1
|
Zeng Q, Wan Y, Zhu P, Zhao M, Jiang F, Chen J, Tang M, Zhu X, Li Y, Zha H, Wang Y, Hu M, Mo X, Zhang Y, Chen Y, Chen Y, Ye X, Bodmer R, Ocorr K, Jiang Z, Zhuang J, Yuan W, Wu X. The bHLH Protein Nulp1 is Essential for Femur Development Via Acting as a Cofactor in Wnt Signaling in Drosophila. Curr Mol Med 2019; 17:509-517. [PMID: 29437009 PMCID: PMC5898038 DOI: 10.2174/1566524018666180212145714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/27/2018] [Accepted: 02/09/2018] [Indexed: 11/22/2022]
Abstract
Background: The basic helix-loop-helix (bHLH) protein families are a large class of transcription factors, which are associated with cell proliferation, tissue differentiation, and other important development processes. We reported that the Nuclear localized protein-1 (Nulp1) might act as a novel bHLH transcriptional factor to mediate cellular functions. However, its role in development in vivo remains unknown. Methods: Nulp1 (dNulp1) mutants are generated by CRISPR/Cas9 targeting the Domain of Unknown Function (DUF654) in its C terminal. Expression of Wg target genes are analyzed by qRT-PCR. We use the Top-Flash luciferase reporter assay to response to Wg signaling. Results: Here we show that Drosophila Nulp1 (dNulp1) mutants, generated by CRISPR/Cas9 targeting the Domain of Unknown Function (DUF654) in its C terminal, are partially homozygous lethal and the rare escapers have bent femurs, which are similar to the major manifestation of congenital bent-bone dysplasia in human Stuve-Weidemann syndrome. The fly phenotype can be rescued by dNulp1 over-expression, indicating that dNulp1 is essential for fly femur development and survival. Moreover, dNulp1 overexpression suppresses the notch wing phenotype caused by the overexpression of sgg/GSK3β, an inhibitor of the canonical Wnt cascade. Furthermore, qRT-PCR analyses show that seven target genes positively regulated by Wg signaling pathway are down-regulated in response to dNulp1 knockout, while two negatively regulated Wg targets are up-regulated in dNulp1 mutants. Finally, dNulp1 overexpression significantly activates the Top-Flash Wnt signaling reporter. Conclusion: We conclude that bHLH protein dNulp1 is essential for femur development and survival in Drosophila by acting as a positive cofactor in Wnt/Wingless signaling.
Collapse
Affiliation(s)
- Q Zeng
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Wan
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - P Zhu
- Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - M Zhao
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - F Jiang
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - J Chen
- Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - M Tang
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Zhu
- Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Y Li
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - H Zha
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Wang
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - M Hu
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Mo
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Zhang
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Chen
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Chen
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Ye
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - R Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - K Ocorr
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Z Jiang
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - J Zhuang
- Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - W Yuan
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Wu
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
2
|
Abstract
decapentaplegic (dpp), the Drosophila ortholog of BMP 2/4, directs ventral adult head morphogenesis through expression in the peripodial epithelium of the eye-antennal disc. This dpp expressing domain exerts effects both on the peripodial epithelium, and the underlying disc proper epithelium. We have uncovered a role for the Jun N-terminal kinase (JNK) pathway in dpp-mediated ventral head development. JNK activity is required for dpp's action on the disc proper, but in the absence of dpp expression, excessive JNK activity is produced, leading to specific loss of maxillary palps. In this review we outline our hypotheses on how dpp acts by both short range and longer range mechanisms to direct head morphogenesis and speculate on the dual role of JNK signaling in this process. Finally, we describe the regulatory control of dpp expression in the eye-antennal disc, and pose the problem of how the various expression domains of a secreted protein can be targeted to their specific functions.
Collapse
Affiliation(s)
- Deborah A Hursh
- a Division of Cell and Gene Therapies , Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring , MD , USA
| | - Brian G Stultz
- a Division of Cell and Gene Therapies , Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring , MD , USA
| | - Sung Yeon Park
- b Ischemic/Hypoxic Disease Institute , Department of Physiology , Seoul National University College of Medicine , Seoul , Republic of Korea
| |
Collapse
|
5
|
Takaesu NT, Bulanin DS, Johnson AN, Orenic TV, Newfeld SJ. A combinatorial enhancer recognized by Mad, TCF and Brinker first activates then represses dpp expression in the posterior spiracles of Drosophila. Dev Biol 2008; 313:829-43. [PMID: 18068697 PMCID: PMC2254533 DOI: 10.1016/j.ydbio.2007.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 09/28/2007] [Accepted: 10/18/2007] [Indexed: 10/22/2022]
Abstract
A previous genetic analysis of a reporter gene carrying a 375-bp region from a dpp intron (dppMX-lacZ) revealed that the Wingless and Dpp pathways are required to activate dpp expression in posterior spiracle formation. Here we report that within the dppMX region there is an enhancer with binding sites for TCF and Mad that are essential for activating dppMX expression in posterior spiracles. There is also a binding site for Brinker likely employed to repress dppMX expression. This combinatorial enhancer may be the first identified with the ability to integrate temporally distinct positive (TCF and Mad) and negative (Brinker) inputs in the same cells. Cuticle studies on a unique dpp mutant lacking this enhancer showed that it is required for viability and that the Filzkorper are U-shaped rather than straight. Together with gene expression data from these mutants and from brk mutants, our results suggest that there are two rounds of Dpp signaling in posterior spiracle development. The first round is associated with dorsal-ventral patterning and is necessary for designating the posterior spiracle field. The second is governed by the combinatorial enhancer and begins during germ band retraction. The second round appears necessary for proper spiracle internal morphology and fusion with the remainder of the tracheal system. Intriguingly, several aspects of dpp posterior spiracle expression and function are similar to demonstrated roles for Wnt and BMP signaling in proximal-distal outgrowth of the mammalian embryonic lung.
Collapse
Affiliation(s)
- Norma T. Takaesu
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501
| | - Denis S. Bulanin
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607
| | - Aaron N. Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501
| | - Teresa V. Orenic
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607
| | - Stuart J. Newfeld
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501
- Center for Evolutionary Functional Genomics, Arizona State University, Tempe, AZ 85287-4501
| |
Collapse
|
8
|
Anderson J, Bhandari R, Kumar JP. A genetic screen identifies putative targets and binding partners of CREB-binding protein in the developing Drosophila eye. Genetics 2005; 171:1655-72. [PMID: 15998717 PMCID: PMC1456093 DOI: 10.1534/genetics.105.045450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila CREB-binding protein (dCBP) is a very large multidomain protein, which belongs to the CBP/p300 family of proteins that were first identified by their ability to bind the CREB transcription factor and the adenoviral protein E1. Since then CBP has been shown to bind to >100 additional proteins and functions in a multitude of different developmental contexts. Among other activities, CBP is known to influence development by remodeling chromatin, by serving as a transcriptional coactivator, and by interacting with terminal members of several signaling transduction cascades. Reductions in CBP activity are the underlying cause of Rubinstein-Taybi syndrome, which is, in part, characterized by several eye defects, including strabismus, cataracts, juvenile glaucoma, and coloboma of the eyelid, iris, and lens. Development of the Drosophila melanogaster compound eye is also inhibited in flies that are mutant for CBP. However, the vast array of putative protein interactions and the wide-ranging roles played by CBP within a single tissue such as the retina can often complicate the analysis of CBP loss-of-function mutants. Through a series of genetic screens we have identified several genes that could either serve as downstream transcriptional targets or encode for potential CBP-binding partners and whose association with eye development has hitherto been unknown. The identification of these new components may provide new insight into the roles that CBP plays in retinal development. Of particular interest is the identification that the CREB transcription factor appears to function with CBP at multiple stages of retinal development.
Collapse
Affiliation(s)
- Jason Anderson
- Department of Biology, Indiana University, 1001 E. 3rd Street, Jordan Hall A318, Bloomington, IN 47401, USA
| | | | | |
Collapse
|