673859 PMCID: PMC9174728 DOI: 10.1098/rspb.2021.2682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Treehoppers of the insect family Membracidae have evolved enlarged and elaborate pronotal structures, which is hypothesized to involve co-opted expression of genes that are shared with the wings. Here, we investigate the similarity between the pronotum and wings in relation to growth. Our study reveals that the ontogenetic allometry of the pronotum is similar to that of wings in Membracidae, but not the outgroup. Using transcriptomics, we identify genes related to translation and protein synthesis, which are mutually upregulated. These genes are implicated in the eIF2, eIF4/p70S6K and mTOR pathways, and have known roles in regulating cell growth and proliferation. We find that species-specific differential growth patterning of the pronotum begins as early as the third instar, which suggests that expression of appendage patterning genes occurs long before the metamorphic molt. We propose that a network related to growth and size determination is the more likely mechanism shared with wings. However, regulators upstream of the shared genes in pronotum and wings need to be elucidated to substantiate whether co-option has occurred. Finally, we believe it will be helpful to distinguish the mechanisms leading to pronotal size from those regulating pronotal shape as we make sense of this spectacular evolutionary innovation.
Collapse
Affiliation(s)
- Anna M. Kudla
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ximena Miranda
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | | |
Collapse
|
6
|
Cheng T, Zhu X, Lu J, Teng X. MiR-532-3p suppresses cell proliferation, migration and invasion of colon adenocarcinoma via targeting FJX1. Pathol Res Pract 2022; 232:153835. [DOI: 10.1016/j.prp.2022.153835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 02/14/2022] [Accepted: 03/05/2022] [Indexed: 12/19/2022]
|
7
|
Molecular mechanisms mediating asymmetric subcellular localisation of the core planar polarity pathway proteins. Biochem Soc Trans 2021; 48:1297-1308. [PMID: 32820799 PMCID: PMC7458395 DOI: 10.1042/bst20190404] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Abstract
Planar polarity refers to cellular polarity in an orthogonal plane to apicobasal polarity, and is seen across scales from molecular distributions of proteins to tissue patterning. In many contexts it is regulated by the evolutionarily conserved ‘core' planar polarity pathway that is essential for normal organismal development. Core planar polarity pathway components form asymmetric intercellular complexes that communicate polarity between neighbouring cells and direct polarised cell behaviours and the formation of polarised structures. The core planar polarity pathway consists of six structurally different proteins. In the fruitfly Drosophila melanogaster, where the pathway is best characterised, an intercellular homodimer of the seven-pass transmembrane protein Flamingo interacts on one side of the cell junction with the seven-pass transmembrane protein Frizzled, and on the other side with the four-pass transmembrane protein Strabismus. The cytoplasmic proteins Diego and Dishevelled are co-localised with Frizzled, and Prickle co-localises with Strabismus. Between these six components there are myriad possible molecular interactions, which could stabilise or destabilise the intercellular complexes and lead to their sorting into polarised distributions within cells. Post-translational modifications are key regulators of molecular interactions between proteins. Several post-translational modifications of core proteins have been reported to be of functional significance, in particular phosphorylation and ubiquitination. In this review, we discuss the molecular control of planar polarity and the molecular ecology of the core planar polarity intercellular complexes. Furthermore, we highlight the importance of understanding the spatial control of post-translational modifications in the establishment of planar polarity.
Collapse
|
8
|
Strutt H, Strutt D. How do the Fat-Dachsous and core planar polarity pathways act together and independently to coordinate polarized cell behaviours? Open Biol 2021; 11:200356. [PMID: 33561385 PMCID: PMC8061702 DOI: 10.1098/rsob.200356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Planar polarity describes the coordinated polarization of cells within the plane of a tissue. This is controlled by two main pathways in Drosophila: the Frizzled-dependent core planar polarity pathway and the Fat–Dachsous pathway. Components of both of these pathways become asymmetrically localized within cells in response to long-range upstream cues, and form intercellular complexes that link polarity between neighbouring cells. This review examines if and when the two pathways are coupled, focusing on the Drosophila wing, eye and abdomen. There is strong evidence that the pathways are molecularly coupled in tissues that express a specific isoform of the core protein Prickle, namely Spiny-legs. However, in other contexts, the linkages between the pathways are indirect. We discuss how the two pathways act together and independently to mediate a diverse range of effects on polarization of cell structures and behaviours.
Collapse
Affiliation(s)
- Helen Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
9
|
Matis M. The Mechanical Role of Microtubules in Tissue Remodeling. Bioessays 2020; 42:e1900244. [PMID: 32249455 DOI: 10.1002/bies.201900244] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Indexed: 12/31/2022]
Abstract
During morphogenesis, tissues undergo extensive remodeling to get their final shape. Such precise sculpting requires the application of forces generated within cells by the cytoskeleton and transmission of these forces through adhesion molecules within and between neighboring cells. Within individual cells, microtubules together with actomyosin filaments and intermediate filaments form the composite cytoskeleton that controls cell mechanics during tissue rearrangements. While studies have established the importance of actin-based mechanical forces that are coupled via intercellular junctions, relatively little is known about the contribution of other cytoskeletal components such as microtubules to cell mechanics during morphogenesis. In this review the focus is on recent findings, highlighting the direct mechanical role of microtubules beyond its well-established role in trafficking and signaling during tissue formation.
Collapse
Affiliation(s)
- Maja Matis
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, 48149, Germany.,'Cells in Motion' Interfaculty Centre, University of Münster, Münster, 48149, Germany
| |
Collapse
|
10
|
Mangione F, Martín-Blanco E. The Dachsous/Fat/Four-Jointed Pathway Directs the Uniform Axial Orientation of Epithelial Cells in the Drosophila Abdomen. Cell Rep 2019; 25:2836-2850.e4. [PMID: 30517870 DOI: 10.1016/j.celrep.2018.11.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/05/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
The achievement of the final form of an individual requires not only the control of cell size and differentiation but also integrative directional cues to instruct cell movements, positions, and orientations. In Drosophila, the adult epidermis of the abdomen is created de novo by histoblasts. As these expand and fuse, they uniformly orient along the anteroposterior axis. We found that the Dachsous/Fat/Four-jointed (Ds/Ft/Fj) pathway is key for their alignment. The refinement of the tissue-wide expression of the atypical cadherins Ds and Ft result in their polarization and directional adhesiveness. Mechanistically, the axially oriented changes in histoblasts respond to the redesign of the epithelial field. We suggest that the role of Ds/Ft/Fj in long-range oriented cell alignment is a general function and that the regulation of the expression of its components will be crucial in other morphogenetic models or during tissue repair.
Collapse
Affiliation(s)
- Federica Mangione
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
11
|
Arbouzova NI, Fulford AD, Zhang H, McNeill H. Fat regulates expression of four-jointed reporters in vivo through a 20 bp element independently of the Hippo pathway. Dev Biol 2019; 450:23-33. [DOI: 10.1016/j.ydbio.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 01/15/2023]
|
12
|
An Oncogenic Role for Four-Jointed Box 1 (FJX1) in Nasopharyngeal Carcinoma. DISEASE MARKERS 2019; 2019:3857853. [PMID: 31236144 PMCID: PMC6545767 DOI: 10.1155/2019/3857853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/07/2019] [Indexed: 12/24/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer prevalent in Southern China and Southeast Asia. The current knowledge on the molecular pathogenesis of NPC is still inadequate to improve disease management. Using gene expression microarrays, we have identified the four-jointed box 1 (FJX1) gene to be upregulated in primary NPC tissues relative to nonmalignant tissues. An orthologue of human FJX1, the four-jointed (fj) gene in Drosophila and Fjx1 in mouse, has reported to be associated with cancer progression pathways. However, the exact function of FJX1 in human is not well characterized. The overexpression of FJX1 mRNA was validated in primary NPC tissue samples, and the level of FJX1 protein was significantly higher in a subset of NPC tissues (42%) compared to the normal epithelium, where no expression of FJX1 was observed (p = 0.01). FJX1 is also found to be overexpressed in microarray datasets and TCGA datasets of other cancers including head and neck cancer, colorectal, and ovarian cancer. Both siRNA knockdown and overexpression experiments in NPC cell lines showed that FJX1 promotes cell proliferation, anchorage-dependent growth, and cellular invasion. Cyclin D1 and E1 mRNA levels were increased following FJX1 expression indicating that FJX1 enhances proliferation by regulating key proteins governing the cell cycle. Our data suggest that the overexpression of FJX1 contributes to a more aggressive phenotype of NPC cells and further investigations into FJX1 as a potential therapeutic target for NPC are warranted. The evaluation of FJX1 as an immunotherapy target for NPC and other cancers is currently ongoing.
Collapse
|
13
|
Garrido-Jimenez S, Roman AC, Carvajal-Gonzalez JM. Diminished Expression of Fat and Dachsous PCP Proteins Impaired Centriole Planar Polarization in Drosophila. Front Genet 2019; 10:328. [PMID: 31031805 PMCID: PMC6473044 DOI: 10.3389/fgene.2019.00328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/28/2019] [Indexed: 01/20/2023] Open
Abstract
Proper ciliary basal body positioning within a cell is key for cilia functioning. Centriole and basal body positioning depends on signaling pathways such as the planar cell polarity pathway (PCP) governed by Frizzled (Fz-PCP). There have been described two PCP pathways controlled by different protein complexes, the Frizzled-PCP and the Fat-PCP pathway. Centriole planar polarization in non-dividing cells is a dynamic process that depends on the Fz-PCP pathway to properly occur during development from flies to humans. However, the function of the Ft-PCP pathway in centrioles polarization is elusive. Here, we present a descriptive initial analysis of centrioles polarization in Fat-PCP loss of function (LOF) conditions. We found that Fat (Ft) and Dachsous (Ds) LOF showed a marked centrioles polarization defect similar to what we have previously reported in Fz-PCP alterations. Altogether, our data suggest that centriole planar polarization in Drosophila wings depends on both Ft-PCP and Fz-PCP pathways. Further analyses in single and double mutant conditions will be required to address the functional connection between PCP and centriole polarization in flies.
Collapse
Affiliation(s)
- Sergio Garrido-Jimenez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
14
|
Khadilkar RJ, Tanentzapf G. Septate junction components control Drosophila hematopoiesis through the Hippo pathway. Development 2019; 146:dev.166819. [PMID: 30890573 DOI: 10.1242/dev.166819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
Hematopoiesis requires coordinated cell signals to control the proliferation and differentiation of progenitor cells. In Drosophila, blood progenitors, called prohemocytes, which are located in a hematopoietic organ called the lymph gland, are regulated by the Salvador-Warts-Hippo pathway. In epithelial cells, the Hippo pathway integrates diverse biological inputs, such as cell polarity and cell-cell contacts, but Drosophila blood cells lack the conspicuous polarity of epithelial cells. Here, we show that the septate-junction components Cora and NrxIV promote Hippo signaling in the lymph gland. Depletion of septate-junction components in hemocytes produces similar phenotypes to those observed in Hippo pathway mutants, including increased differentiation of immune cells. Our analysis places septate-junction components as upstream regulators of the Hippo pathway where they recruit Merlin to the membrane. Finally, we show that interactions of septate-junction components with the Hippo pathway are a key functional component of the cellular immune response following infection.
Collapse
Affiliation(s)
- Rohan J Khadilkar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
15
|
Fisher KH, Strutt D. A theoretical framework for planar polarity establishment through interpretation of graded cues by molecular bridges. Development 2019; 146:146/3/dev168955. [PMID: 30709912 PMCID: PMC6382004 DOI: 10.1242/dev.168955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Planar polarity is a widespread phenomenon found in many tissues, allowing cells to coordinate morphogenetic movements and function. A common feature of animal planar polarity systems is the formation of molecular bridges between cells, which become polarised along a tissue axis. We propose that these bridges provide a general mechanism by which cells interpret different forms of tissue gradients to coordinate directional information. We illustrate this using a generalised and consistent modelling framework, providing a conceptual basis for understanding how different mechanisms of gradient function can generate planar polarity. We make testable predictions of how different gradient mechanisms can influence polarity direction. Summary: This Hypothesis uses a theoretical framework to explore how molecular bridges provide a general mechanism to interpret different forms of tissue gradients to establish planar polarity.
Collapse
Affiliation(s)
- Katherine H Fisher
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
16
|
Lawrence PA, Casal J. Planar cell polarity: two genetic systems use one mechanism to read gradients. Development 2018; 145:145/23/dev168229. [DOI: 10.1242/dev.168229] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ABSTRACT
Our aim in this short Primer is to explain the principles of planar cell polarity (PCP) in animal development. The literature in this small field is complex and specialized, but we have extracted a simple and central story from it. We explain our hypothesis that polarity, initially cued by the direction of slope of a multicellular gradient, is interpreted at the cellular level so that each cell becomes molecularly polarised. The mechanism involves a comparison between a cell and its neighbours. To achieve this comparison there are (at least) two disparate and independent molecular systems, each depending on molecular bridges that span between neighbouring cells. Even though the two systems are made up of different molecules, we argue that both systems function in a logically equivalent way.
Collapse
Affiliation(s)
- Peter A. Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
17
|
Anderson EN, Wharton KA. Alternative cleavage of the bone morphogenetic protein (BMP), Gbb, produces ligands with distinct developmental functions and receptor preferences. J Biol Chem 2017; 292:19160-19178. [PMID: 28924042 DOI: 10.1074/jbc.m117.793513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/14/2017] [Indexed: 12/27/2022] Open
Abstract
The family of TGF-β and bone morphogenetic protein (BMP) signaling proteins has numerous developmental and physiological roles. They are made as proprotein dimers and then cleaved by proprotein convertases to release the C-terminal domain as an active ligand dimer. Multiple proteolytic processing sites in Glass bottom boat (Gbb), the Drosophila BMP7 ortholog, can produce distinct ligand forms. Cleavage at the S1 or atypical S0 site in Gbb produces Gbb15, the conventional small BMP ligand, whereas NS site cleavage produces a larger Gbb38 ligand. We hypothesized that the Gbb prodomain is involved not only in regulating the production of specific ligands but also their signaling output. We found that blocking NS cleavage increased association of the full-length prodomain with Gbb15, resulting in a concomitant decrease in signaling activity. Moreover, NS cleavage was required in vivo for Gbb-Decapentaplegic (Dpp) heterodimer-mediated wing vein patterning but not for Gbb15-Dpp heterodimer activity in cell culture. Gbb NS cleavage was also required for viability through its regulation of pupal ecdysis in a type II receptor Wishful thinking (Wit)-dependent manner. In fact, Gbb38-mediated signaling exhibits a preference for Wit over the other type II receptor Punt. Finally, we discovered that Gbb38 is produced when processing at the S1/S0 site is blocked by O-linked glycosylation in third instar larvae. Our findings demonstrate that BMP prodomain cleavage ensures that the mature ligand is not inhibited by the prodomain. Furthermore, alternative processing of BMP proproteins produces ligands that signal through different receptors and exhibit specific developmental functions.
Collapse
Affiliation(s)
- Edward N Anderson
- From the Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Kristi A Wharton
- From the Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
18
|
Difference in Dachsous Levels between Migrating Cells Coordinates the Direction of Collective Cell Migration. Dev Cell 2017; 42:479-497.e10. [DOI: 10.1016/j.devcel.2017.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/19/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022]
|
19
|
Ebnet K, Kummer D, Steinbacher T, Singh A, Nakayama M, Matis M. Regulation of cell polarity by cell adhesion receptors. Semin Cell Dev Biol 2017; 81:2-12. [PMID: 28739340 DOI: 10.1016/j.semcdb.2017.07.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
The ability of cells to polarize is an intrinsic property of almost all cells and is required for the devlopment of most multicellular organisms. To develop cell polarity, cells integrate various signals derived from intrinsic as well as extrinsic sources. In the recent years, cell-cell adhesion receptors have turned out as important regulators of cellular polarization. By interacting with conserved cell polarity proteins, they regulate the recruitment of polarity complexes to specific sites of cell-cell adhesion. By initiating intracellular signaling cascades at those sites, they trigger their specific subcellular activation. Not surprisingly, cell-cell adhesion receptors regulate diverse aspects of cell polarity, including apico-basal polarity in epithelial and endothelial cells, front-to-rear polarity in collectively migrating cells, and planar cell polarity during organ development. Here, we review the recent developments highlighting the central roles of cell-cell adhesion molecules in the development of cell polarity.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Interdisciplinary Clinical Research Center (IZKF), University of Münster, Germany; Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany.
| | - Daniel Kummer
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Interdisciplinary Clinical Research Center (IZKF), University of Münster, Germany
| | - Tim Steinbacher
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| | - Amrita Singh
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany; Institute of Cell Biology, ZMBE, University of Münster, Germany
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Maja Matis
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany; Institute of Cell Biology, ZMBE, University of Münster, Germany.
| |
Collapse
|
20
|
Keira Y, Wada M, Ishikawa HO. Regulation of Drosophila Development by the Golgi Kinase Four-Jointed. Curr Top Dev Biol 2017; 123:143-179. [DOI: 10.1016/bs.ctdb.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Carvajal-Gonzalez JM, Mulero-Navarro S, Mlodzik M. Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity. Bioessays 2016; 38:1234-1245. [PMID: 27774671 DOI: 10.1002/bies.201600154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Planar cell polarity (PCP)-signaling and associated tissue polarization are evolutionarily conserved. A well documented feature of PCP-signaling in vertebrates is its link to centriole/cilia positioning, although the relationship of PCP and ciliogenesis is still debated. A recent report in Drosophila established that Frizzled (Fz)-PCP core signaling has an instructive input to polarized centriole positioning in non-ciliated Drosophila wing epithelia as a PCP read-out. Here, we review the impact of this observation in the context of recent descriptions of the relationship(s) of core Fz-PCP signaling and cilia/centriole positioning in epithelial and non-epithelial cells. All existing data are consistent with a model where Fz-PCP signaling functions upstream of centriole/cilia positioning, independent of ciliogenesis. The combined data sets indicate that the Fz-Dsh PCP complex is instructive for centriole/ciliary positioning via an actin-based mechanism. Thereby, centriole/cilia/centrosome positioning can be considered an evolutionarily conserved readout and common downstream effect of PCP-signaling from flies to mammals.
Collapse
Affiliation(s)
- Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Marek Mlodzik
- Department of Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
22
|
Aw WY, Devenport D. Planar cell polarity: global inputs establishing cellular asymmetry. Curr Opin Cell Biol 2016; 44:110-116. [PMID: 27576155 DOI: 10.1016/j.ceb.2016.08.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/08/2016] [Indexed: 01/31/2023]
Abstract
Many tissues develop coordinated patterns of cell polarity that align with respect to the tissue axes. This phenomenon refers to planar cell polarity (PCP) and is controlled by multiple conserved PCP modules. A key feature of PCP proteins is their asymmetric localization within the tissue plane, whose orientation is guided by global directional cues. Here, we highlight current models and recent findings on the role of tissue-level gradients, local organizer signals, and mechanical forces in establishing the global patterns of PCP.
Collapse
Affiliation(s)
- Wen Yih Aw
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
23
|
Sharp KA, Axelrod JD. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms. Biol Open 2016; 5:229-36. [PMID: 26863941 PMCID: PMC4810745 DOI: 10.1242/bio.016162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing) and the posterior abdomen (P-abd). We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.
Collapse
Affiliation(s)
- Katherine A Sharp
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Ambegaonkar AA, Irvine KD. Coordination of planar cell polarity pathways through Spiny-legs. eLife 2015; 4. [PMID: 26505959 PMCID: PMC4764577 DOI: 10.7554/elife.09946] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022] Open
Abstract
Morphogenesis and physiology of tissues and organs requires planar cell polarity (PCP) systems that orient and coordinate cells and their behaviors, but the relationship between PCP systems has been controversial. We have characterized how the Frizzled and Dachsous-Fat PCP systems are connected through the Spiny-legs isoform of the Prickle-Spiny-legs locus. Two different components of the Dachsous-Fat system, Dachsous and Dachs, can each independently interact with Spiny-legs and direct its localization in vivo. Through characterization of the contributions of Prickle, Spiny-legs, Dachsous, Fat, and Dachs to PCP in the Drosophila wing, eye, and abdomen, we define where Dachs-Spiny-legs and Dachsous-Spiny-legs interactions contribute to PCP, and provide a new understanding of the orientation of polarity and the basis of PCP phenotypes. Our results support the direct linkage of PCP systems through Sple in specific locales, while emphasizing that cells can be subject to and must ultimately resolve distinct, competing PCP signals. DOI:http://dx.doi.org/10.7554/eLife.09946.001 Animals have many asymmetric organs. Wings, for example, are aerodynamically shaped and have a clear front, back, top and bottom, and even additions to these organs, such as feathers on the wing, often need to be oriented in a specific manner. This kind of orientation arises when cells divide and grow asymmetrically in a flat plane. The asymmetry is established at the level of single cells when proteins are not equally spread throughout a cell, but rather asymmetrically distributed. Such cells are said to be ‘planar polarized’; and many experiments addressing this so-called planar cell polarity have been conducted in fruit flies, because they can be genetically altered easily. Previous studies have shown that two signaling pathways—called Frizzled and Dachsous-Fat—regulate how individual cells orient themselves within a flat sheet of cells that forms fruit fly’s wing. The two pathways are not independent, but it is unclear how they are linked. In particular, there has been conflicting evidence as to whether the Dachsous-Fat pathway controls the Frizzled pathway or whether the two act in parallel. Now, Ambegaonkar and Irvine have discovered new roles for a protein that is involved in both pathways, called 'Spiny-legs'. This protein was known to be important in the Frizzled pathway, but, when it was tracked with a fluorescent tag in developing wing cells it also accumulated in areas where two proteins that make up part of the Dachsous-Fat pathway were located. Biochemical experiments showed that both of these proteins (which are called Dachs or Dachsous) could physically interact with Spiny-legs. Ambegaonkar and Irvine therefore deleted the genes for Dachs or Dachsous in fruit flies and observed that Spiny-legs no longer organized itself in the proper way, implying that Dachs and Dachsous control where Spiny-legs goes within cells. When this analysis was extended to other fruit fly organs, such as the eyes, Ambegaonkar and Irvine found that Dachsous was more important than Dachs for the correct localization of Spiny-legs. Additionally, the Frizzled and Dachsous-Fat pathways seemed to compete for interactions with Spiny-legs. This connection between the two pathways helps to explain how cells behave when several different signals reach them. It also shows how different organs can reuse conserved components of the pathways to make different end products. Future studies should aim to work out the number of systems that polarize cells and how they are connected in different tissues. DOI:http://dx.doi.org/10.7554/eLife.09946.002
Collapse
Affiliation(s)
- Abhijit A Ambegaonkar
- Howard Hughes Medical Institute, Rutgers University, Piscataway, United States.,Waksman Institute of Microbiology, Rutgers University, Piscataway, United States.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Rutgers University, Piscataway, United States.,Waksman Institute of Microbiology, Rutgers University, Piscataway, United States.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| |
Collapse
|
25
|
González-Morales N, Géminard C, Lebreton G, Cerezo D, Coutelis JB, Noselli S. The Atypical Cadherin Dachsous Controls Left-Right Asymmetry in Drosophila. Dev Cell 2015; 33:675-89. [PMID: 26073018 DOI: 10.1016/j.devcel.2015.04.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/04/2015] [Accepted: 04/28/2015] [Indexed: 12/18/2022]
Abstract
Left-right (LR) asymmetry is essential for organ development and function in metazoans, but how initial LR cue is relayed to tissues still remains unclear. Here, we propose a mechanism by which the Drosophila LR determinant Myosin ID (MyoID) transfers LR information to neighboring cells through the planar cell polarity (PCP) atypical cadherin Dachsous (Ds). Molecular interaction between MyoID and Ds in a specific LR organizer controls dextral cell polarity of adjoining hindgut progenitors and is required for organ looping in adults. Loss of Ds blocks hindgut tissue polarization and looping, indicating that Ds is a crucial factor for both LR cue transmission and asymmetric morphogenesis. We further show that the Ds/Fat and Frizzled PCP pathways are required for the spreading of LR asymmetry throughout the hindgut progenitor tissue. These results identify a direct functional coupling between the LR determinant MyoID and PCP, essential for non-autonomous propagation of early LR asymmetry.
Collapse
Affiliation(s)
- Nicanor González-Morales
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Charles Géminard
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Gaëlle Lebreton
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Delphine Cerezo
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Jean-Baptiste Coutelis
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Stéphane Noselli
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France.
| |
Collapse
|
26
|
Sreelatha A, Kinch LN, Tagliabracci VS. The secretory pathway kinases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1687-93. [PMID: 25862977 DOI: 10.1016/j.bbapap.2015.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 12/16/2022]
Abstract
Protein phosphorylation is a nearly universal post-translation modification involved in a plethora of cellular events. Even though phosphorylation of extracellular proteins had been observed, the identity of the kinases that phosphorylate secreted proteins remained a mystery until only recently. Advances in genome sequencing and genetic studies have paved the way for the discovery of a new class of kinases that localize within the endoplasmic reticulum, Golgi apparatus and the extracellular space. These novel kinases phosphorylate proteins and proteoglycans in the secretory pathway and appear to regulate various extracellular processes. Mutations in these kinases cause human disease, thus underscoring the biological importance of phosphorylation within the secretory pathway. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
Affiliation(s)
- Anju Sreelatha
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lisa N Kinch
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
27
|
Galic M, Matis M. Polarized trafficking provides spatial cues for planar cell polarization within a tissue. Bioessays 2015; 37:678-86. [PMID: 25845311 DOI: 10.1002/bies.201400196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Planar cell polarity, the polarization of cells within the plane of the epithelium, orthogonal to the apical-basal axis, is essential for a growing list of developmental events, and - over the last 15 years - has evolved from a little-studied curiosity in Drosophila to the subject of a substantial research enterprise. In that time, it has been recognized that two molecular systems are responsible for polarization of most tissues: Both the "core" Frizzled system and the "global" Fat/Dachsous/Four-jointed system produce molecular asymmetry within cells, and contribute to morphological polarization. In this review, we discuss recent findings on the molecular mechanism that links "global" directional signals with local coordinated polarity.
Collapse
Affiliation(s)
- Milos Galic
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany.,Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Maja Matis
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany.,Institute of Cell Biology, ZMBE, University of Münster, Germany
| |
Collapse
|
28
|
Hale R, Brittle AL, Fisher KH, Monk NAM, Strutt D. Cellular interpretation of the long-range gradient of Four-jointed activity in the Drosophila wing. eLife 2015; 4. [PMID: 25707557 PMCID: PMC4338440 DOI: 10.7554/elife.05789] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/02/2015] [Indexed: 01/23/2023] Open
Abstract
To understand how long-range patterning gradients are interpreted at the cellular level, we investigate how a gradient of expression of the Four-jointed kinase specifies planar polarised distributions of the cadherins Fat and Dachsous in the Drosophila wing. We use computational modelling to test different scenarios for how Four-jointed might act and test the model predictions by employing fluorescence recovery after photobleaching as an in vivo assay to measure the influence of Four-jointed on Fat-Dachsous binding. We demonstrate that in vivo, Four-jointed acts both on Fat to promote its binding to Dachsous and on Dachsous to inhibit its binding to Fat, with a bias towards a stronger effect on Fat. Overall, we show that opposing gradients of Fat and Dachsous phosphorylation are sufficient to explain the observed pattern of Fat–Dachsous binding and planar polarisation across the wing, and thus demonstrate the mechanism by which a long-range gradient is interpreted. DOI:http://dx.doi.org/10.7554/eLife.05789.001 Epithelial cells form sheets that line the body surfaces and internal cavities of animals—such as the skin and the lining of the gut. Certain structures on the surface of epithelial cell sheets—for example scales, hair, and feathers—are often all orientated in a particular direction. Epithelial cells with structures organised like this are described as being ‘planar polarised’. Different proteins work together to set up planar polarity in a sheet of epithelial cells. Dachsous and Fat are two proteins that are found in the cell membranes of epithelial cells, including in the wings of the fruit fly Drosophila. These proteins bind to each other and link a cell to its neighbour. Dachsous and Fat accumulate on opposing sides of each cell: Fat accumulates on the side closest to the fly's body, and Dachsous builds up on the side closest to the wing tip. This pattern provides directional cues that help orientate surface structures, and the pattern is established, in part, by the activity of an enzyme called Four-jointed. Four-jointed adds phosphate groups onto Dachsous and Fat. The activity of the Four-jointed enzyme forms a gradient along a developing wing: levels are low near the fly's body, and high at the wing tip. Previous experiments performed on cells grown in the laboratory showed that when Four-jointed adds phosphate groups to Fat and Dachsous, it prevents Dachsous from binding to Fat. However, it also makes Fat more able to bind to Dachsous. These opposing effects are thought to cause the proteins to accumulate on opposing sides of each cell. However, this has yet to be demonstrated in real tissue, not least because of the technical difficulty of measuring whether Fat-Dachsous binding has occurred in living organisms. Here, Hale et al. overcome this challenge using a method called ‘fluorescence recovery after photobleaching’ (or FRAP) to measure Fat and Dachsous binding in the epithelial cells in the developing Drosophila wing. Combining these experimental results with a computational model confirmed the findings of previous laboratory studies: that Four-jointed makes it easier for Fat to bind to Dachsous, and makes it more difficult for Dachsous to bind to Fat. The opposing effects on the activity of Fat and Dachsous that result from the Four-jointed gradient in the developing wing are able to fully explain the observed patterns of Fat-Dachsous binding and of planar polarisation across the wing. Overall, Hale et al. demonstrate how a gradient of protein activity that spans many cells is sensed and interpreted by individual cells to establish planar polarity. However, exactly how the phosphate groups added to Dachsous and Fat by Four-jointed modifies how they bind to each other remains a question for future work. DOI:http://dx.doi.org/10.7554/eLife.05789.002
Collapse
Affiliation(s)
- Rosalind Hale
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Amy L Brittle
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | | | - Nicholas A M Monk
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
| | - David Strutt
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
29
|
Carvajal-Gonzalez JM, Mlodzik M. Mechanisms of planar cell polarity establishment in Drosophila. F1000PRIME REPORTS 2014; 6:98. [PMID: 25580252 PMCID: PMC4229721 DOI: 10.12703/p6-98] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Correct patterning and polarization of epithelial and mesenchymal cells are essential for morphogenesis and function of all organs and organisms. Epithelial cells are generally polarized in two axes: (a) the ubiquitous apical-basal axis and (b) polarity within the plane of the epithelium. The latter is generally referred to as planar cell polarity (PCP) and also is found in several contexts of mesenchymal cell patterning. In Drosophila, all adult structures display PCP features, and two conserved molecular systems (the Fat [Ft]/Dachsous [Ds] system and the Frizzled [Fz]/PCP pathway) that regulate this process have been identified. Although significant progress has been made in dissecting aspects of PCP signaling within cells, much remains to be discovered about the mechanisms of long-range and local PCP cell-cell interactions. Here, we discuss the current models based on Drosophila studies and incorporate recent insights into this long-standing cell and developmental biology problem.
Collapse
|
30
|
Merkel M, Sagner A, Gruber FS, Etournay R, Blasse C, Myers E, Eaton S, Jülicher F. The balance of prickle/spiny-legs isoforms controls the amount of coupling between core and fat PCP systems. Curr Biol 2014; 24:2111-2123. [PMID: 25201685 DOI: 10.1016/j.cub.2014.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/25/2014] [Accepted: 08/01/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND The conserved Fat and Core planar cell polarity (PCP) pathways work together to specify tissue-wide orientation of hairs and ridges in the Drosophila wing. Their components form intracellularly polarized complexes at adherens junctions that couple the polarity of adjacent cells and form global patterns. How Fat and Core PCP systems interact is not understood. Some studies suggest that Fat PCP directly orients patterns formed by Core PCP components. Others implicate oriented tissue remodeling in specifying Core PCP patterns. RESULTS We use genetics, quantitative image analysis, and physical modeling to study Fat and Core PCP interactions during wing development. We show their patterns change during morphogenesis, undergoing phases of coupling and uncoupling that are regulated by antagonistic Core PCP protein isoforms Prickle and Spiny-legs. Evolving patterns of Core PCP are hysteretic: the early Core PCP pattern is modified by tissue flows and then by coupling to Fat PCP, producing sequential patterns that guide hairs and then ridges. Our data quantitatively account for altered hair and ridge polarity patterns in PCP mutants. Premature coupling between Fat and Core PCP explains altered polarity patterns in pk mutants. In other Core PCP mutants, hair polarity patterns are guided directly by Fat PCP. When both systems fail, hairs still align locally and obey signals associated with veins. CONCLUSIONS Temporally regulated coupling between the Fat and Core PCP systems enables a single tissue to develop sequential polarity patterns that orient distinct morphological structures.
Collapse
Affiliation(s)
- Matthias Merkel
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Andreas Sagner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Franz Sebastian Gruber
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Raphael Etournay
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Corinna Blasse
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany.
| |
Collapse
|
31
|
Olofsson J, Sharp KA, Matis M, Cho B, Axelrod JD. Prickle/spiny-legs isoforms control the polarity of the apical microtubule network in planar cell polarity. Development 2014; 141:2866-74. [PMID: 25005476 PMCID: PMC4197621 DOI: 10.1242/dev.105932] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 05/19/2014] [Indexed: 01/25/2023]
Abstract
Microtubules (MTs) are substrates upon which plus- and minus-end directed motors control the directional movement of cargos that are essential for generating cell polarity. Although centrosomal MTs are organized with plus-ends away from the MT organizing center, the regulation of non-centrosomal MT polarity is poorly understood. Increasing evidence supports the model that directional information for planar polarization is derived from the alignment of a parallel apical network of MTs and the directional MT-dependent trafficking of downstream signaling components. The Fat/Dachsous/Four-jointed (Ft/Ds/Fj) signaling system contributes to orienting those MTs. In addition to previously defined functions in promoting asymmetric subcellular localization of 'core' planar cell polarity (PCP) proteins, we find that alternative Prickle (Pk-Sple) protein isoforms control the polarity of this MT network. This function allows the isoforms of Pk-Sple to differentially determine the direction in which asymmetry is established and therefore, ultimately, the direction of tissue polarity. Oppositely oriented signals that are encoded by oppositely oriented Fj and Ds gradients produce the same polarity outcome in different tissues or compartments, and the tissue-specific activity of alternative Pk-Sple protein isoforms has been observed to rectify the interpretation of opposite upstream directional signals. The control of MT polarity, and thus the directionality of apical vesicle traffic, by Pk-Sple provides a mechanism for this rectification.
Collapse
Affiliation(s)
- Jessica Olofsson
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Katherine A Sharp
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Maja Matis
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Bomsoo Cho
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Singh J, Mlodzik M. Planar cell polarity signaling: coordination of cellular orientation across tissues. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:479-99. [PMID: 23066429 DOI: 10.1002/wdev.32] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Establishment of Planar Cell Polarity (PCP) in epithelia, in the plane of an epithelium, is an important feature of the development and homeostasis of most organs. Studies in different model organisms have contributed a wealth of information regarding the mechanisms that govern PCP regulation. Genetic studies in Drosophila have identified two signaling systems, the Fz/PCP and Fat/Dachsous system, which are both required for PCP establishment in many different tissues in a largely non-redundant manner. Recent advances in vertebrate PCP studies have added novel factors of PCP regulation and also new cellular features requiring PCP-signaling input, including the positioning and orientation of the primary cilium of many epithelial cells. This review focuses mostly on several recent advances made in the Drosophila and vertebrate PCP field and integrates these within the existing PCP-signaling framework.
Collapse
Affiliation(s)
- Jaskirat Singh
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
33
|
Abstract
Planar cell polarity (PCP) in epithelia, orthogonal to the apical-basal axis, is essential for numerous developmental events and physiological functions. Drosophila model systems have been at the forefront of studies revealing insights into mechanisms regulating PCP and have revealed distinct signaling modules. One of these, involving the atypical cadherins Fat and Dachsous and the ectokinase Four-jointed, appears to link the direction of cell polarization to the tissue axes. We discuss models for the function of this signaling module as well as several unanswered questions that may guide future investigations.
Collapse
Affiliation(s)
- Maja Matis
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
34
|
The zinc finger homeodomain-2 gene of Drosophila controls Notch targets and regulates apoptosis in the tarsal segments. Dev Biol 2013; 385:350-65. [PMID: 24144920 DOI: 10.1016/j.ydbio.2013.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 10/06/2013] [Accepted: 10/12/2013] [Indexed: 12/19/2022]
Abstract
The development of the Drosophila leg is a good model to study processes of pattern formation, cell death and segmentation. Such processes require the coordinate activity of different genes and signaling pathways that progressively subdivide the leg territory into smaller domains. One of the main pathways needed for leg development is the Notch pathway, required for determining the proximo-distal axis of the leg and for the formation of the joints that separate different leg segments. The mechanisms required to coordinate such events are largely unknown. We describe here that the zinc finger homeodomain-2 (zfh-2) gene is highly expressed in cells that will form the leg joints and needed to establish a correct size and pattern in the distal leg. There is an early requirement of zfh-2 to establish the correct proximo-distal axis, but zfh-2 is also needed at late third instar to form the joint between the fourth and fifth tarsal segments. The expression of zfh-2 requires Notch activity but zfh-2 is necessary, in turn, to activate Notch targets such as Enhancer of split and big brain. zfh-2 is controlled by the Drosophila activator protein 2 gene and regulates the late expression of tarsal-less. In the absence of zfh-2 many cells ectopically express the pro-apoptotic gene head involution defective, activate caspase-3 and are positive for acridine orange, indicating they undergo apoptosis. Our results demonstrate the key role of zfh-2 in the control of cell death and Notch signaling during leg development.
Collapse
|
35
|
Perea D, Molohon K, Edwards K, Díaz-Benjumea FJ. Multiple roles of the gene zinc finger homeodomain-2 in the development of the Drosophila wing. Mech Dev 2013; 130:467-81. [PMID: 23811114 DOI: 10.1016/j.mod.2013.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/05/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
The gene zfh2 and its human homolog Atbf1 encode huge molecules with several homeo- and zinc finger domains. It has been reported that they play important roles in neural differentiation and promotion of apoptosis in several tissues of both humans and flies. In the Drosophila wing imaginal disc, Zfh2 is expressed in a dynamic pattern and previous results suggest that it is involved is proximal-distal patterning. In this report we go further in the analysis of the function of this gene in wing development, performing ectopic expression experiments and studying its effects in genes involved in wing development. Our results suggest that Zfh2 plays an important role controlling the expression of several wing genes and in the specification of those cellular properties that define the differences in cell proliferation between proximal and distal domains of the wing disc.
Collapse
Affiliation(s)
- Daniel Perea
- Centro de Biología Molecular-Severo Ochoa, Universidad Autónoma-Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
36
|
Hazelwood LD, Hancock JM. Functional modelling of planar cell polarity: an approach for identifying molecular function. BMC DEVELOPMENTAL BIOLOGY 2013; 13:20. [PMID: 23672397 PMCID: PMC3662592 DOI: 10.1186/1471-213x-13-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/30/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cells in some tissues acquire a polarisation in the plane of the tissue in addition to apical-basal polarity. This polarisation is commonly known as planar cell polarity and has been found to be important in developmental processes, as planar polarity is required to define the in-plane tissue coordinate system at the cellular level. RESULTS We have built an in-silico functional model of cellular polarisation that includes cellular asymmetry, cell-cell signalling and a response to a global cue. The model has been validated and parameterised against domineering non-autonomous wing hair phenotypes in Drosophila. CONCLUSIONS We have carried out a systematic comparison of in-silico polarity phenotypes with patterns observed in vivo under different genetic manipulations in the wing. This has allowed us to classify the specific functional roles of proteins involved in generating cell polarity, providing new hypotheses about their specific functions, in particular for Pk and Dsh. The predictions from the model allow direct assignment of functional roles of genes from genetic mosaic analysis of Drosophila wings.
Collapse
Affiliation(s)
- Lee D Hazelwood
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
37
|
Abstract
Planar cell polarity (PCP), a process controlling coordinated, uniformly polarized cellular behaviors in a field of cells, has been identified to be critically required for many fundamental developmental processes. However, a global directional cue that establishes PCP in a three-dimensional tissue or organ with respect to the body axes remains elusive. In vertebrate, while Wnt-secreted signaling molecules have been implicated in regulating PCP in a β-catenin-independent manner, whether they function permissively or act as a global cue to convey directional information is not clearly defined. In addition, the underlying molecular mechanism by which Wnt signal is transduced to core PCP proteins is largely unknown. In this chapter, I review the roles of Wnt signaling in regulating PCP during vertebrate development and update our knowledge of its regulatory mechanism.
Collapse
Affiliation(s)
- Bo Gao
- National Human Genome Research Institute, Bethesda, Maryland, USA.
| |
Collapse
|
38
|
Marcinkevicius E, Zallen JA. Regulation of cytoskeletal organization and junctional remodeling by the atypical cadherin Fat. Development 2013; 140:433-43. [PMID: 23250217 DOI: 10.1242/dev.083949] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The atypical cadherin Fat is a conserved regulator of planar cell polarity, but the mechanisms by which Fat controls cell shape and tissue structure are not well understood. Here, we show that Fat is required for the planar polarized organization of actin denticle precursors, adherens junction proteins and microtubules in the epidermis of the late Drosophila embryo. In wild-type embryos, spatially regulated cell-shape changes and rearrangements organize cells into highly aligned columns. Junctional remodeling is suppressed at dorsal and ventral cell boundaries, where adherens junction proteins accumulate. By contrast, adherens junction proteins fail to accumulate to the wild-type extent and all cell boundaries are equally engaged in junctional remodeling in fat mutants. The effects of loss of Fat on cell shape and junctional localization, but not its role in denticle organization, are recapitulated by mutations in Expanded, an upstream regulator of the conserved Hippo pathway, and mutations in Hippo and Warts, two kinases in the Hippo kinase cascade. However, the cell shape and planar polarity defects in fat mutants are not suppressed by removing the transcriptional co-activator Yorkie, suggesting that these roles of Fat are independent of Yorkie-mediated transcription. The effects of Fat on cell shape, junctional remodeling and microtubule localization are recapitulated by expression of activated Notch. These results demonstrate that cell shape, junctional localization and cytoskeletal planar polarity in the Drosophila embryo are regulated by a common signal provided by the atypical cadherin Fat and suggest that Fat influences tissue organization through its role in polarized junctional remodeling.
Collapse
Affiliation(s)
- Emily Marcinkevicius
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
39
|
Abstract
The diversity of animal and plant forms is shaped by nested evolutionary innovations. Understanding the genetic and molecular changes responsible for these innovations is therefore one of the key goals of evolutionary biology. From the genetic point of view, the origin of novel traits implies the origin of new regulatory pathways to control their development. To understand how these new pathways are assembled in the course of evolution, we need model systems that combine relatively recent innovations with a powerful set of genetic and molecular tools. One such model is provided by the Drosophila sex comb-a male-specific morphological structure that evolved in a relatively small lineage related to the model species D. melanogaster. Our extensive knowledge of sex comb development in D. melanogaster provides the basis for investigating the genetic changes responsible for sex comb origin and diversification. At the same time, sex combs can change on microevolutionary timescales and differ spectacularly among closely related species, providing opportunities for direct genetic analysis and for integrating developmental and population-genetic approaches. Sex comb evolution is associated with the origin of novel interactions between Hox and sex determination genes. Activity of the sex determination pathway was brought under the control of the Hox code to become segment-specific, while Hox gene expression became sexually dimorphic. At the same time, both Hox and sex determination genes were integrated into the intrasegmental spatial patterning network, and acquired new joint downstream targets. Phylogenetic analysis shows that similar sex comb morphologies evolved independently in different lineages. Convergent evolution at the phenotypic level reflects convergent changes in the expression of Hox and sex determination genes, involving both independent gains and losses of regulatory interactions. However, the downstream cell-differentiation programs have diverged between species, and in some lineages, similar adult morphologies are produced by different morphogenetic mechanisms. These features make the sex comb an excellent model for examining not only the genetic changes responsible for its evolution, but also the cellular processes that translate DNA sequence changes into morphological diversity. The origin and diversification of sex combs provides insights into the roles of modularity, cooption, and regulatory changes in evolutionary innovations, and can serve as a model for understanding the origin of the more drastic novelties that define higher order taxa.
Collapse
Affiliation(s)
- Artyom Kopp
- Department of Evolution and Ecology, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|
40
|
Aegerter-Wilmsen T, Heimlicher MB, Smith AC, de Reuille PB, Smith RS, Aegerter CM, Basler K. Integrating force-sensing and signaling pathways in a model for the regulation of wing imaginal disc size. Development 2012; 139:3221-31. [PMID: 22833127 DOI: 10.1242/dev.082800] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of organ size constitutes a major unsolved question in developmental biology. The wing imaginal disc of Drosophila serves as a widely used model system to study this question. Several mechanisms have been proposed to have an impact on final size, but they are either contradicted by experimental data or they cannot explain a number of key experimental observations and may thus be missing crucial elements. We have modeled a regulatory network that integrates the experimentally confirmed molecular interactions underlying other available models. Furthermore, the network includes hypothetical interactions between mechanical forces and specific growth regulators, leading to a size regulation mechanism that conceptually combines elements of existing models, and can be understood in terms of a compression gradient model. According to this model, compression increases in the center of the disc during growth. Growth stops once compression levels in the disc center reach a certain threshold and the compression gradient drops below a certain level in the rest of the disc. Our model can account for growth termination as well as for the paradoxical observation that growth occurs uniformly in the presence of a growth factor gradient and non-uniformly in the presence of a uniform growth factor distribution. Furthermore, it can account for other experimental observations that argue either in favor or against other models. The model also makes specific predictions about the distribution of cell shape and size in the developing disc, which we were able to confirm experimentally.
Collapse
|
41
|
Matakatsu H, Blair SS. Separating planar cell polarity and Hippo pathway activities of the protocadherins Fat and Dachsous. Development 2012; 139:1498-508. [PMID: 22399682 DOI: 10.1242/dev.070367] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The giant Drosophila protocadherin Fat (Ft) affects planar cell polarity (PCP). Ft also inhibits the overgrowth of imaginal discs via the Hippo pathway, repressing the activity of the transcription co-factor Yorkie (Yki). Much of Ft activity is likely to be mediated by its intracellular domain (Ft ICD). However, the links between the Ft ICD and either PCP or Hippo activity are poorly understood, and the role of the Hippo pathway in PCP is ambiguous. We have performed a structure-function analysis of the Ft ICD. We found that the effects of the Ft ICD on PCP and the Hippo pathway are largely separable. Surprisingly, the domains required for PCP and Hippo activities do not map to any of the previously identified protein interaction domains, nor, with one exception, to the regions that are highly conserved in mammalian Fat4. We also found that the extracellular domain of Ft can act independently of the Ft ICD in PCP and can trigger dominant-negative and boundary effects on Hippo activity, probably via binding to the protocadherin Dachsous.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Zoology, University of Wisconsin-Madison, 250 North Mills Street, Madison, WI 53706, USA
| | | |
Collapse
|
42
|
Baena-Lopez LA, Nojima H, Vincent JP. Integration of morphogen signalling within the growth regulatory network. Curr Opin Cell Biol 2012; 24:166-72. [PMID: 22257639 DOI: 10.1016/j.ceb.2011.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/06/2011] [Accepted: 12/14/2011] [Indexed: 11/27/2022]
Abstract
The need to coordinate patterning and growth has been appreciated for many years. The logic that enables seamless integration of the relevant inputs is beginning to be elucidated, particularly in wing imaginal discs of Drosophila. In this tissue, multiple regulatory layers involving the two morphogens Wingless and Dpp, the wing-specific determinant, Vestigial, and the Hippo pathway, converge to regulate growth. Intricate cross-regulation between these components may explain why, at the local level, there is no direct correlation between growth and the graded signalling activity of Wingless and Dpp, despite the requirement of these two pathways for growth.
Collapse
|
43
|
Deans MR, Krol A, Abraira VE, Copley CO, Tucker AF, Goodrich LV. Control of neuronal morphology by the atypical cadherin Fat3. Neuron 2011; 71:820-32. [PMID: 21903076 DOI: 10.1016/j.neuron.2011.06.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2011] [Indexed: 11/16/2022]
Abstract
Neurons receive signals through dendrites that vary widely in number and organization, ranging from one primary dendrite to multiple complex dendritic trees. For example, retinal amacrine cells (ACs) project primary dendrites into a discrete synaptic layer called the inner plexiform layer (IPL) and only rarely extend processes into other retinal layers. Here, we show that the atypical cadherin Fat3 ensures that ACs develop this unipolar morphology. AC precursors are initially multipolar but lose neurites as they migrate through the neuroblastic layer. In fat3 mutants, pruning is unreliable and ACs elaborate two dendritic trees: one in the IPL and a second projecting away from the IPL that stratifies to form an additional synaptic layer. Since complex nervous systems are characterized by the addition of layers, these results demonstrate that mutations in a single gene can cause fundamental changes in circuit organization that may drive nervous system evolution.
Collapse
Affiliation(s)
- Michael R Deans
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Vichas A, Zallen JA. Translating cell polarity into tissue elongation. Semin Cell Dev Biol 2011; 22:858-64. [PMID: 21983030 PMCID: PMC4752253 DOI: 10.1016/j.semcdb.2011.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
Planar cell polarity, the orientation of single-cell asymmetries within the plane of a multicellular tissue, is essential to generating the shape and dimensions of organs and organisms. Planar polarity systems align cell behavior with the body axes and orient the cellular processes that lead to tissue elongation. Using Drosophila as a model system, significant progress has been made toward understanding how planar polarity is generated by biochemical and mechanical signals. Recent studies using time-lapse imaging reveal that cells engage in a number of active behaviors whose orientation and dynamics translate planar cell polarity into tissue elongation. Here we review recent progress in understanding the cellular mechanisms that link planar polarity to large-scale changes in tissue structure.
Collapse
Affiliation(s)
- Athea Vichas
- Howard Hughes Medical Institute, Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Jennifer A. Zallen
- Howard Hughes Medical Institute, Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
45
|
Thomas C, Strutt D. The roles of the cadherins Fat and Dachsous in planar polarity specification in Drosophila. Dev Dyn 2011; 241:27-39. [PMID: 21919123 DOI: 10.1002/dvdy.22736] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2011] [Indexed: 11/06/2022] Open
Abstract
Planar polarity is generated through the activity of two groups of proteins, the "core" system and the Fat (Ft)/Dachsous (Ds) system. Although both are conserved from insects to mammals, vertebrate studies into planar polarity have primarily focussed on core planar polarity proteins and have only recently branched into the study of the Ft/Ds system. In Drosophila, however, years of detailed analysis have started to elucidate some of the mechanisms by which Ft/Ds signalling might set up polarity across a tissue, and how this may impact upon core protein-mediated planar polarity. In this review, we discuss the major findings, models, and controversies that have emerged from Drosophila research into the Ft/Ds system, and indicate some areas for further investigation.
Collapse
Affiliation(s)
- Chloe Thomas
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.
| | | |
Collapse
|
46
|
Gray RS, Roszko I, Solnica-Krezel L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell 2011; 21:120-33. [PMID: 21763613 PMCID: PMC3166557 DOI: 10.1016/j.devcel.2011.06.011] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Planar cell polarization entails establishment of cellular asymmetries within the tissue plane. An evolutionarily conserved planar cell polarity (PCP) signaling system employs intra- and intercellular feedback interactions between its core components, including Frizzled, Van Gogh, Flamingo, Prickle, and Dishevelled, to establish their characteristic asymmetric intracellular distributions and coordinate planar polarity of cell populations. By translating global patterning information into asymmetries of cell membranes and intracellular organelles, PCP signaling coordinates morphogenetic behaviors of individual cells and cell populations with the embryonic polarity. In vertebrates, by polarizing cilia in the node/Kupffer's vesicle, PCP signaling links the anteroposterior to left-right embryonic polarity.
Collapse
Affiliation(s)
- Ryan S Gray
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
47
|
Abstract
Planar cell polarity (PCP) describes the coordinated polarization of tissue cells in a direction that is orthogonal to their apical/basal axis. In the last several years, studies in flies and vertebrates have defined evolutionarily conserved pathways that establish and maintain PCP in various cellular contexts. Defective responses to the polarizing signal(s) have deleterious effects on the development and repair of a wide variety of organs/tissues. In this review, we cover the known and hypothesized roles for PCP in the metanephric kidney. We highlight the similarities and differences in PCP establishment in this organ compared with flies, especially the role of Wnt signaling in this process. Finally, we present a model whereby the signal(s) that organizes PCP in the kidney epithelium, at least in part, comes from the adjacent stromal fibroblasts.
Collapse
Affiliation(s)
- Thomas J Carroll
- Department of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
48
|
Abstract
In all multicellular organisms, epithelial cells are not only polarized along the apical-basal axis, but also within the epithelial plane, giving cells a sense of direction. Planar cell polarity (PCP) signaling regulates establishment of polarity within the plane of an epithelium. The outcomes of PCP signaling are diverse and include the determination of cell fates, the generation of asymmetric but highly aligned structures, such as the stereocilia in the human inner ear or the hairs on a fly wing, or the directional migration of cells during convergence and extension during vertebrate gastrulation. In humans, aberrant PCP signaling can result in severe developmental defects, such as open neural tubes (spina bifida), and can cause cystic kidneys. In this review, we discuss the basic mechanism and more recent findings of PCP signaling focusing on Drosophila melanogaster, the model organism in which most key PCP components were initially identified.
Collapse
Affiliation(s)
- Saw Myat Thanda W Maung
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
| | | |
Collapse
|
49
|
Abstract
The establishment and maintenance of apico–basal cell polarity is a pre-requisite for the formation of a functioning epithelial tissue. Many lines of evidence suggest that cell polarity perturbations favour cancer formation, even though the mechanistic basis for this link remains unclear. Studies in Drosophila have uncovered complex interactions between the conserved Hpo (Hippo) tumour suppressor pathway and apico–basal polarity determinants. The Hpo pathway is a crucial growth regulatory network whose inactivation in Drosophila epithelial tissues induces massive overproliferation. Its core consists of a phosphorylation cascade (comprising the kinases Hpo and Warts) that mediates the inactivation of the pro-growth transcriptional co-activator Yki [Yorkie; YAP (Yes-associated protein) in mammals]. Several apically located proteins, such as Merlin, Expanded or Kibra, have been identified as upstream regulators of the Hpo pathway, leading to the notion that an apical multi-molecular complex modulates core kinase activity and promotes Yki/YAP inactivation. In the present review, we explore the links between apico–basal polarity and Hpo signalling. We focus on the regulation of Yki/YAP by apical proteins, but also on how the Hpo pathway might in turn influence apical domain size as part of a regulatory feedback loop.
Collapse
|
50
|
Abstract
Planar polarity describes the coordinated polarisation of cells or structures in the plane of a tissue. The patterning mechanisms that underlie planar polarity are well characterised in Drosophila, where many events are regulated by two pathways: the 'core' planar polarity complex and the Fat/Dachsous system. Components of both pathways also function in vertebrates and are implicated in diverse morphogenetic processes, some of which self-evidently involve planar polarisation and some of which do not. Here, we review the molecular mechanisms and cellular consequences of planar polarisation in diverse contexts, seeking to identify the common principles across the animal kingdom.
Collapse
Affiliation(s)
- Lisa V. Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Strutt
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|