1
|
de Oliveira Pereira FS, Oliveira de Souza ME, Viçozzi GP, Caurio AC, Pinton S, Denardin CC, Haas SE, Gasparotto Denardin EL, Ávila DS. Bougainvillea glabra Choisy bracts extract in free and liposomal forms reduce hyperplasia induced by let-60gain-of-function in Caenorhabditis elegans. Chem Biodivers 2024; 21:e202300865. [PMID: 38180793 DOI: 10.1002/cbdv.202300865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/06/2024]
Abstract
In this study, we evaluated the toxicological and antiproliferative effects of B. glabra Choisy bract extract (BGCE) in its free and loaded into liposomes forms administered to C. elegans mutants with let-60 gain-of-function (gf). Our results demonstrated that the concentration up to 75 μg CAE/mL of BGCE was safe for the worms. Notably, we developed BGCE-loaded liposomes to extend the pharmacological window up to 100 μg CAE/mL without toxicity. In addition, the extract and liposomes reduced the number and area of the multivulva formed in let-60 gf mutants. There was also an increase in the apoptotic signaling in the germline cells and increased longevity mediated through DAF-16 nuclear translocation with GST-4 activation in the treated animals. Our findings demonstrated that the BGCE-loaded liposomes possess antitumoral effects due to the activation of the apoptotic signaling and DAF-16 nuclear translocation.
Collapse
Affiliation(s)
| | - Maria Eduarda Oliveira de Souza
- Research Group in Toxicology and Biochemistry in Caenorhabditis elegans, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Gabriel Pedroso Viçozzi
- Research Group in Toxicology and Biochemistry in Caenorhabditis elegans, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Aline Castro Caurio
- Physicochemical Studies and Natural Products Laboratory, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Simone Pinton
- Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Cristiane Casagrande Denardin
- Research Group in Toxicology and Biochemistry in Bioactive Compounds, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | | | | | - Daiana Silva Ávila
- Research Group in Toxicology and Biochemistry in Caenorhabditis elegans, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| |
Collapse
|
2
|
Kramer-Drauberg M, Liu JL, Desjardins D, Wang Y, Branicky R, Hekimi S. ROS regulation of RAS and vulva development in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008838. [PMID: 32544191 PMCID: PMC7319342 DOI: 10.1371/journal.pgen.1008838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 06/26/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
Reactive oxygen species (ROS) are signalling molecules whose study in intact organisms has been hampered by their potential toxicity. This has prevented a full understanding of their role in organismal processes such as development, aging and disease. In Caenorhabditis elegans, the development of the vulva is regulated by a signalling cascade that includes LET-60ras (homologue of mammalian Ras), MPK-1 (ERK1/2) and LIN-1 (an ETS transcription factor). We show that both mitochondrial and cytoplasmic ROS act on a gain-of-function (gf) mutant of the LET-60ras protein through a redox-sensitive cysteine (C118) previously identified in mammals. We show that the prooxidant paraquat as well as isp-1, nuo-6 and sod-2 mutants, which increase mitochondrial ROS, inhibit the activity of LET-60rasgf on vulval development. In contrast, the antioxidant NAC and loss of sod-1, both of which decrease cytoplasmic H202, enhance the activity of LET-60rasgf. CRISPR replacement of C118 with a non-oxidizable serine (C118S) stimulates LET-60rasgf activity, whereas replacement of C118 with aspartate (C118D), which mimics a strongly oxidised cysteine, inhibits LET-60rasgf. These data strongly suggest that C118 is oxidized by cytoplasmic H202 generated from dismutation of mitochondrial and/or cytoplasmic superoxide, and that this oxidation inhibits LET-60ras. This contrasts with results in cultured mammalian cells where it is mostly nitric oxide, which is not found in worms, that oxidizes C118 and activates Ras. Interestingly, PQ, NAC and the C118S mutation do not act on the phosphorylation of MPK-1, suggesting that oxidation of LET-60ras acts on an as yet uncharacterized MPK-1-independent pathway. We also show that elevated cytoplasmic superoxide promotes vulva formation independently of C118 of LET-60ras and downstream of LIN-1. Finally, we uncover a role for the NADPH oxidases (BLI-3 and DUOX-2) and their redox-sensitive activator CED-10rac in stimulating vulva development. Thus, there are at least three genetically separable pathways by which ROS regulates vulval development.
Collapse
Affiliation(s)
| | - Ju-Ling Liu
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - David Desjardins
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Robyn Branicky
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Pellegrino MW, Hajnal A. The transcription factor VAB-23 links vulval cell fate specification and morphogenesis. WORM 2013; 1:170-5. [PMID: 24058843 PMCID: PMC3670409 DOI: 10.4161/worm.20382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/13/2012] [Indexed: 11/19/2022]
Abstract
During organogenesis, individual cells must commit to and execute specific cell fates. However, the molecular mechanisms linking cell fate specification to fate execution and morphogenesis remain a largely unexplored area in developmental biology. The Caenorhabditis elegans vulva is an excellent model to dissect the molecular pathways linking cell fate specification and execution during organogenesis. We have recently identified a conserved nuclear zinc finger transcription factor called VAB-23 that plays essential roles during vulval torid formation in the larva and ventral epidermal closure in the embryo. VAB-23 regulates the transcription of specific target genes including smp-1 Semaphorin. EGFR/RAS/MAPK signaling upregulates via the HOX protein LIN-39 the expression of VAB-23 in the 1° vulval cell lineage, indicating that cell fate specification and execution are temporally overlapping and tightly linked processes. Here, we discuss the roles of VAB-23 in morphogenesis and the implications of its regulation on the spatio-temporal control of organogenesis.
Collapse
Affiliation(s)
- Mark W Pellegrino
- University of Zürich; Institute of Molecular Life Sciences; Zürich, Switzerland
| | | |
Collapse
|
4
|
Wong D, Bazopoulou D, Pujol N, Tavernarakis N, Ewbank JJ. Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection. Genome Biol 2008; 8:R194. [PMID: 17875205 PMCID: PMC2375032 DOI: 10.1186/gb-2007-8-9-r194] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 01/12/2023] Open
Abstract
Microarray analysis of the transcriptional response of C. elegans to four bacterial pathogens revealed that different infections trigger responses, some of which are common to all four pathogens, such as necrotic cell death, which has been associated with infection in humans. Background There are striking similarities between the innate immune systems of invertebrates and vertebrates. Caenorhabditis elegans is increasingly used as a model for the study of innate immunity. Evidence is accumulating that C. elegans mounts distinct responses to different pathogens, but the true extent of this specificity is unclear. Here, we employ direct comparative genomic analyses to explore the nature of the host immune response. Results Using whole-genome microarrays representing 20,334 genes, we analyzed the transcriptional response of C. elegans to four bacterial pathogens. Different bacteria provoke pathogen-specific signatures within the host, involving differential regulation of 3.5-5% of all genes. These include genes that encode potential pathogen-recognition and antimicrobial proteins. Additionally, variance analysis revealed a robust signature shared by the pathogens, involving 22 genes associated with proteolysis, cell death and stress responses. The expression of these genes, including those that mediate necrosis, is similarly altered following infection with three bacterial pathogens. We show that necrosis aggravates pathogenesis and accelerates the death of the host. Conclusion Our results suggest that in C. elegans, different infections trigger both specific responses and responses shared by several pathogens, involving immune defense genes. The response shared by pathogens involves necrotic cell death, which has been associated with infection in humans. Our results are the first indication that necrosis is important for disease susceptibility in C. elegans. This opens the way for detailed study of the means by which certain bacteria exploit conserved elements of host cell-death machinery to increase their effective virulence.
Collapse
Affiliation(s)
- Daniel Wong
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille Cedex 9, France
- Institut National de la Santé et de la Recherche Médicale, U631, 13288 Marseille, France
- Centre National de la Recherche Scientifique, UMR6102, 13288 Marseille, France
| | - Daphne Bazopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 71110, Crete, Greece
| | - Nathalie Pujol
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille Cedex 9, France
- Institut National de la Santé et de la Recherche Médicale, U631, 13288 Marseille, France
- Centre National de la Recherche Scientifique, UMR6102, 13288 Marseille, France
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 71110, Crete, Greece
| | - Jonathan J Ewbank
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille Cedex 9, France
- Institut National de la Santé et de la Recherche Médicale, U631, 13288 Marseille, France
- Centre National de la Recherche Scientifique, UMR6102, 13288 Marseille, France
| |
Collapse
|
5
|
FLI-1 Flightless-1 and LET-60 Ras control germ line morphogenesis in C. elegans. BMC DEVELOPMENTAL BIOLOGY 2008; 8:54. [PMID: 18485202 PMCID: PMC2396608 DOI: 10.1186/1471-213x-8-54] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 05/16/2008] [Indexed: 11/12/2022]
Abstract
Background In the C. elegans germ line, syncytial germ line nuclei are arranged at the cortex of the germ line as they exit mitosis and enter meiosis, forming a nucleus-free core of germ line cytoplasm called the rachis. Molecular mechanisms of rachis formation and germ line organization are not well understood. Results Mutations in the fli-1 gene disrupt rachis organization without affecting meiotic differentiation, a phenotype in C. elegans referred to here as the germ line morphogenesis (Glm) phenotype. In fli-1 mutants, chains of meiotic germ nuclei spanned the rachis and were partially enveloped by invaginations of germ line plasma membrane, similar to nuclei at the cortex. Extensions of the somatic sheath cells that surround the germ line protruded deep inside the rachis and were associated with displaced nuclei in fli-1 mutants. fli-1 encodes a molecule with leucine-rich repeats and gelsolin repeats similar to Drosophila flightless 1 and human Fliih, which have been shown to act as cytoplasmic actin regulators as well as nuclear transcriptional regulators. Mutations in let-60 Ras, previously implicated in germ line development, were found to cause the Glm phenotype. Constitutively-active LET-60 partially rescued the fli-1 Glm phenotype, suggesting that LET-60 Ras and FLI-1 might act together to control germ line morphogenesis. Conclusion FLI-1 controls germ line morphogenesis and rachis organization, a process about which little is known at the molecular level. The LET-60 Ras GTPase might act with FLI-1 to control germ line morphogenesis.
Collapse
|
6
|
Lee I, Lehner B, Crombie C, Wong W, Fraser AG, Marcotte EM. A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat Genet 2008; 40:181-8. [PMID: 18223650 DOI: 10.1038/ng.2007.70] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 11/06/2007] [Indexed: 11/09/2022]
Abstract
The fundamental aim of genetics is to understand how an organism's phenotype is determined by its genotype, and implicit in this is predicting how changes in DNA sequence alter phenotypes. A single network covering all the genes of an organism might guide such predictions down to the level of individual cells and tissues. To validate this approach, we computationally generated a network covering most C. elegans genes and tested its predictive capacity. Connectivity within this network predicts essentiality, identifying this relationship as an evolutionarily conserved biological principle. Critically, the network makes tissue-specific predictions-we accurately identify genes for most systematically assayed loss-of-function phenotypes, which span diverse cellular and developmental processes. Using the network, we identify 16 genes whose inactivation suppresses defects in the retinoblastoma tumor suppressor pathway, and we successfully predict that the dystrophin complex modulates EGF signaling. We conclude that an analogous network for human genes might be similarly predictive and thus facilitate identification of disease genes and rational therapeutic targets.
Collapse
Affiliation(s)
- Insuk Lee
- Center for Systems and Synthetic Biology, Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, 2500 Speedway, MBB 3.210, Austin, Texas 78712, USA
| | | | | | | | | | | |
Collapse
|
7
|
Leacock SW, Reinke V. Expression profiling of MAP kinase-mediated meiotic progression in Caenorhabditis elegans. PLoS Genet 2006; 2:e174. [PMID: 17096596 PMCID: PMC1635537 DOI: 10.1371/journal.pgen.0020174] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 08/28/2006] [Indexed: 12/02/2022] Open
Abstract
The LET-60 (Ras)/LIN-45 (Raf)/MPK-1 (MAP kinase) signaling pathway plays a key role in the development of multiple tissues in Caenorhabditis elegans. For the most part, the identities of the downstream genes that act as the ultimate effectors of MPK-1 signaling have remained elusive. A unique allele of mpk-1, ga111, displays a reversible, temperature-sensitive, tissue-specific defect in progression through meiotic prophase I. We performed gene expression profiling on mpk-1(ga111) animals to identify candidate downstream effectors of MPK-1 signaling in the germ line. This analysis delineated a cohort of genes whose expression requires MPK-1 signaling in germ cells in the pachytene stage of meiosis I. RNA in situ hybridization analysis shows that these genes are expressed in the germ line in an MPK-1-dependent manner and have a spatial expression pattern consistent with the location of activated MPK-1. We found that one MPK-1 signaling-responsive gene encoding a C2H2 zinc finger protein plays a role in meiotic chromosome segregation downstream of MPK-1. Additionally, discovery of genes responsive to MPK-1 signaling permitted us to order MPK-1 signaling relative to several events occurring in pachytene, including EFL-1/DPL-1 gene regulation and X chromosome reactivation. This study highlights the utility of applying global gene expression methods to investigate genes downstream of commonly used signaling pathways in vivo. In many tissues in developing organisms, signaling pathways interpret extracellular cues that change how genes are expressed inside the nucleus and thus direct the appropriate developmental choice. Identification of the genes that are responsive to signaling pathways is critical for understanding how these pathways can promote the correct cell fate. Additionally, understanding the relationships between different regulatory pathways will also help to decipher the network of gene expression that underlies development. The nematode Caenorhabditis elegans has many signaling pathways that are highly similar to those acting in mammals. In particular, the Ras/Raf/MAP kinase signaling pathway acts in many tissues in C. elegans to direct a diverse set of cell fates. Here, we identify a set of genes whose expression alters in response to Ras/Raf/MAP kinase signaling in the germ line during meiosis. We show that this set of genes is primarily expressed in the germ line and that at least one of these genes is important for proper germ cell fate downstream of Ras/Raf/MAP kinase signaling. We also find that the Ras/Raf/MAP kinase signaling pathway functions independently of a second regulatory pathway, the E2F pathway, that acts at a similar time during germ cell development.
Collapse
Affiliation(s)
- Stefanie W Leacock
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Corsi AK. A biochemist's guide to Caenorhabditis elegans. Anal Biochem 2006; 359:1-17. [PMID: 16942745 PMCID: PMC1855192 DOI: 10.1016/j.ab.2006.07.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/11/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Ann K Corsi
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
9
|
Wang P, Zhao J, Corsi AK. Identification of novel target genes of CeTwist and CeE/DA. Dev Biol 2006; 293:486-98. [PMID: 16480708 DOI: 10.1016/j.ydbio.2005.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 10/03/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
Twist, a basic helix-loop-helix (bHLH) transcription factor, plays an important role in mesoderm development in many organisms, including C. elegans where CeTwist is required to direct cell fate specifications of a subset of mesodermal cells. Although several target genes of CeTwist have been identified, how this protein accomplishes its function is unclear. In addition, several human genes whose mutations cause different syndromes of craniosynostosis (premature fusion of cranial sutures) have homologues in the CeTwist pathway. Identification of novel target genes of CeTwist will shed more light on the functions of CeTwist in mesoderm development, and the corresponding human homologues will be good candidates for related syndromes with unidentified mutated genes. In our study, both CeTwist and its heterodimeric partner, CeE/DA, were overexpressed from the inducible heat-shock promoter, and potential target genes were detected with Affymetrix oligonucleotide microarrays. Using transcriptional GFP reporters, we found 11 genes were expressed in cells coincident with known CeTwist target gene products. Based on subsequent validation experiments, 9 genes were defined as novel CeTwist and CeE/DA targets. Human homologues of two of these genes might be involved in craniofacial diseases, which further validates C. elegans as a good model organism for providing insights into these disorders.
Collapse
Affiliation(s)
- Peng Wang
- Department of Biology, Catholic University of America, Washington, DC 20064, USA
| | | | | |
Collapse
|
10
|
Kunitomo H, Uesugi H, Kohara Y, Iino Y. Identification of ciliated sensory neuron-expressed genes in Caenorhabditis elegans using targeted pull-down of poly(A) tails. Genome Biol 2005; 6:R17. [PMID: 15693946 PMCID: PMC551537 DOI: 10.1186/gb-2005-6-2-r17] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 11/29/2004] [Accepted: 12/21/2004] [Indexed: 12/20/2022] Open
Abstract
An mRNA-tagging method was used to selectively isolate mRNA from a small number of cells for subsequent cDNA microarray analysis. The approach was used to identify genes specifically expressed in ciliated sensory neurons of Caenorhabditis elegans. It is not always easy to apply microarray technology to small numbers of cells because of the difficulty in selectively isolating mRNA from such cells. We report here the preparation of mRNA from ciliated sensory neurons of Caenorhabditis elegans using the mRNA-tagging method, in which poly(A) RNA was co-immunoprecipitated with an epitope-tagged poly(A)-binding protein specifically expressed in sensory neurons. Subsequent cDNA microarray analyses led to the identification of a panel of sensory neuron-expressed genes.
Collapse
Affiliation(s)
- Hirofumi Kunitomo
- Molecular Genetics Research Laboratory, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroko Uesugi
- Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Yuji Kohara
- Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Yuichi Iino
- Molecular Genetics Research Laboratory, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Lefebvre C, Aude JC, Glémet E, Néri C. Balancing protein similarity and gene co-expression reveals new links between genetic conservation and developmental diversity in invertebrates. Bioinformatics 2004; 21:1550-8. [PMID: 15598835 DOI: 10.1093/bioinformatics/bti215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION To identify genetic conservation relative to precise aspects of developmental diversity, an essential question in computational biology, we developed a new comparative method that allows conserved modules for the best balance between protein sequence similarity and gene co-expression to be constructed, in invertebrates. RESULTS Our method, referred to as the best-balance constraint procedure (BBCP), yielded 719 functionally conserved modules (FCMs) comprising 2-23 gene pairs. These modules were consistent with the developmental roles of orthologues as inferred from Gene Ontology, RNAi knockouts, InterPro and process-specific microarray data. New relationships were defined between genetic conservation and developmental diversity. Novel gene associations were indeed found in 94% of the FCMs, 150 modules being completely new. A significant proportion of the FCMs (18%, 132 modules) described cell type-specific mechanisms, comprising neuronal, muscle and germ cell signaling, new associations being found in 125 modules. Also found were gene associations for cell fate specification activities previously not highlighted by computational means, e.g. in FCMs containing homeogenes. These data indicate that highly discriminative description of genetic conservation can be deduced using BBCP, and reveal new correlations between cellular and developmental diversity and gene essentiality in invertebrates. CONTACT christian.neri@broca.inserm.fr SUPPLEMENTARY INFORMATION For supplementary information, please refer to Bioinformatics online.
Collapse
Affiliation(s)
- Céline Lefebvre
- INSERM, Avenir Group, Laboratory of Genomic Biology, Centre Paul Broca, 75014 Paris, France
| | | | | | | |
Collapse
|
12
|
Lee J, Nam S, Hwang SB, Hong M, Kwon JY, Joeng KS, Im SH, Shim J, Park MC. Functional genomic approaches using the nematode Caenorhabditis elegans as a model system. BMB Rep 2004; 37:107-13. [PMID: 14761308 DOI: 10.5483/bmbrep.2004.37.1.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the completion of the genome project of the nematode C. elegans in 1998, functional genomic approaches have been applied to elucidate the gene and protein networks in this model organism. The recent completion of the whole genome of C. briggsae, a close sister species of C. elegans, now makes it possible to employ the comparative genomic approaches for identifying regulatory mechanisms that are conserved in these species and to make more precise annotation of the predicted genes. RNA interference (RNAi) screenings in C. elegans have been performed to screen the whole genome for the genes whose mutations give rise to specific phenotypes of interest. RNAi screens can also be used to identify genes that act genetically together with a gene of interest. Microarray experiments have been very useful in identifying genes that exhibit co-regulated expression profiles in given genetic or environmental conditions. Proteomic approaches also can be applied to the nematode, just as in other species whose genomes are known. With all these functional genomic tools, genetics will still remain an important tool for gene function studies in the post genome era. New breakthroughs in C. elegans biology, such as establishing a feasible gene knockout method, immortalized cell lines, or identifying viruses that can be used as vectors for introducing exogenous gene constructs into the worms, will augment the usage of this small organism for genome-wide biology.
Collapse
Affiliation(s)
- Junho Lee
- National Research Laboratory, Department of Biology, Yonsei University, 134 Shinchon, Seoul 120-749, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
DNA and RNA quantifications are widely used in biological and biomedical research. In the last ten years, many technologies have been developed to enable automated and high-throughput analyses. In this review, we first give a brief overview of how DNA and RNA quantifications are carried out. Then, five technologies (microarrays, SAGE, differential display, real time PCR and real competitive PCR) are introduced, with an emphasis on how these technologies can be applied and what their limitations are. The technologies are also evaluated in terms of a few key aspects of nucleic acids quantification such as accuracy, sensitivity, specificity, cost and throughput.
Collapse
Affiliation(s)
- Chunming Ding
- Bioinformatics Program and Center for Advanced Biotechnology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
14
|
Abstract
The dauer is a developmental stage in C. elegans that exhibits increased longevity, stress resistance, nictation and altered metabolism compared with normal worms. We have used DNA microarrays to profile gene expression differences during the transition from the dauer state to the non-dauer state and after feeding of starved L1 animals, and have identified 1984 genes that show significant expression changes. This analysis includes genes that encode transcription factors and components of signaling pathways that could regulate the entry to and exit from the dauer state, and genes that encode components of metabolic pathways important for dauer survival and longevity. Homologs of C. elegans dauer-enriched genes may be involved in the disease process in parasitic nematodes.
Collapse
Affiliation(s)
- John Wang
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
15
|
Abstract
The completion of the Caenorhabditis elegans genome sequence was the initial step toward the use of whole-genome analysis in this model organism. Advances in C. elegans genomics include transcript profiling, gene-function screens using RNA-mediated interference, and protein-interaction mapping using the yeast two-hybrid system. Recent reports have employed these methods to gain new insights into diverse biological problems such as tissue-specific gene expression, cell-fate specification, genome organization, the DNA damage response, and early embryonic development. These studies combined genomic approaches to probe complex biological pathways on an unprecedented scale.
Collapse
Affiliation(s)
- Barth D Grant
- Rutgers, State University of New Jersey, Department of Molecular Biology and Biochemistry, 604 Allison Road, Nelson Biological Laboratories, room A307, Piscataway, NJ 08854, USA.
| | | |
Collapse
|