1
|
de Groot DMG, Linders L, Kayser R, Nederlof R, de Esch C, Slieker RC, Kuper CF, Wolterbeek A, de Groot VJ, Veltien A, Heerschap A, van Waarde A, Dierckx RAJO, de Vries EFJ. Perinatal exposure to the immune-suppressant di-n-octyltin dichloride affects brain development in rats. Toxicol Mech Methods 2024; 34:283-299. [PMID: 37946400 DOI: 10.1080/15376516.2023.2281610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Disruption of the immune system during embryonic brain development by environmental chemicals was proposed as a possible cause of neurodevelopmental disorders. We previously found adverse effects of di-n-octyltin dichloride (DOTC) on maternal and developing immune systems of rats in an extended one-generation reproductive toxicity study according to the OECD 443 test guideline. We hypothesize that the DOTC-induced changes in the immune system can affect neurodevelopment. Therefore, we used in-vivo MRI and PET imaging and genomics, in addition to behavioral testing and neuropathology as proposed in OECD test guideline 443, to investigate the effect of DOTC on structural and functional brain development. Male rats were exposed to DOTC (0, 3, 10, or 30 mg/kg of diet) from 2 weeks prior to mating of the F0-generation until sacrifice of F1-animals. The brains of rats, exposed to DOTC showed a transiently enlarged volume of specific brain regions (MRI), altered specific gravity, and transient hyper-metabolism ([18F]FDG PET). The alterations in brain development concurred with hyper-responsiveness in auditory startle response and slight hyperactivity in young adult animals. Genomics identified altered transcription of key regulators involved in neurodevelopment and neural function (e.g. Nrgrn, Shank3, Igf1r, Cck, Apba2, Foxp2); and regulators involved in cell size, cell proliferation, and organ development, especially immune system development and functioning (e.g. LOC679869, Itga11, Arhgap5, Cd47, Dlg1, Gas6, Cml5, Mef2c). The results suggest the involvement of immunotoxicity in the impairment of the nervous system by DOTC and support the hypothesis of a close connection between the immune and nervous systems in brain development.
Collapse
Affiliation(s)
- Didima M G de Groot
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Louisa Linders
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Reinier Kayser
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Rianne Nederlof
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Celine de Esch
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Roderick C Slieker
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - C Frieke Kuper
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Andre Wolterbeek
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - V Jeroen de Groot
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Andor Veltien
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Abstract
MacroH2A core histone variants have a unique structure that includes a C-terminal nonhistone domain. They are highly conserved in vertebrates and are thought to regulate gene expression. However, the nature of genes regulated by macroH2As and their biological significance remain unclear. Here, we examine macroH2A function in vivo by knocking out both macroH2A1 and macroH2A2 in the mouse. While macroH2As are not required for early development, the absence of macroH2As impairs prenatal and postnatal growth and can significantly reduce reproductive efficiency. The distributions of macroH2A.1- and macroH2A.2-containing nucleosomes show substantial overlap, as do their effects on gene expression. Our studies in fetal and adult liver indicate that macroH2As can exert large positive or negative effects on gene expression, with macroH2A.1 and macroH2A.2 acting synergistically on the expression of some genes and apparently having opposing effects on others. These effects are very specific and in the adult liver preferentially involve genes related to lipid metabolism, including the leptin receptor. MacroH2A-dependent gene regulation changes substantially in postnatal development and can be strongly affected by fasting. We propose that macroH2As produce adaptive changes to gene expression, which in the liver focus on metabolism.
Collapse
|
3
|
Karmodiya K, Anamika K, Muley V, Pradhan SJ, Bhide Y, Galande S. Camello, a novel family of Histone Acetyltransferases that acetylate histone H4 and is essential for zebrafish development. Sci Rep 2014; 4:6076. [PMID: 25123547 PMCID: PMC4133703 DOI: 10.1038/srep06076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/07/2014] [Indexed: 12/04/2022] Open
Abstract
In this study, we have investigated genome-wide occurrence of Histone Acetyltransferases (HATs) in genomes of Mus musculus and Danio rerio on the basis of presence of HAT domain. Our study identified a group of proteins that lacks characteristic features of known HAT families, relatively smaller in size and has no other associated domains. Most of the proteins in this unclassified group are Camello proteins, which are not yet known and classified as functional HATs. Our in vitro and in vivo analysis revealed that Camello family proteins are active HATs and exhibit specificity towards histone H4. Interestingly, Camello proteins are among the first identified HATs showing perinuclear localization. Moreover, Camello proteins are evolutionarily conserved in all chordates and are observed for the first time in cnidarians in phylogeny. Furthermore, knockdown of Camello protein (CMLO3) in zebrafish embryos exhibited defects in axis elongation and head formation. Thus, our study identified a novel family of active HATs that is specific for histone H4 acetylation, exhibits perinuclear localization and is essential for zebrafish development.
Collapse
Affiliation(s)
- Krishanpal Karmodiya
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pashan, Pune 411 021, India
| | - Krishanpal Anamika
- 1] Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pashan, Pune 411 021, India [2]
| | - Vijaykumar Muley
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pashan, Pune 411 021, India
| | - Saurabh J Pradhan
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pashan, Pune 411 021, India
| | - Yoshita Bhide
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pashan, Pune 411 021, India
| | - Sanjeev Galande
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pashan, Pune 411 021, India
| |
Collapse
|
4
|
Evans AL, Faial T, Gilchrist MJ, Down T, Vallier L, Pedersen RA, Wardle FC, Smith JC. Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells. PLoS One 2012; 7:e33346. [PMID: 22479388 PMCID: PMC3316570 DOI: 10.1371/journal.pone.0033346] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 02/13/2012] [Indexed: 02/07/2023] Open
Abstract
Background The T-box transcription factor Brachyury (T) is essential for formation of the posterior mesoderm and the notochord in vertebrate embryos. Work in the frog and the zebrafish has identified some direct genomic targets of Brachyury, but little is known about Brachyury targets in the mouse. Methodology/Principal Findings Here we use chromatin immunoprecipitation and mouse promoter microarrays to identify targets of Brachyury in embryoid bodies formed from differentiating mouse ES cells. The targets we identify are enriched for sequence-specific DNA binding proteins and include components of signal transduction pathways that direct cell fate in the primitive streak and tailbud of the early embryo. Expression of some of these targets, such as Axin2, Fgf8 and Wnt3a, is down regulated in Brachyury mutant embryos and we demonstrate that they are also Brachyury targets in the human. Surprisingly, we do not observe enrichment of the canonical T-domain DNA binding sequence 5′-TCACACCT-3′ in the vicinity of most Brachyury target genes. Rather, we have identified an (AC)n repeat sequence, which is conserved in the rat but not in human, zebrafish or Xenopus. We do not understand the significance of this sequence, but speculate that it enhances transcription factor binding in the regulatory regions of Brachyury target genes in rodents. Conclusions/Significance Our work identifies the genomic targets of a key regulator of mesoderm formation in the early mouse embryo, thereby providing insights into the Brachyury-driven genetic regulatory network and allowing us to compare the function of Brachyury in different species.
Collapse
Affiliation(s)
- Amanda L. Evans
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Medical Research Council, National Institute for Medical Research, London, United Kingdome
| | - Tiago Faial
- The Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Medical Research Council, National Institute for Medical Research, London, United Kingdome
| | - Michael J. Gilchrist
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Medical Research Council, National Institute for Medical Research, London, United Kingdome
| | - Thomas Down
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ludovic Vallier
- The Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Roger A. Pedersen
- The Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fiona C. Wardle
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - James C. Smith
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Medical Research Council, National Institute for Medical Research, London, United Kingdome
- * E-mail:
| |
Collapse
|
5
|
Novel roles of the chemorepellent axon guidance molecule RGMa in cell migration and adhesion. Mol Cell Biol 2012; 32:968-80. [PMID: 22215618 DOI: 10.1128/mcb.06128-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The repulsive guidance molecule A (RGMa) is a contact-mediated axon guidance molecule that has significant roles in central nervous system (CNS) development. Here we have examined whether RGMa has novel roles in cell migration and cell adhesion outside the nervous system. RGMa was found to stimulate cell migration from Xenopus animal cap explants in a neogenin-dependent and BMP-independent manner. RGMa also stimulated the adhesion of Xenopus animal cap cells, and this adhesion was dependent on neogenin and independent of calcium. To begin to functionally characterize the role of specific domains in RGMa, we assessed the migratory and adhesive activities of deletion mutants. RGMa lacking the partial von Willebrand factor type D (vWF) domain preferentially perturbed cell adhesion, while mutants lacking the RGD motif affected cell migration. We also revealed that manipulating the levels of RGMa in vivo caused major migration defects during Xenopus gastrulation. We have revealed here novel roles of RGMa in cell migration and adhesion and demonstrated that perturbations to the homeostasis of RGMa expression can severely disrupt major morphogenetic events. These results have implications for understanding the role of RGMa in both health and disease.
Collapse
|
6
|
Veiga-da-Cunha M, Tyteca D, Stroobant V, Courtoy PJ, Opperdoes FR, Van Schaftingen E. Molecular identification of NAT8 as the enzyme that acetylates cysteine S-conjugates to mercapturic acids. J Biol Chem 2010; 285:18888-98. [PMID: 20392701 DOI: 10.1074/jbc.m110.110924] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Our goal was to identify the reaction catalyzed by NAT8 (N-acetyltransferase 8), a putative N-acetyltransferase homologous to the enzyme (NAT8L) that produces N-acetylaspartate in brain. The almost exclusive expression of NAT8 in kidney and liver and its predicted association with the endoplasmic reticulum suggested that it was cysteinyl-S-conjugate N-acetyltransferase, the microsomal enzyme that catalyzes the last step of mercapturic acid formation. In agreement, HEK293T extracts of cells overexpressing NAT8 catalyzed the N-acetylation of S-benzyl-L-cysteine and leukotriene E(4), two cysteine conjugates, but were inactive on other physiological amines or amino acids. Confocal microscopy indicated that NAT8 was associated with the endoplasmic reticulum. Neither of the two frequent single nucleotide polymorphisms found in NAT8, E104K nor F143S, changed the enzymatic activity or the expression of the protein by >or=2-fold, whereas a mutation (R149K) replacing an extremely conserved arginine suppressed the activity. Sequencing of genomic DNA and EST clones corresponding to the NAT8B gene, which resulted from duplication of the NAT8 gene in the primate lineage, disclosed the systematic presence of a premature stop codon at codon 16. Furthermore, truncated NAT8B and NAT8 proteins starting from the following methionine (Met-25) showed no cysteinyl-S-conjugate N-acetyltransferase activity when transfected in HEK293T cells. Taken together, these findings indicate that NAT8 is involved in mercapturic acid formation and confirm that NAT8B is an inactive gene in humans. NAT8 homologues are found in all vertebrate genomes, where they are often encoded by multiple, tandemly repeated genes as many other genes encoding xenobiotic metabolism enzymes.
Collapse
Affiliation(s)
- Maria Veiga-da-Cunha
- Laboratory of Physiological Chemistry, de Duve Institute and Université Catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
7
|
Luxardi G, Marchal L, Thomé V, Kodjabachian L. Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. Development 2010; 137:417-26. [PMID: 20056679 DOI: 10.1242/dev.039735] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate body plan is established in two major steps. First, mesendoderm induction singles out prospective endoderm, mesoderm and ectoderm progenitors. Second, these progenitors are spatially rearranged during gastrulation through numerous and complex movements to give rise to an embryo comprising three concentric germ layers, polarised along dorsoventral, anteroposterior and left-right axes. Although much is known about the molecular mechanisms of mesendoderm induction, signals controlling gastrulation movements are only starting to be revealed. In vertebrates, Nodal signalling is required to induce the mesendoderm, which has precluded an analysis of its potential role during the later process of gastrulation. Using time-dependent inhibition, we show that in Xenopus, Nodal signalling plays sequential roles in mesendoderm induction and gastrulation movements. Nodal activity is necessary for convergent extension in axial mesoderm and for head mesoderm migration. Using morpholino-mediated knockdown, we found that the Nodal ligands Xnr5 and Xnr6 are together required for mesendoderm induction, whereas Xnr1 and Xnr2 act later to control gastrulation movements. This control is operated via the direct regulation of key movement-effector genes, such as papc, has2 and pdgfralpha. Interestingly, however, Nodal does not appear to mobilise the Wnt/PCP pathway, which is known to control cell and tissue polarity. This study opens the way to the analysis of the genetic programme and cell behaviours that are controlled by Nodal signalling during vertebrate gastrulation. It also provides a good example of the sub-functionalisation that results from the expansion of gene families in evolution.
Collapse
Affiliation(s)
- Guillaume Luxardi
- Institut de Biologie du Développement de Marseille Luminy, UMR 6216, CNRS-Université de la Méditerranée, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
8
|
Winklbauer R. Cell adhesion in amphibian gastrulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:215-75. [PMID: 19815180 DOI: 10.1016/s1937-6448(09)78005-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The amphibian gastrula can be regarded as a single coherent tissue which folds and distorts itself in a reproducible pattern to establish the embryonic germ layers. It is held together by cadherins which provide the flexible adhesion required for the massive cell rearrangements that accompany gastrulation. Cadherin expression and adhesiveness increase as one goes from the vegetal cell mass through the anterior mesendoderm to the chordamesoderm, and then decrease again slightly in the ectoderm. Together with a basic random component of cell motility, this flexible, differentially expressed adhesiveness generates surface and interfacial tension effects which, in principle, can exert strong forces. However, conclusive evidence for an in vivo role of differential adhesion-related effects in gastrula morphogenesis is still lacking. The most important morphogenetic process in the amphibian gastrula seems to be intercellular migration, where cells crawl actively across each other's surface. The crucial aspect of this process is that cell motility is globally oriented, leading for example to mediolateral intercalation of bipolar cells during convergent extension of the chordamesoderm or to the directional migration of unipolar cells during translocation of the anterior mesendoderm on the ectodermal blastocoel roof. During these movements, the boundary between ectoderm and mesoderm is maintained by a tissue separation process.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
9
|
Ko MH, Puglielli L. Two endoplasmic reticulum (ER)/ER Golgi intermediate compartment-based lysine acetyltransferases post-translationally regulate BACE1 levels. J Biol Chem 2008; 284:2482-92. [PMID: 19011241 DOI: 10.1074/jbc.m804901200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently identified a novel form of post-translational regulation of BACE1 (beta-site amyloid precursor protein-cleaving enzyme 1), a membrane protein that acts as the rate-limiting enzyme in the generation of the Alzheimer disease amyloid beta-peptide. Specifically, nascent BACE1 is transiently acetylated in seven lysine residues clustered in a highly disordered region of the protein that faces the lumen of the endoplasmic reticulum (ER)/ER Golgi intermediate compartment (ER/ERGIC). The acetylation protects the nascent protein from degradation by PCSK9/NARC-1 in the ERGIC and allows it to reach the Golgi apparatus. Here we report the identification of two ER/ERGIC-based acetyltransferases, ATase1 and ATase2. Both proteins display acetyl-CoA:lysine acetyltransferase activity, can interact with and acetylate BACE1, and display an ER/ERGIC localization with the catalytic site facing the lumen of the organelle. Both ATase1 and ATase2 regulate the steady-state levels of BACE1 and the rate of amyloid beta-peptide generation. Finally, their transcripts are up-regulated by ceramide treatment. In conclusion, our studies have identified two new enzymes that may be involved in the pathogenesis of late-onset Alzheimer disease. The biochemical characterization of the above events could lead to the identification of novel pharmacological strategies for the prevention of this form of dementia.
Collapse
Affiliation(s)
- Mi Hee Ko
- Department of Medicine, University of Wisconsin-Madison and Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, Wisconsin 53705, USA
| | | |
Collapse
|
10
|
Takahashi K, Saitoh A, Yamada M, Maruyama Y, Hirose N, Kamei J, Yamada M. Gene Expression Profiling Reveals Complex Changes in the Olfactory Bulbectomy Model of Depression After Chronic Treatment With Antidepressants. J Pharmacol Sci 2008; 108:320-34. [DOI: 10.1254/jphs.08149fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
11
|
Hahn Y, Lee B. Human-specific nonsense mutations identified by genome sequence comparisons. Hum Genet 2006; 119:169-78. [PMID: 16395595 DOI: 10.1007/s00439-005-0125-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 12/10/2005] [Indexed: 11/29/2022]
Abstract
The comparative study of the human and chimpanzee genomes may shed light on the genetic ingredients for the evolution of the unique traits of humans. Here, we present a simple procedure to identify human-specific nonsense mutations that might have arisen since the human-chimpanzee divergence. The procedure involves collecting orthologous sequences in which a stop codon of the human sequence is aligned to a non-stop codon in the chimpanzee sequence and verifying that the latter is ancestral by finding homologs in other species without a stop codon. Using this procedure, we identify nine genes (CML2, FLJ14640, MT1L, NPPA, PDE3B, SERPINA13, TAP2, UIP1, and ZNF277) that would produce human-specific truncated proteins resulting in a loss or modification of the function. The premature terminations of CML2, MT1L, and SERPINA13 genes appear to abolish the original function of the encoded protein because the mutation removes a major part of the known active site in each case. The other six mutated genes are either known or presumed to produce functionally modified proteins. The mutations of five genes (CML2, FLJ14640, MT1L, NPPA, TAP2) are known or predicted to be polymorphic in humans. In these cases, the stop codon alleles are more prevalent than the ancestral allele, suggesting that the mutant alleles are approaching fixation since their emergence during the human evolution. The findings support the notion that functional modification or inactivation of genes by nonsense mutation is a part of the process of adaptive evolution and acquisition of species-specific features.
Collapse
Affiliation(s)
- Yoonsoo Hahn
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, MSC 4264, 37 Convent Drive Room 5120A, Bethesda, MD 20892-4264, USA
| | | |
Collapse
|
12
|
Yoon CY, Park M, Kim BH, Park JY, Park MS, Jeong YK, Kwon H, Jung HK, Kang H, Lee YS, Lee BJ. Gene Expression profile by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in the Liver of Wild-Type (AhR+/+) and Aryl Hydrocarbon Receptor-Deficient (AhR-/-) Mice. J Vet Med Sci 2006; 68:663-8. [PMID: 16891777 DOI: 10.1292/jvms.68.663] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is one of the most toxic environmental pollutants that cause various biological effects on mammals. The purpose of our study was to identify the genes involved in hepatotoxicity and hepatocarcinogenesis caused by TCDD. C57BL/6 (AhR+/+, wild type) and B6.129-AhR<tm1Bra>/J (AhR-/-, knock out) mice were injected i.p. with a single treatment of TCDD at the dose of 100 microg/kg body weight. Relative liver weight was significantly increased at 72 hr after TCDD treatment without an apparent histopathological change in AhR+/+ mice (p<0.05). TCDD treatment also significantly increased activity of serum alanine aminotransferase in AhR-/- mice (p<0.05). The liver was analyzed for gene expression profiles 72 hr later. As compared with AhR-/- mice, the expression of 51 genes (>3-fold) was changed in AhR+/+ mice; 28 genes were induced, while 23 genes were repressed. Most of the genes were associated with chemotaxis, inflammation, carcinogenesis, acute-phase response, immune responses, cell metabolism, cell proliferation, signal transduction, and tumor suppression. This study suggests that the microarray analysis of genes in the liver of AhR+/+ and AhR-/- mice may help to clarify the mechanism of AhR-mediated hepatotoxicity and hepatocarcinogenesis by TCDD.
Collapse
Affiliation(s)
- Chang Yong Yoon
- Department of Toxicology, National Institute of Toxicological Research, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Polevoda B, Sherman F. N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J Mol Biol 2003; 325:595-622. [PMID: 12507466 DOI: 10.1016/s0022-2836(02)01269-x] [Citation(s) in RCA: 355] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
N(alpha)-terminal acetylation occurs in the yeast Saccharomyces cerevisiae by any of three N-terminal acetyltransferases (NAT), NatA, NatB, and NatC, which contain Ard1p, Nat3p and Mak3p catalytic subunits, respectively. The N-terminal sequences required for N-terminal acetylation, i.e. the NatA, NatB, and NatC substrates, were evaluated by considering over 450 yeast proteins previously examined in numerous studies, and were compared to the N-terminal sequences of more than 300 acetylated mammalian proteins. In addition, acetylated sequences of eukaryotic proteins were compared to the N termini of 810 eubacterial and 175 archaeal proteins, which are rarely acetylated. Protein orthologs of Ard1p, Nat3p and Mak3p were identified with the eukaryotic genomes of the sequences of model organisms, including Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Mus musculus and Homo sapiens. Those and other putative acetyltransferases were assigned by phylogenetic analysis to the following six protein families: Ard1p; Nat3p; Mak3p; CAM; BAA; and Nat5p. The first three families correspond to the catalytic subunits of three major yeast NATs; these orthologous proteins were identified in eukaryotes, but not in prokaryotes; the CAM family include mammalian orthologs of the recently described Camello1 and Camello2 proteins whose substrates are unknown; the BAA family comprise bacterial and archaeal putative acetyltransferases whose biochemical activity have not been characterized; and the new Nat5p family assignment was on the basis of putative yeast NAT, Nat5p (YOR253W). Overall patterns of N-terminal acetylated proteins and the orthologous genes possibly encoding NATs suggest that yeast and higher eukaryotes have the same systems for N-terminal acetylation.
Collapse
Affiliation(s)
- Bogdan Polevoda
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|